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Learning to learn online with neuromodulated
synaptic plasticity in spiking neural networks
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We propose that in order to harness our understanding of neu-
roscience toward machine learning, we must first have power-
ful tools for training brain-like models of learning. Although
substantial progress has been made toward understanding the
dynamics of learning in the brain, neuroscience-derived mod-
els of learning have yet to demonstrate the same performance
capabilities as methods in deep learning such as gradient de-
scent. Inspired by the successes of machine learning using gra-
dient descent, we demonstrate that models of neuromodulated
synaptic plasticity from neuroscience can be trained in Spiking
Neural Networks (SNNs) with a framework of learning to learn
through gradient descent to address challenging online learning
problems. This framework opens a new path toward developing
neuroscience inspired online learning algorithms.
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Introduction
The ability to learn continually across vast time spans is a hall-
mark of the brain which is unrivaled by modern machine learn-
ing algorithms. Extensive research on learning in the brain
has provided detailed models of synaptic plasticity–however,
these models of learning have yet to produce the impressive
capabilities demonstrated by deep neural networks trained
with backpropagation. Despite our increasing understanding
of biological learning, the most powerful methods for optimiz-
ing neural networks have remained backpropagation-based.
However, when backpropagation is applied to a continuous
stream of data, issues arise since gradient descent approaches
do not address the ability to update synapses continually with-
out forgetting previously learned information. This is because
backpropagation methods modify the weight of every synapse
at every update, which causes task-specific information from
previous updates to rapidly deteriorate. The tendency for back-
propagation to overwrite previously learned tasks has made
its use as an online learning algorithm impractical (1, 2). The
brain solves this problem by determining its own modifica-
tion as a function of information that is locally available to
neurons and synapses. This ability for self-modification is
a process that has been fine-tuned through a long course of
evolution, and is the basis of learning and memory in the brain
(3). Can the success of gradient descent be combined with
neuroscience models of learning in the brain?
Recent experimental evidence from neuroscience has pro-
vided valuable insight into the dynamics of learning in the
brain (4, 5). Two fundamental findings have led to recent

successes in the development of online neuro-inspired learn-
ing algorithms (6–10). First, neurons and synapses in the
brain maintain historical traces of activity. These traces, re-
ferred to as eligibility traces, are thought to accumulate the
joint interaction between pre- and post-synaptic neuron fac-
tors. Eligibility traces do not automatically produce a synaptic
change, but have been demonstrated to induce synaptic plas-
ticity in the presence of top-down learning signal. Second, the
brain has a significant quantity of top-down learning signals
which are broadly projected by neurons from higher centers
in the brain to plastic synapses to convey information such as
novelty, reward, and surprise. These top-down signals often
represent neuromodulator activity such as dopamine (11–15)
or acetylcholine (16–22). The interaction between eligibility
traces and top-down learning signals enables learning rules to
connect interactions between long and short time scales (4, 5).
Here, we demonstrate that models of neuromodulated synaptic
plasticity from neuroscience can be trained in SNNs with the
paradigm of learning to learn through gradient descent. These
results demonstrate that neuromodulated synaptic plasticity
rules can be optimized to solve temporal learning problems
from a continuous stream of data, leading to dynamics that are
optimized to address several fundamental online learning chal-
lenges. This new paradigm allows models of neuromodulated
synaptic plasticity to realize the benefits from the success of
gradient descent in machine learning while staying true to
neuroscience. This opens the door for validating learning
theories in neuroscience on challenging problems, as well
as developing effective online learning algorithms which are
compatible with existing neuromorphic hardware.

Learning in networks with plastic synapses

Learning how to learn online. The primary strategy for
developing online learning systems has been to attempt dis-
covering each piece of the system manually such that these
pieces can one day be assembled to form an effective online
learning system. Alternatively, the paradigm of meta-learning
aims to learn the learning algorithm itself such that it ulti-
mately discovers a solution that solves the inherent learning
problems out of necessity (23). Meta-learning has been notori-
ously difficult to define, and is often used inconsistently across
experiments–however, it is consistently understood to signify
learning how to learn: improving the learning algorithm itself
(24). More concisely, meta-learning is a learning paradigm
that uses meta-knowledge from previous experience to im-
prove its ability to learn in new contexts. This differs from
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multi-task learning in that, multi-task learning aims to produce
a model that performs well on multiple tasks that are explicitly
encountered during the optimization period, whereas meta-
learning primarily aims to produce a model that is able to
learn novel tasks more efficiently.
Meta-learning consists of an inner (base) and outer (meta)
loop learning paradigm (24). During base learning, an inner-
loop learning algorithm solves a task, such as robotic loco-
motion or image classification, while optimizing a provided
objective. During meta-learning, an outer-loop (meta) al-
gorithm uses information collected from the base learning
phase to improve the inner-loop (base learning) algorithm
toward optimizing the outer-loop objective. It is proposed
that there are three axes within the meta-learning paradigm:
meta-representation (what?), meta-optimization (how?), and
meta-objective (why?) (24). The meta-representation refers
to the representation of meta-knowledge ω. This knowledge
could be anything from initial model parameters (25–28), the
inner optimization process (29–32), or the model architecture
(33–36). The meta-optimizer refers to the choice of opti-
mization for the outer-level in the meta-training phase which
updates meta-knowledge ω. The meta-optimizer often takes
the form of gradient-descent (25), evolutionary strategies (37),
or genetic algorithms (38). The meta-objective specifies the
goal of the outer-loop learning process, which is characterized
by an objective Lmeta and task distribution Dtest(i)source.
To provide a more formal definition, the bilevel optimization
perspective of meta-learning is presented as follows:

ω∗ = arg min
ω

M∑
i=1
Lmeta(θ∗(i)(ω),ω,Dtest(i)source) (1)

s.t. θ∗(i)(ω) = arg min
θ
Ltask(θ,ω,Dtrain(i)

source ). (2)

