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ABSTRACT

When localising a moving object, the brain receives outdated sensory information about its position,
due to the time required for neural transmission and processing. The brain may overcome these
fundamental delays through predictively encoding the position of moving objects using information
from their past trajectories. In the present study, we evaluated this proposition using multivari-
ate analysis of high temporal resolution electroencephalographic data. We tracked neural position
representations of moving objects at different stages of visual processing, relative to the real-time
position of the object. During early stimulus-evoked activity, position representations of moving ob-
jects were activated substantially earlier than the equivalent activity evoked by unpredictable flashes,
aligning the earliest representations of moving stimuli with their real-time positions. These findings
indicate that the predictability of straight trajectories enables full compensation for the neural de-
lays accumulated early in stimulus processing, but that delays still accumulate across later stages of
cortical processing.

Keywords motion extrapolation · prediction · latency · neural delays · EEG

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.26.496535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.26.496535
http://creativecommons.org/licenses/by-nc-nd/4.0/


Latency of position representations of moving objects

1 Introduction1

Localising objects within a dynamic world is a primary function of the visual system: catching prey, escaping preda-2

tors, and avoiding moving objects (e.g., falling rocks) are all crucial to survival. This task is complicated by delays3

that accumulate during the neural transmission of visual information from the eyes to the brain. As a result, the visual4

cortex only has access to outdated sensory information. Furthermore, additional delays accumulate during subsequent5

cortical processing of visual information. The world will inevitably change during this time, so how can the brain6

overcome this fundamental problem and keep up with an ever-changing world?7

Several lines of evidence suggest that the brain can compensate for neural transmission delays through prediction:8

using information from the past to predict what is happening in the present1. Indeed, many researchers consider9

prediction to be a core objective of the central nervous system2;3. In the field of motion perception, there is evidence10

that predictive processes help to compensate both for the neural delays incurred before visual input reaches the visual11

cortex and for the delays incurred during subsequent cortical processing4;5;6;7.12

For example, neurophysiological recordings in animals reveal motion extrapolation mechanisms as early as the13

retina4;8;9;10;11. By responding to the leading edge of moving stimuli, retinal ganglion cells extrapolate the represented14

position of those stimuli, and are thought to transmit these extrapolated representations to visual cortex, thereby com-15

pensating for some of the lag that arises during transmission. These pre-cortical extrapolation mechanisms should16

effectively allow primary visual cortex to represent the position of a moving object with reduced latency, as observed17

in both cat and macaque V15;6. The existence of these extrapolation mechanisms opens the possibility that transmis-18

sion delays on the way to visual cortex might be partially or fully compensated, allowing the early visual system to19

represent moving objects on predictable trajectories closer to their real-time locations.20

It is unclear whether similar mechanisms operate along the cortical visual processing hierarchy to compensate for21

additional delays that accumulate as visual information is processed. On the one hand, there is suggestive evidence22

that position representations in areas V47 and V512 are shifted for moving objects, potentially reflecting the effect23

of motion extrapolation in those areas. That interpretation is consistent with recent fMRI13;14, theoretical15 and psy-24

chophysical16 work suggesting that motion extrapolation mechanisms operate at multiple levels of the visual system.25

On the other hand, shifted position representations in higher areas might simply result from those areas inheriting26

extrapolated information from upstream areas such as V1. To our knowledge, no study to-date has investigated how27

the represented position of a smoothly moving object evolves over time as visual information about that object flows28

along the visual hierarchy.29

Here, we address this question by using time-resolved EEG decoding to probe the position representations of smoothly30

moving objects across all levels of the human visual system in real-time. We show that early position representations31

of moving objects are in close alignment with the veridical position of the object, providing the first direct evidence32

in humans that extrapolation processes allow the early visual system to localise moving objects in real-time. We33

further show that during the course of cortical visual processing, position representations increasingly lag behind real-34

time stimulus position as information progresses through the visual hierarchy. This suggests that delay compensation35

is primarily achieved at very early stages of stimulus processing, and that subsequent cortical visual areas do not36

implement further compensation for neural delays. Nevertheless, this early compensation ensures that the represented37

position of a moving object throughout the entire visual hierarchy is far more up-to-date than could be expected on38

the basis of the latencies of neural responses to static objects. These findings demonstrate the existence of significant39

predictive processing during motion perception, but constrain any predictive mechanisms to acting relatively early in40

processing.41

2 Results42

Twelve observers viewed sequences of black discs that were either flashed in one of 37 possible positions on a hexag-43

onal grid (static trials), or smoothly moved through a series of positions on the grid along a straight trajectory (motion44
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trials, Figure 1). Static trials were presented 252 times per position, and each of the 42 motion vectors was presented45