Equation 1 represents the outer-loop optimization, which
looks to find an optimal meta-representation ω∗ defined by the
selection of values ω such that the meta-objective loss Lmeta
is minimized across a set of M tasks from the task testing dis-
tribution Dtest(i)source. The minimization of Lmeta is dependent
on finding θ∗(i)(ω), which is the selection of values for θ that
minimize the task loss Ltask using the meta-representation
ω. In other words, θ∗(i)(ω) looks to finds the optimal θ for
a given training distribution of data using ω and ω∗ looks to
find the optimal ω for a given testing distribution with θ∗(i)(ω)
that was optimized on the training distribution using a given
ω.
Learning how to learn online with synaptic plasticity
through gradient descent. In learning applications with
networks of spiking neurons, synaptic plasticity rules have
historically been optimized through black-box optimization
techniques such as evolutionary strategies (39–41), genetic
algorithms (42, 43), or Bayesian optimization (44, 45). This
is because spiking dynamics are inherently non-differentiable,
and non-differentiable computations prevent gradient descent
from being harnessed for optimization. However, recent ad-
vances have developed methods for backpropagating through

the non-differentiable part of the neuron with surrogate gra-
dients (46–48), which are continuous relaxations of the true
gradient. These advances have also allowed gradient descent
based approaches to be utilized for optimizing both the param-
eters defining plasticity rules and neuromodulatory learning
rules in SNNs (7). However, previous work optimizing these
rules use neuromodulated plasticity as a dynamic which com-
pliments the network on tasks which can be solved without it
instead of using it as the learning algorithm itself (7). Methods
which do use neuromodulated plasticity as a learning algo-
rithm do not learn its dynamics from biological learning rules,
but define rules which are derived from machine learning ap-
proaches (6, 49). Instead, we desire to provide a paradigm of
using learning rules from neuroscience that can be optimized
to act as the learning algorithm through gradient descent.

An insight which enables this is the idea that synaptic plas-
ticity in the presence of a neuromodulatory signal can be
thought of as a meta-learning optimization process, with meta-
knowledge ω being represented by the learned plasticity rule
parameters and θ as the strength of synaptic weights repre-
senting the inner-level free parameters which change based
on ω online. Since both the parameters governing the dy-
namics of the neuromodulatory signal and the plasticity rules
in SNNs can be optimized through backpropagation through
time (BPTT) (7), the outer-loop training can be framed to
optimize neuromodulated plasticity rules (Equation 1) which
act as the inner-loop learning process (Equation 2). The op-
timization goal of outer-loop in Equation 1 is a selection of
the neuromodulatory and plasticity parameters for ω which
minimize the outer-loop loss Lmeta as a function of θ∗(i)(ω),
ω, and Dtest(i)source. The optimization goal of the inner loop in
Equation 2 is to find θ∗(i)(ω) which is defined as a selection
of the parameters for θ which minimize the inner-loop loss
Ltask, such that θ is determined across time as a function of
the plasticity equation and ω, which parameterizes the plas-
ticity rules and the neuromodulatory dynamics, for a given
task Dtrain(i)

source . By optimizing the learning process, gradient
descent, which acts on ω in Equation 1, is able to shape the
dynamics of learning in Equation 2 such that it is able to solve
problems that gradient descent is not able to solve on its own.
To do this, learning problems are presented to emulate how
biological organisms are trained to solve tasks in behavioral
experiments–specifically with respect to the online nature of
the task. The meta-learning process can then shape plasticity
and neuromodulatory dynamics to address more fundamen-
tal challenges that are presented during the inner-loop task.
Rather than manual design, these fundamental learning prob-
lems are addressed implicitly by the optimization process out
of necessity for solving the meta-learning objective. As this
work will demonstrate, using neuromodulated plasticity as
the meta-representation allows for the learning algorithm it-
self to be learned, making this optimization paradigm capable
of learning to solving difficult temporal learning problems.
This capability is demonstrated on an online one-shot contin-
ual learning problem and on a online one-shot image class
recognition problem.
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Fig. 1. Learning to learn online with neuromodulated synaptic plasticity. An example of the meta-learning paradigm on a one-shot cue association problem. A virtual
rodent travels down a T-maze for a series of trials with a novel randomly permuted sensory input, and must learn the representation of the novel permutation through the inner-
loop optimization via synaptic plasticity (pair-based STDP) and neuromodulation from N training trials before it is evaluated on a testing trial. The outer-loop representation
optimizes (through gradient descent) the plasticity and neurmodulatory parameters (ω) to better learn from novel random permutations during the training trials; meaning,
the (inner) base learning, which optimizes Equation 2, is accomplished through the network dynamics learned by the (outer) meta learning Equation 1 (which is solved by
gradient descent). This illustrates learning to learn, where Equation 1 is learning how to make the network learn (i.e. solve Equation 2). Permuted sensory cues are sent
to the Differentiable Plasticity SNN (DP-SNN), which has plastic synapses, and the Neuromodulatory SNN (NM-SNN), which sends top-down signals that modulate plastic
synapses in the DP-SNN.

Experiments

One-shot continual learning: Addressing credit
assignment through one-shot cue association.
Experience-dependent changes at the synapse serve as
a fundamental mechanism for both short- and long-term
memory in the brain. These changes must be capable of
attributing the outcome of behaviors together with the
necessary information contained in temporally-dependent
sensory stimuli, all while ignoring irrelevant details; if the
behavior produced by a particular stimuli led to a good
outcome it should be reinforced and visa versa. The problem,
however, is that the outcome of behavior is often not realized
for a long and typically variable amount of time after the
actions affecting that outcome are produced. Additionally,
there are often many elements of sensory noise that could
serve to distract the temporal-learner from proper credit
assignment.
To examine these capabilities, a valuable learning experiment
from neuroscience tests the cognitive capabilities of rodents
in a T-maze. The T-maze can be described as an enclosed
structure that takes the form of a horizontally-placed T (50–
54), with the maze beginning at the base of T and ending at
either side of the arms, see Figure 1. The rodent moves down
the base of the maze and chooses either side of the arms. In

some experiments, a series of sensory cues are arranged along
the left and right of the apparatus as the rodent makes progress
toward the end of the maze. A decision as to which side of
the maze will provide positive and negative reinforcement is
based on the arrangement of these stimuli (54, 55). The rodent
is rewarded for choosing the side of the track with the majority
of cues. This task is not trivial to solve since the rodent has to
recognize that the outcome is not effected by the presentation
ordering of the cues or which side the last cue was on. Rather,
the cues must be counted independent of their ordering for
each side and the sums must be compared to make a decision.
Making learning more difficult, the reward for solving this
problem is not presented until after a decision has been made,
so the rodent must address credit assignment for its behavior
across the time span of an entire cue experiment.