108 times. EEG data were recorded over six testing sessions and analysed offline (see Methods). Multivariate pattern46

classifiers (linear discriminant analysis) were trained to discriminate stimulus position for all pairwise combinations47

of positions, using EEG activity evoked by static stimuli in those positions. These classifiers were subsequently tested48

on EEG data recorded during an independent subset of static trials, or during motion trials. Results of this classifica-49

tion analysis were combined to estimate the likelihood of the stimulus being present in each of the possible stimulus50

positions, ps(i) for i ∈ {1, 2, . . . 37}, where s is the presented position. From this, we traced the evolution over time51

of the estimated likelihood of the stimulus being present in the position in which it was actually presented (static trials)52

or moved through (motion trials), ps(s), hereafter referred to as the stimulus-position likelihood.53

This analysis was repeated for multiple combinations of training timepoint (i.e. time after onset of a static stimulus)54

and test timepoint (i.e. time after presentation of a static stimulus or within a motion vector). Using different training55

timepoints allowed us to probe neural representations at different levels of the visual hierarchy, and testing at multi-56

ple timepoints allowed us to characterise how information flows through those levels over time during the epoch of57

interest17. In this way, we were able to evaluate whether the neural position representation of a moving object flows58

through the visual hierarchy at the same latency as the position representation of a static flash. Additionally, this59

allowed us to evaluate how much the position representation of the moving object lags behind that object’s physical60

position.61

b

Flash
250 ms

ISI
~400 ms

ISI
~400 ms

Motion
3.4-4.6 s

6 motion directions

7 parallel trajectories 

per direction

a

4.1 dva

24.8 dva

0.5 dva

3 dva

c

Figure 1: Stimuli in static and motion trials. a) Stimulus configuration. Stimuli were presented in a hexagonal grid.
In static trials, a black circle was shown centred in one of the 37 positions (marked by black dots, not visible during the
experiment). In motion trials, the same stimulus moved at 10.36 degrees visual angle/second in a straight line through
the grid. A fixation point was presented in the centre of the screen and the background was 50% grey. All measurements
are in degrees visual angle (dva). b) Trial structure. A trial consisted of a black circle flashed in one position for 250ms
(static trials) or moving in a straight line for between 3350 and 4550ms (motion trials). Trials were randomly shuffled
and presented separated by an inter-stimulus interval randomly selected from a uniform distribution between 350ms
and 450ms. c) Motion trials. The moving stimulus travelled along one of 42 possible straight trajectories through the
grid: six possible stimulus directions along the hexagonal grid axes with seven parallel trajectories for each direction.
The moving stimulus passed through four to seven flash locations, depending on the eccentricity of the trajectory.

2.1 Decoding positions of static stimuli62

First, we investigated the ability of classifiers to discriminate the presented position of static flashes based on the EEG63

signal. Figure 2a shows average classification accuracy across pairwise combinations of positions over time, grouped64

by distance between the two positions. Classifiers were trained and tested using data from the same timepoints. As65

expected, the performance of pairwise classifiers improved with increasing stimulus separation. This is due to the66

retinotopic organisation of visual cortex; stimuli elicit more distinct patterns of activity when they are further apart.67

Pairwise classification results were combined to calculate the stimulus-position likelihood. We then averaged across all68

stimulus positions and participants. This likelihood was compared to a permuted null-distribution to establish whether69
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Figure 2: Classification results for decoding the position of static stimuli. a) Group-level pairwise classification
performance of static stimulus position discrimination sorted by distance between stimulus positions (separate lines).
Classifiers were trained and tested on matched timepoints from 0-350ms (i.e. the time diagonal). b) Timepoints along
the time diagonal at which likelihood of the stimulus being in the presented position (stimulus-position likelihood) is
significantly above chance (p<.05, cluster-based correction applied) are marked by the bar above the x-axis. The
stimulus-position likelihood was significantly above chance from 58ms onward. Shaded error bars show one standard
deviation around the mean across observers. Chance level has been subtracted from all likelihoods to demonstrate the
divergence from chance, in this graph and all others showing stimulus-position likelihood. c) Stimulus-position likeli-
hood was calculated from classification results at each combination of training and test times. Results averaged across
all stimulus positions and participants are displayed as a temporal generalisation matrix (TGM). d) Topographic maps
show participant-averaged topographic activity patterns used by classifiers to distinguish stimulus positions at 141ms
post stimulus onset, the time of peak decoding (marked by an arrow on panel B). Insets in the top left of each scalpmap
show which two stimulus positions the classifier has been trained to discriminate. Scalp maps were obtained by com-
bining classification weights with the relevant covariance matrix. As expected, for all four comparisons, activation
was predominantly occipital and, when the stimulus positions were on either side of the vertical meridian, lateralised.