Previous experiments with SNNs in simulation have demon-
strated that synaptic plasticity alone enables a network to
solve this problem where it was not able to be solved with
feedforward SNNs (7) or Recurrent SNNs (RSNNs) (6) us-
ing BPTT. However, previous work only considered learning
in this environment in a setting where the neurons associ-
ated with a particular cue remained consistent across gradient
updates and experiments. In this way, there was no inner-
and outer-level optimization. Rather, the synaptic plasticity
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Fig. 2. One-shot cue association. Visual demonstration of the continual one-shot learning paradigm for a trained neuromodulatory network. (A) Graphical interpretation of
cue-association task. Two training data mazes are presented in a random order, one from each class of right (first maze) and left (second maze) cues followed by a testing
data maze. Gray corresponds to training data which receives no reward to backpropagate and gold corresponds to testing data which does receive reward to backpropagate.
(B) Non-permuted sensory information represented as spikes indexed from 0 to 20 (bottom to top). (C) Permuted form of sensory information presented in B indexed by which
neuron receives spikes. (D) Eligibility trace dynamics (Methods, Equation 16) sampled from five random synapses. (E) LTP (green) and LTD (magenta) neuromodulatory
dynamics from a random modulatory neuron. (F) Activity of a hidden neuron. (G) Sample of 16 hidden neuron spiking activity. (H) Action neuron activity.
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served as a mechanism for memorization and cue-decision
making, but not actually learning which cues and which deci-
sions are associated with positive reward during the network
time-horizon, and hence it does not qualify as a meta-learning
problem. Additionally, during in-vivo rodent experiments,
accurate cue-problem performance is demonstrated with only
7-12 sessions per mouse (55). This differs from the learning
efficiency of ref. (7) and ref. (6), which take on the order of
hundreds and thousands of training sessions respectively.

Many- and one-shot learning. Converting this experiment
from neuroscience into simulation, sensory cues are emulated
as probabilistic spike trains, with subgroups of neurons corre-
sponding to particular sensory cues. Twenty sensory neurons
are organized into four subgroups, five of which represent
right-sided cues, five for left-sided cues, five of which dis-
play activity during the decision period, and five which purely
produce spike noise (Figure 2B). To transform this problem
into a meta-learning problem, the particular sensory neurons
which are associated with cues, decision timings, and noise are
randomly permuted (Figure 2C) making the temporal learner
unable to know which neurons are associated with which
stimuli at the beginning of each cue-association task. The
network is then presented with a series of cue-trials (Figure
2A) and a reward signal at the end of each trial. The many-
shot cue association experiment is as follows: (1) the neurons
associated with particular cues in previous experiments are
randomly permuted, (2) the network is placed at the beginning
of the cue-maze, (3) a series of sensory inputs, noise, cues,
and decision activity are input into the sensory neurons as
the learner moves along the apparatus, (4) at the end of the
maze the learner makes a decision (left or right) based on the
sensory input and a reward signal is provided as input to the
neuromodulatory network based on whether it was the correct
decision, (5) the agent is placed at the beginning of the maze
and starts from step 2 without resetting network parameters
and traces for N trials for all K cues (left and right) acting as
a training phase (i.e. inner loop solving Equation 2), (6) the
performance of the network is tested based on the information
that has been learned from the N -shot cue presentations, (7)
plasticity parameters are updated through gradient descent
based on evaluation performance for the final test trial (i.e.
outer loop solving Equation 1), and the learning problem is
repeated from step 1. The benefit of permuting the sensory
neurons as a source of inner-loop learning is that it results in
a large number of variations of the problem. With only 20
neurons there are 20! = 2.4 ·1018 variations, which results in
learning experiments which are unlikely to have repetitions in
the problem domain.

One-shot learning is a particularly challenging variation of
the N -shot learning paradigm, where N is set equal to one
for each of the K classes. In this way, the learning model is
only provided with one example of each class and must be
capable of differentiating between classes based only on the
given single example. One-shot learning is argued to be one
of two important capabilities of the brain that is missing from
models of learning in computational neuroscience (56).

Architecture. The DP-SNN in Figure 3 contains one-hidden
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Fig. 3. Cue Association Architecture. Depiction of the network structure for the
DP-SNN (bottom) and the NM-SNN (top) for the cue association experiment.

layer of 48 Current-Based Leaky Integrate-and-Fire (CUBA)
neurons (Methods, Equation 6-7). Synaptic connections be-
tween the input neurons and the hidden layer neurons accu-
mulate changes in an eligibility trace based on an additive
pair-based STDP rule (Methods, Equation 12) with a Long-
Term Potentiation (LTP) trace for the LTP dynamics of the
pair-based rule and an Long-Term Depression (LTD) trace for
the LTD dynamics. Pair-based STDP (Methods, Equation 11)
represents plasticity based on the product of timing relation-
ships between pairs of pre- and post-synaptic activity. Learn-
ing signals for the LTP trace and the LTD trace are produced
by an independent neuromodulatory SNN (NM-SNN) using
an input neuron specific modulatory signal (Methods, Equa-
tion 19) for both the LTP and LTD dynamics. Connections
from the hidden neurons to the output activity are non-plastic
synapses learned through gradient descent. During network
initialization, only a fraction of neurons are connected, with
a connection probability of 50%. Each initialized synapse is
assigned to represent either an inhibitory synapse with 20%
probability or an excitatory synapse with 80% probability,
with inhibitory synapses producing negative currents in outgo-
ing neurons and excitatory synapses producing positive ones.
The neuromodulatory SNN contains two layers of 64 CUBA
neurons (Methods, Equation 6-7). The synapses are non-
plastic and are fully-connected between layers. The NM-SNN
receives the same sensory input as the DP-SNN in addition to
the DP-SNN hidden neuron activity and a learning signal that
occurs at the decision interval for the training cue sequences.
Both the DP-SNN and the neuromodulatory SNN share the
same meta-objective and are optimized jointly in an end-to-

Schmidgall et al. | Learning to learn online in SNNs bioRχiv | 5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.24.497562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497562
http://creativecommons.org/licenses/by/4.0/


DRAFT

Performance Accuracy with M Cues
1.00

0.95

0.90

0.85

0.80

0.75

0.70

1 3 5 7 9 11 13 15

Fig. 4. M Cue Performance. Performance accuracy of cue association model
trained on 5 cues and then tested on M cues between 1 and 15.

end manner with BPTT in the outer loop (i.e. Equation 1). Er-
ror for the one-shot learning task is calculated via binary cross
entropy loss on the output neuron activity compared with the
correct cue label (Figure 2H) during the testing data trajectory,
with Lmeta = −

∑2
i=1(log(p(yi)) + (1− yi)log)(1− p(yi))

and yi equal to the weighted output neuron activity.
Experimental setup. The one-shot learning experiment in
this work presents M = 5 cues (Figure 2A-C). During a cue
presentation period the permuted cue neuron has a firing prob-
ability of 0.75. When the cue neuron is not active (during a
cue presentation) the firing probability is 0.15. The noise neu-
rons have a firing probability of 0.15 at each moment in time
and the decision interval neurons have a firing probability of
0.75 during a decision period and 0.15 otherwise. The cue pre-
sentation period for each cue spans 25 ms which is followed
by a 30 ms resting period between each cue. After the final
cue there is a 50 ms resting period before the decision period
which is 25 ms totalling 350 ms for each individual cue prob-
lem in the one-shot cue-association task. The simulation step
size is set to 1 ms. An environment feedback signal arrives at
the end of each cue-trial during the decision interval, requiring
the synapses to store and process the necessary information
relating the permuted input cues and the learning signal. This
signal is only given to the neuromodulatory network during
the training data phase (Figure 2A). The environment learning
signal is two-dimensional binary vector, with the first element
as one during a right-cue task, the second element as one
during a left cue-task, and each element is otherwise zero.
Results. Synaptic plasticity occurs continuously at every mo-
ment in time rather than during select periods. Task specific
knowledge is not able to be transferred between cue streams
since cue frequency, cue ordering, and input permutations are
randomly ordered. Rather information must be transferred
between cue streams by improving online learning via the op-
timization of the meta-representation of plasticity–improving
the learning algorithm itself (i.e. solving Equation 1). Recall-
ing the definition of continual learning from ref. (57), infor-
mation within a cue stream must be retained and improved
upon across the two presented training trials without clear
task divisions being provided. Unimportant information in the
form of noise neurons and random cue firings must be selec-

tively recognized and forgotten. Critically, this requires the
optimized learning algorithm to store learned information in
synapses from the training cue trials without catastrophically
forgetting in order to solve the testing cue trial.
A representative trial of the one-shot cue association problem
is shown in Figure 2. Performance on the testing set of novel
cue permutations yields 95.6% accuracy, which is averaged
across 30 trainings with different randomly initialized param-
eters. Figure 4 demonstrates the performance accuracy of
the network demonstrated in Figure 2 when the number of
cues presented, M, are varied from 1-15. Interestingly, while
the network plasticity rule was only optimized for M = 5
cues, the learning behavior exhibits the capability of accu-
rately solving cue problems above and below the number of
cues it was optimized for without additional training. Below
M = 5, M = 1 obtains 98.1% accuracy and M = 3 obtains
96.7% accuracy. Above M = 5, there is a consistent loss in
accuracy from M = 7 with 94.2% to M = 15 with 68.7%.
These results demonstrate that the learned neuromodulated
plasticity rule generalizes in the task solving domain with
respect to the number of cues without additional training on
the meta-representation.

Recognizing novel character classes from a single ex-
ample. Several learning challenges are presented in ref. (58)
with the aim of providing benchmarks that more closely
demonstrate human-like intelligence in machines. The first
among these challenges is the "characters challenge," which
aims at benchmarking a learning algorithm’s ability to recog-
nize digits with few examples. The dataset for this challenge
contains 1623 classes of handwritten characters across 50
unique alphabets, with each character consisting of 20 sam-
ples (59). In this challenge, a learner is presented with a phase
1 image as well as a set of phase 2 images (Figure 5) where,
one image presented is from the same phase 1 image class, and
several other images presented are from other image classes.
The phase 2 images are all presented simultaneously, and the
learner must determine which image from phase 2 is in the
phase 1 class. In the original design of this task, each image is
able to be observed and compared simultaneously, and the im-
age most closely matching the phase 1 image can be compared
directly. A more challenging variation of this problem which
aligns more closely to biological learning is presented in (49),
where each sample from phase 1 and phase 2 is presented
sequentially instead of the learner being able to view and com-
pare all samples simultaneously. The problem is considered
solved correctly if the learner has the highest output activity
for the image in phase 2 that matches the image class from
phase 1. This variation of the characters challenge requires
the learner to address the problem of holding information in
memory across time and actively comparing that information
with subsequently presented data, which even presents itself
as a challenge for humans. Informal human testing from ref.
(49) demonstrates error rates around 15% based on 4 subjects
and 100 trials.
Experimental setup. Both phase 1 and phase 2 images are
presented for 20 ms with a simulation step size of 1 ms. One
image is presented in phase 1 and five images are presented in
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phase 2 for a total trajectory time of 120 ms. This causes the
character challenge to be particularly difficult because the set
of testing tasks is much larger than the set of training tasks.
It is argued that the character presentation should be inten-
tionally small such that the learner must carry out spike-based
computation and learning versus rate-based (49). This time
span is small compared to the average human visual reaction
time which is around 331 ms (60). The phase 1 and phase
2 character classes are selected uniformly from a categorical
distribution and the phase 2 characters are organized with
random ordering. Neuromodulatory signals are only sent by
the NM-SNN to the DP-SNN during the 20 ms presentation of
the phase 1 character. During this period, the synapses must
be modified to recognize the phase 2 image that belongs to
the same character class as the phase 1 image.
To increase the number of classes in the character dataset
each character set is rotated by 90, 180, and 270 degrees, and
are considered independent classes, increasing the number of
character classes from 1623 to 6492. The character classes in
the dataset are split into 20% testing and 80% training. There
are 1.2 ·1019 possible just on the ordering of character class
arrangements in phase 2 in this problem, making it unlikely
for the experiment to repeat any particular trial. Each gradient
is computed across 256 cue trials and the model is updated for
2000 updates (Figure 5D).
Architecture. The character image is fed into a several layers
of a CNN for pre-processing and is flattened at the output.
The flattened output is used as current input to a layer of 196
spiking neurons, which represent the input of the DP-SNN
and the NM-SNN, see Figure 6. The DP-SNN consists of
one hidden layer with 48 CUBA neurons (Methods, Equation
6-7). Synaptic connections between the 196 input neurons
and the 48 hidden layer neurons store LTP and LTD dynam-
ics in separate eligibility traces based on an additive triplet
based STDP rule (Methods, Equation 15). The triplet-based
STDP provides a more accurate representation of biological
STDP dynamics compared with the pair-based rule through