it was significantly above chance at each timepoint (Figure 2b, see Methods). The stimulus-position likelihood was70

above chance starting at 58ms after stimulus onset.71

To assess whether position-related information was stable or variable across the time-course of the visual evoked re-72

sponse, the classification analysis was generalised across time17: classifiers were trained and tested at all combinations73

of timepoints. Figure 2c shows the resulting temporal generalisation matrix (TGM), averaged across all stimulus po-74
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sitions and participants. The TGM was typical of position decoding plots seen in previous work18. Finally, Figure75

2d shows topographic maps of activation which contributed to classification of stimulus position19; these show that76

the relevant signal was mainly recorded from occipital electrodes, suggesting a source within the visual cortex, as77

expected.78

2.2 Decoding positions of moving stimuli79

To decode the position of moving stimuli, we again trained classifiers on pairwise combinations of static stimuli,80

then applied these classifiers to EEG data recorded during motion trials. An illustration of each step in the analysis81

of motion trials is shown in Figure 3. As before, the stimulus-position likelihood was calculated, this time at each82

timepoint during each motion epoch.83

We considered EEG epochs from 500ms before to 500ms after the timepoint at which the moving stimulus was exactly84

in each possible static stimulus location. This time-window was chosen to be broad enough to capture stimulus evoked85

activity as the stimulus approached and receded from each position (moving from one position to the next took 400ms).86

We then averaged the time-course of stimulus-position likelihoods across all six motion directions and 37 stimulus87

positions. The first position along each trajectory was excluded due to observed strong EEG responses to the initial88

onset of the stimulus.89

The TGM derived from classifiers trained on static trials and tested on motion trials (Figure 3 step 3) revealed that90

classifiers trained on timepoints from around 100ms were able to decode the position of moving objects. To identify91

timepoints at which classification was significantly above chance, we considered the performance of classifiers trained92

and tested on matching timepoints (diagonal of the TGM). Permutation testing revealed that decoding was significantly93

above chance for timepoints between 102 and 180ms (Figure 3 step 4). Note that because we are investigating possible94

latency differences between the neural response to static and moving stimuli, maximal decoding is likely achieved off-95

diagonal, making this a conservative analysis choice.96

Although the average stimulus-position likelihood was smaller in magnitude for moving stimuli compared to static97

stimuli, we observed that the location-specific neural response to motion over time was characterised by a gradual98

increase of the likelihood of the stimulus being present as the stimulus approached the centre of the position, then a99

decrease as the stimulus moved away on the other side. This is illustrated in Figure 3 step 5, and is similar to the100

pattern of activity found in response to a moving bar with direct recordings from cat V15.101

2.3 Latency of position representations of moving stimuli102

To investigate the latency at which neural position representations are activated for moving objects, we calculated103

the timepoint at which the peak stimulus-position likelihood was reached during motion sequences. Again, this was104

repeated for different training times as a proxy for different stages of neural processing. The time to peak likelihood105

in the test data for each training timepoint reflects the time at which the location-specific activity is most similar in106

the train and test set, assumed to be the time that the brain is representing the moving stimulus at the centre of a flash107

position. We use peak likelihood, as opposed to onset or a peak percentage, as the latency measure due to possible108

variations in receptive field (RF) size over the course of visual processing. As time elapses during stimulus processing,109

visual information reaches visual areas further up the processing hierarchy, which contain stimulus-selective neurons110

with larger RFs20;21. This would mean that a moving stimulus would enter the RF earlier in these later-activated brain111

regions. Looking at the peak neural response avoids this problem, because peak response would be expected when the112

stimulus is at the centre of the RF, irrespective of RF size.113

To establish the latency with which the position of a moving object is represented at different stages of visual process-114