the use of a slow and fast post-synaptic trace which accu-
mulate post-synaptic activity with varied trace decay factors
(Methods, Equation 14). Connection probabilities between
neurons are set to 50% during initialization, with 20% in-
hibitory synapses and 80% excitatory. Modulatory signals
are produced by the NM-SNN using an input neuron specific
modulatory signal (Methods, Equation 19) for both the LTP
and LTD dynamics. The NM-SNN receives input from the
image layer spiking neurons along with the DP-SNN hidden
neuron activity. However, to make the challenge more dif-
ficult, the NM-SNN does not receive any additional inputs
and must generate neuromodulation from the same sensory
information as the DP-SNN. The NM-SNN consists of two
layers of 64 CUBA neurons with fully-connected non-plastic
synapses. The pre-processing CNN consists of the following
steps: (1) convolution from 1 to 4 channels with a kernel size
of 3, (2) batch norm, (3) ReLU operation, (4) max pooling
with kernel and stride size of 2, (5) convolution from 4 to 4
channels with a kernel size of 3, (6) batch norm, (7) ReLU
operation, and (8) a max pool with kernel and stride size of
2. This is then flattened and are used as current input to a 196
CUBA neurons which act as input for the DP-SNN and the
NM-SNN.
Results. The performance of the NM-SNN and DP-SNN is
compared to a non-plastic SNN using the same connective
structure. The non-plastic SNN is demonstrated to be unable
to solve this task with a testing error average of around 80%,
which is equivalent to random selection. On the other hand,
the DP-SNN obtains a testing error of 20.4% after 2000 gradi-
ent steps on the outer-loop. This performance is comparable
to informal human testing (49) which is around 15%. A sur-
prising finding was that the DP-SNN obtains 64.1% accuracy
on MNIST digits without any additional gradient steps on the
plasticity parameters.

Discussion
In this paper, we introduce a method for learning to learn
with neuroscience models of synaptic plasticity in networks of
spiking neurons, where the neuromodulated plasticity dynam-
ics are learned through gradient descent and online learning
tasks are solved with the learned neuromodulated plasticity
dynamics online. This framework was demonstrated on two
challenging online learning tasks: a one-shot continual learn-
ing problem and a one-shot image class recognition problem.
These challenges required neuromodulated plasticity to act as
the mechanism of intra-lifetime learning, and presented a way
for learning the parameters of plasticity with gradient descent
such that it can address these problems.
Previous work on the development of online SNN learning
algorithms includes the work of e-prop (6), which is a plastic-
ity rule that was mathematically derived from BPTT, where
a learning signal defined by a given loss function over a task
is projected to all neurons in the SNN using random feed-
back connections. This projected feedback interacts with an
eligibility trace that accumulates the BPTT plasticity approxi-
mation to update synaptic weights. E-prop was demonstrated
to be competitive with BPTT on several temporal learning
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benchmarks. In ref. (49), a method called natural e-prop
is introduced, which uses the plasticity dynamics of e-prop
and learns a neuromodulatory signal toward solving several
one-shot learning challenges. Another online learning algo-
rithms for SNNs is Surrogate-gradient Online Error triggered
Learning (SOEL) (61). SOEL calculates a global error signal
and uses surrogate gradient descent to create a plasticity-like
rule for updating the network synapses online. Works like
e-prop and SOEL are not competing algorithms, but rather
are complimentary with respect to this framework. The e.g.
timing parameters, voltage parameters, and, the surrogate gra-
dient parameters could be learned by gradient descent using
these methods as the inner-loop optimization to produce an
even more effective version of the existing algorithm. There
have also been many previous contributions toward neuromod-
ulated plasticity in non-spiking Artificial Neural Networks
(ANNs) (62–66). However, plastic ANNs have been demon-
strated to struggle maintaining functional stability across time
due to their continuous nature which causes synapses to be in
a constant state of change (41). The effect of this instability
was shown to not disturb the performance as significantly in
plastic SNNs as it did on plastic ANNs.

To realize the full potential of this framework, described here
are several topics for future research, including: incorporat-
ing cell-type specific neuromodulatory signals (9) into the
learning process; exploring the addition of glial cell dynamics
(67, 68); providing deeper insight into the learning capabili-
ties of different plasticity rules in the neuroscience literature,
such as the wide-range of existing voltage-dependent plasticity
rules, rate-based plasticity rules, and spike-timing dependent
plasticity rules; and exploring the use of this framework on
robotic and reinforcement learning experiments. Another
direction might explore learning the neural architecture in
conjunction with the plasticity parameters, since architecture
is known to play a significant role in the function of neural
dynamics (69). Recent works have explored learning the plas-
ticity rule equation in addition to the plasticity rule parameters
(42). A differentiable plasticity rule search constrained to-
ward biological realism may provide more powerful learning
applications of this framework.

Finally, addressing the problem of online learning has been a
central focus of neuromorphic computing (70). The existing
need for learning methods that can be used on these systems
has impeded the use of neuromorphic systems in real-world ap-
plications. From a practical perspective, backpropagation on
these systems is only envisioned as a utility for offline training
since on-chip BPTT is expensive with respect to complexity,
memory, and energy efficiency, and is not naturally suited for
online learning. Instead, some neuromorphic systems have
invested in on-chip plasticity in part to address online learning
in hopes that an effective method for utilizing this capability
is discovered. Neuromorphic processors implement on-chip
plasticity by allowing the flexible reconfiguration of a set of
local variables that interact to adapt synaptic weights (70–
74). The reconfiguration of these variables have historically
modelled learning rules from the neuroscience literature. In
spite of this, the goal of finding learning rules that can solve a

wide variety of challenging problems (like backpropagation)
while building off of the impressive capabilities of the brain re-
mains open. We hope that this framework of learning to learn
with backpropagation inspires the next generation of on-chip
learning algorithms for the field of neuromorphic computing.
The framework of learning to learn with neuromodulated
synaptic plasticity in this paper provides a method for combin-
ing the power of gradient descent with neuroscience models
of plasticity, which opens the doors toward a better synthesis
of machine learning and neuroscience.

Methods
Leaky Integrate-and-Fire. The Leaky Integrate-and-Fire
(LIF) neuron model is a phenomenological model of neu-
ral firing-dynamics. Activity is integrated into the neuron and
stored across time, and, once the stored activity surpasses a
threshold value, a binary signal is emitted and the voltage is
reset. The "leaky" part of the model name refers to an intro-
duced time-dependent decay dynamic acting on the membrane
potential. While the simplicity of the LIF dynamics deviates
from the complexity of the biological neuron, the purpose
of the model is to capture the essence of neuron dynamics
while providing value from a computational perspective. The
LIF neuron model requires among the fewest computational
operations to implement compared with other neuron models.
To begin describing the LIF dynamics, we represent the contin-
uous difference equation τ dvj

dt for the voltage state vj(t) ∈ R
as a discrete time equation vj+τ

dvj

dt = vj(t+∆τ) since com-
putational models of spiking neurons typically operate across
discrete update intervals.

vj(t+ ∆τ) = vj(t)−αv[vj(t)−vrest] +RIj(t), (3)

The term αv[vj(t)−vrest] represents the membrane potential
leak, where αv ∈ [0,1] is the leak time-constant and vrest ∈
R as the neuron resting potential, which is the value that
the membrane potential returns to in the absence of external
activity. Ij(t) ∈ R represents incoming current, which is the
source of an increase in voltage vj(t) for the neuron j. This
current is scaled by a resistance factor R ∈ R.

sj(t) =H(vj(t)) =
{

0 vj(t)≤ vth
1 vj(t)> vth

, (4)

H :R→{0,1} is a piece-wise step function which, in the case
of a spiking neuron, outputs 1 when a neuron’s membrane
potential surpasses the defined firing threshold vth ∈ R and
otherwise outputs 0. In the LIF neuron model, once a neuron
fires a spike, the membrane potential is reset to its resting
potential vj(t)← vrest.
In a spiking neural network, Ij(t) from Equation 3 is defined
as Ij =

∑
iWi,jsi(t), which represents the sum of weighted

spikes from all pre-synaptic neurons i that are connected to
post-synaptic neuron j. The weight of each spike is given by
Wi,j(t)∈R, with Wi,j(t)< 0 representing inhibitory connec-
tions, and Wi,j(t)> 0 representing excitatory connections.
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vj(t+∆τ) = vj(t)−αv[vj(t)−vrest]+R
∑
i

Wi,j(t)si(t),

(5)
Consistent with Intel’s neuromorphic processor code named
Loihi, our experiments use an adaptation of the LIF which
incorpoates current called the Current-based Leaky-integrate
and fire (CUBA) neuron model (71).

ui(t+ ∆τ) = ui(t)−αu[ui(t)−urest] +
∑
j

Wi,j(t)sj(t),

(6)

vi(t+ ∆τ) = vi(t)−αv[vi(t)−vrest] +Rui(t). (7)

In the CUBA neuron model, a decaying current trace ui(t)
integrates incoming current Ij =

∑
iWi,jsi(t) from pre-

synaptic neurons i into the post-synaptic current trace j in
Equation 6. Then instead of current Ij directly modifying the
neuron membrane potential vi(t) in Equation 7, the current
trace ui(t) takes its place.
Backpropagation through spiking neurons. The role of
H(·) in Equation 4 can be viewed analogously to the non-
linear activation function used in artificial neural networks.
However, unlike most utilized non-linearities, H(·) is non-
differentiable, and hence backpropagating gradients becomes
particularly challenging. To backpropagate through the non-
differentiable function H(·), Spike Layer Error Reassignment
in Time (SLAYER) is used. SLAYER represents the derivative
of the spike function H(·) with a surrogate gradient, and
backpropagates error through a temporal credit assignment
policy (46).

Spike-timing based Plasticity Rules. Spike-timing De-
pendent Plasticity rules, unlike rate-based models, are depen-
dent on the relationship between precise spike-timing events
in pre- and post-synaptic neurons (75–78). Equations for
neuronal and synaptic plasticity dynamics are presented as
discrete-time update equations as opposed to continuous-time
equations to provide a closer correspondence to the computa-
tional implementation.

Synaptic Traces. STDP can be defined as an iterative update
rule through the use of synaptic activity traces.

x(l)
i (t+ ∆τ) = αxx(l)

i (t) +f(x(l)
i (t))s(l)

i (t). (8)

The bio-physical meaning of the activity trace x(l)
i (t) ∈R> 0

is left abstract, as there are several candidates for the represen-
tation of this activity. For pre-synaptic events, this quantity
could represent the amount of bound glutamate or the quantity
of activated NMDA receptors, and for post-synaptic events
the synaptic voltage by a backpropagating action potential or
by calcium entry through a backpropagating action potential.
The variable αx ∈ (0,1) is traditionally represented as a quan-
tity (1− 1

τ ), which decays the activity trace to zero at a rate

inversely proportional to the magnitude of the time constant
τ ∈ R> 1. The trace x(l)

i (t) is updated by a quantity propor-
tional to f : R→ R in the presence of a spike s(l)

i (t). This
synaptic trace is referred to as an all-to-all synaptic trace
scheme since each pre-synaptic spike is paired with every
post-synaptic spike in time indirectly via the decaying trace.
In the linear case of this update rule f(x(l)

i (t)) = β ∈ R> 0,
the trace is updated by a constant factor β in the presence of a
spike s(l)

i (t).

x(l)
i (t+ ∆τ) = αxx(l)

i (t) +βs(l)
i (t). (9)

Another candidate for the function f(x(l)
i (t)) is β[xmax−

x(l)
i (t)], which updates the trace by a constant β together with

a factor [xmax−x(l)
i (t)] that scales the update depending on

the relationship between x(l)
i (t) and its proximity to the trace

saturation point xmax ∈ R> 0 (79).

x(l)
i (t+ ∆τ) = αxx(l)

i (t) +β[xmax−x(l)
i (t)]s(l)

i (t). (10)

When β < 1 , as x(l)
i (t) approaches xmax, the update scale

[xmax− x(l)
i (t)] reduces the magnitude of the trace update,

producing a soft-bounded range 0≤ x(l)
i (t)≤ xmax.

Pair-based STDP. The pair-based model of STDP describes a
plasticity rule from which synapses are changed as a product
of the timing relationship between pairs of pre- and post-
synaptic activity.

W(l)
i,j(t+ ∆τ) =W(l)

i,j(t)+

A+,i,j(W(l)
i,j(t))x(l−1)

i (t)s(l)
j (t)−

A−,i,j(W(l)
i,j(t))x(l)

j (t)s(l−1)
i (t).

(11)

Weight potentiation is realized in the presence of a post-
synaptic firing s(l)

j (t) = 1 by a quantity proportional to the

pre-synaptic trace x(l−1)
i (t). Likewise, weight depression

is realized in the presence of a pre-synaptic s(l−1)
i (t) = 1

proportional to the post-synaptic trace x(l)
j (t). Potentiation

and depression are respectively scaled by A+,i,j : R→ R
and A−,i,j : R → R, which are functions that character-
ize the update dependence on the current weight of the
synapse W(l)

i,j(t). Hebbian pair-based STDP models gen-

erally define A+,i,j(W(l)
i,j(t)) > 0 and A−,i,j(W(l)

i,j(t)) > 0,

whereas anti-Hebbian models define A+,i,j(W(l)
i,j(t))< 0 and

A−,i,j(W(l)
i,j(t))< 0.

Weight-dependence. An additive model of pair-based STDP
defines A+,i,j(W(l)

i,j(t)) = η(l)
+,i,j , which scales LTP and LTD

linearly by a factor η(l)
+,i,j ∈ R and η(l)

−,i,j ∈ R respectively.
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W(l)
i,j(t+ ∆τ) =W(l)

i,j(t)+

η
(l)
+,i,jx

(l−1)
i (t)s(l)

j (t)−

η
(l)
−,i,jx

(l)
j (t)s(l−1)

i (t).

(12)

Additive models of STDP demonstrate strong synaptic compe-
tition, and hence tend to produce clear synaptic specialization
(80). However, without any dependence on the weight pa-
rameter for regulation, the weight dynamics may grow either
without bound or, with hard bounds, bimodally (79–81).
A multiplicative, or weight dependent, model of pair-based
STDP defines A+,i,j(W(l)

i,j(t)) = η+,i,j(Wmax −W(l)
i,j(t))

for LTP, which scales the effect of potentiation based
on the proximity of the weight W(l)(t)

i,j to the defined
weight soft upper-bound Wmax. Similarly, LTD defines
A−,i,j(W(l)

i,j(t)) = η−,i,j(W(l)
i,j(t)−Wmin), which scales

weight depression according to the defined soft-lower bound
Wmin.

W(l)
i,j(t+ ∆τ) = W(l)

i,j(t)+

η+,i,j(Wmax−W(l)
i,j(t))x(l−1)

i (t)s(l)
j (t)−

η−,i,j(W(l)
i,j(t)−Wmin)x(l)

j (t)s(l−1)
i (t).

(13)

LTP and LTD produce weight changes depending on their
relationship to the upper- and lower-bound, with LTP more
effective when weights are farther from the upper-bound and
LTD more effective when weights are farther from the lower
bound. The use of soft bounds in practice leads to LTD domi-
nating over LTP (80–84) and, opposite to additive pair-based
STDP, fails to demonstrate clear synaptic specialization (80).
Additive and multiplicative models of STDP have been
regarded as extremes among a range of representations,
with LTP as A+,i,j(W(l)

i,j(t)) = η+,i,j(Wmax −W(l)
i,j(t))µ

and LTD as A−,i,j(W(l)
i,j(t)) = η−,i,j(W(l)

i,j(t)−Wmin)µ
(85, 86). Here, the parameter µ acts as an exponential weight-
dependence scale, with µ = 0 producing an additive model,
and µ = 1 producing a multiplicative model. Values of
0 < µ < 1 result in rules with intermediate dependence on
W(l)
i,j(t).

Triplet-based STDP. Experimental data has demonstrated that
pair-based STDP models cannot provide an accurate represen-
tation of biological STDP dynamics under certain conditions.
Particularly, these rules cannot reproduce triplet and quadru-
plet experiments, and also cannot account for the frequency-
dependence of plasticity demonstrated in STDP experiments
(78, 87).

x(l)
i,τ (t+ ∆τ) = ατx(l)

i,τ (t) +f(x(l)
i,τ (t))s(l)

i (t) (14)

To address the representation limitations of pair-based STDP,
a plasticity rule based on a triplet interaction between one pre-
synaptic spike and two post-synaptic spikes is proposed in ref.

(88). To implement this, a second slow synaptic trace is intro-
duced for the post-synaptic neuron is introduced, with a time
constant ατ ∈ R > αx, with αx representing the decay rate
of the fast synaptic trace from Equation Eq. (8). More specif-
ically, the triplet model of STDP produces LTP dynamics
that are dependent on the pre-synaptic trace x(l−1)

i (t) (Equa-
tion Eq. (14)) and the slow post-synaptic trace x(l)

j,τ (t−∆τ),
which is evaluated at time t−∆τ , one timestep prior to the
evaluation of traces x(l)

j (t) and x(l−1)
i (t):

W(l)
i,j(t+ ∆τ) = W(l)

i,j(t)+

A+,i,j(W(l)
i,j(t))x(l−1)

i (t)x(l)
j,τ (t−∆τ)−

A−,i,j(W(l)
i,j(t))x(l)

j (t)s(l)
i (t)

(15)

The triplet rule has demonstrated to explain several plas-
ticity experiments more effectively than pair-based STDP
(78, 88, 89). Additionally, the triplet rule has been demon-
strated to be capable of being mapped to the BCM rule under
the assumption that (1) pre- and post-synaptic spiking behav-
ior assumes independent stochastic spike trains, (2) LTD is
produced in the presence of low post-synaptic firing rates, (3)
LTP is produced in the presence of high post-synaptic firing
rates, and (4) the triplet term is dependent on the average
post-synaptic firing frequency (90). If these requirements are
matched, the presented triplet-based STDP rule demonstrates
the properties of the BCM rule, such as synaptic competition
which produces input selectivity, a requirement for receptive
field development (90, 91).

Neuromodulatory Plasticity Rules. Synaptic learning
rules in the context of SNNs mathematically describe the
change in synaptic strength between a pre-synaptic neuron
i and post-synaptic neuron j. At the biological level, these
changes are products of complex dynamics between a diver-
sity of molecules interacting at multiple time-scales. Many
behaviors require the interplay of activity on the time-scale
of seconds to minutes, such as exploring a maze, and on the
time-scale of milliseconds, such as neuronal spiking. Learn-
ing rules must be capable of effectively integrating these two
diverse time-scales. Thus far, the learning rules observed
have been simplified to equations which modify the synap-
tic strength W(l)

i,j(t) based on local synaptic activity without
any motivating guidance and without the presence of external
modulating factors.
Biological experiments have demonstrated that synaptic plas-
ticity is often dependent on the presence of neuromodulators
such as dopamine (11–15), noradrenaline (16, 92), and acetyl-
choline (16–22). These modulators often act to regulate plas-
ticity at the synapse by gating synaptic change, with recent
evidence suggesting that interactions more complex than gat-
ing occur (4, 5, 14). The interaction between neuromodulators
and eligibility traces has served as an effective paradigm for
many biologically-inspired learning algorithms (6, 93–96).

Eligibility Traces. Rather than directly modifying the synap-
tic weight, local synaptic activity leaves an activity flag, or
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eligibility trace, at the synapse. The eligibility trace does not
immediately produce a change, rather, weight change is real-
ized in the presence of an additional signal. In the theoretical
literature on three-factor learning, this signal has been theo-
rized to be accounted for by external, or non-local, activity
(4, 5, 97). For learning applications, this third signal could be
a prediction error, or for reinforcement learning, an advantage
prediction (93). In a Hebbian learning rule, the eligibility
trace can be described by the following equation:

E(l)
i,j(t+ ∆τ) = γE(l)

i,j(t) +αi,jfi(x(l−1)
i )gj(x(l)

j ). (16)

The constant γ ∈ [0,1] inversely determines the rate of decay
for the trace, αi,j ∈ R is a constant determining the rate at
which activity trace information is introduced into the eligibil-
ity trace, fi is a function of pre-synaptic activity x(l−1)

i , and
gj a function of post-synaptic activity x(l)

j . These functions
are indexed by their corresponding pre- and post-synaptic neu-
ron i and j since the synaptic activity eligibility dynamics may
be dependent on neuron type or the region of the network.
Both rate- and spike-based models of plasticity can be repre-
sented with the eligibility trace dynamics described in Equa-
tion Eq. (16). Spike-based models of plasticity, such as the
triplet-based (Equation 15) and pair-based model (Equation
11), often require two synaptic flags E(l)

+,i,j and E(l)
−,i,j for

LTP and LTD respectively.

Modulatory Eligibility Traces. In the theoretical literature, eli-
gibility traces alone are not sufficient to produce a change in
synaptic efficacy (4, 5). Instead, weight changes are realized
in the presence of a third signal.

W(l)
i,j(t+ ∆τ) = W(l)

i,j(t) +M(t)E(l)
i,j(t). (17)

Here, M(t) ∈ R acts as a global third signal which is referred
to as a neuromodulator. Weight changes no longer occur in
the absence of the neuromodulatory signal, M(t) = 0. When
the value M(t) ranges from positive to negative values, the
magnitude and direction of change is determined causing LTP
and LTD to both scale and reverse in the presence of certain
stimuli.
The interaction between individual neurons and the global
neuromodulatory signal need not be entirely defined multi-
plicatively as in Equation 17, but can have neuron-specific
responses defined by the following dynamics:

W(l)
i,j(t+ ∆τ) = W(l)

i,j(t) +hj(M(t))E(l)
i,j(t). (18)

The function hj : R→ R is a neuron-specific response func-
tion which determines how the post-synaptic neuron j re-
sponds to the neuromodulatory signalM(t). This form of neu-
romodulation accounts for random-feedback networks when
hj(M(t)) = h(bjM(t)). However, this form of neuromodu-
lation does not account for the general supervised learning
paradigm through backpropagating error. Equation Eq. (18)
must be extended to account for neuron-specific neuromodu-
latory signals:

W(l)
i,j(t+ ∆τ) = W(l)

i,j(t) +Mj(t)E(l)
i,j(t). (19)

In layered networks being optimized through backpropagation,
the neuron-specific error is Mj(t). In the case of backpropa-
gation, Mj(t) is calculated as a weighted sum from the errors
in the neighboring layer closest to the output. The neuron-
specific error in Equation 19 can also be computed with the
dimensionality of the pre-synaptic neurons, Mi(t), which was
the form of neuromodulation used in both experiments from
the Experiments section.
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