ing, we identified the timepoint at which our classification analysis yielded maximum stimulus-position likelihood. To115

overcome the noise of individual data points, we fit a Gaussian to the observed time-course of the calculated likelihood116
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Figure 3: Analysis pipeline for motion trials. Panels describe steps in calculating the time to peak stimulus-position
likelihood in motion trials, including graphs of relevant data for each step. Steps 1 and 2 describe the classification
analysis applied to obtain the stimulus-position likelihoods. The figure in step 3 shows the group-level temporal
generalisation matrix for training on static stimuli and testing on moving stimuli. The black dotted line shows the
‘diagonal’ timepoints, where the time elapsed since the moving stimulus was at the flash position equals the training
time. Step 4 shows timepoints along this diagonal at which the stimulus-position likelihood was significantly above
chance, as established through permutation testing. Significance is marked by the solid black line above the x-axis; the
likelihood is significantly above chance from 102-180ms. Shaded error bars show one standard deviation around the
mean. The figure in step 5 shows the same data as step 3 for selected training times (arrows above TGM correspond
to subplot titles). Each subplot shows a vertical slice of the TGM. Blue points show data, to which we fit a Gaussian
curve (black lines) to estimate the time of peak likelihood for each training time (dashed orange lines). These are the
data points plotted in Figure 4a and b. Step 6 shows adjusted R2 of Gaussian fits for each training timepoint. A cutoff
of 0.5 was used to select timepoints at which the Gaussian fit meaningfully explains the pattern of data.
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averaged across participants, separately for each training time. There were four free parameters:117

ps(s) = b1 exp

(
− ttest − b22

2b23

)
+ b4.118

The parameter of interest is b2, which describes the horizontal shift of the peak of the Gaussian. Adjusted R2 of these119

fits can be found in Figure 3 step 6. For training timepoints later than ∼80ms, the Gaussian curves provided a very120

good fit to the evolution of stimulus-position likelihood over time, with R2 values over 0.5. Although the window of121

significant cross-classification of static stimuli to moving stimuli is restricted (Figure 3, step 4), the sustained high122

adjusted R2 values indicate that even for training times at which the stimulus-position likelihood was close to chance123

level, the likelihood increased and decreased as the stimulus traversed each flash location.124

Figure 4a shows the time to peak likelihood for motion across all training timepoints at which adjusted R2 exceeded125

a minimum value of 0.5. The choice of R2 cutoff is essentially arbitrary, but the pattern of points in Figure 3 step 6126

shows that this selection is relatively robust to changes in the cutoff value. Up to ∼150ms training time, the time to127

peak likelihood increases with increasing training time. This follows the same pattern as the static trials (see Figure128

4b), where earlier representations of the stimulus (i.e. early training times) were activated at a shorter latency in the129

testing epoch than later representations of the stimulus. This sequential pattern is consistent with the first feed-forward130

sweep of stimulus-driven activation. As information flows through the visual processing hierarchy, representations of131

the stimulus will gradually change over time. The order of these changes appeared to be consistent between static and132

motion trials.133

This pattern subsequently reverses between 150 and 200ms, indicating that hierarchically later representations were134

activated at a shorter latency. Finally, from a training time of ∼250ms the time to peak likelihood was stable at ap-135

proximately 50ms. The non-monotonic relationship between training time and time to peak likelihood could emerge136

because there was variable compensation for neural delays at different training times. Perhaps more likely, this pattern137

could reflect feedforward and feedback sweeps of activity in the visual cortex: the feedforward sweep activates se-138

quential representations, and information flowing backward along the hierarchy, reactivates the same activity patterns139

in reverse order22. The timescale of this wave of activity was in line with previous findings from Dijkstra et al.22,140

who showed approximately 10Hz oscillations evoked by face/house stimuli. Additionally, previous TMS, MEG and141

fMRI results suggest that 150ms is a reasonable estimate for the time it takes for visual information to reach later vi-142

sual processing areas, such as V5/MT+23;24;25;26;27;28. If this later activity (>150ms training time) does indeed reflect143

feedback processing, then, for these later timepoints, the latency measure we have calculated might not be informative144

about the time necessary to first represent the moving object, because the initial activations and the reactivations are145

indistinguishable.146

In order to confirm which timepoints predominantly correspond to feedforward processes rather than feedback, we147

applied piecewise regression, as implemented in the Shape Language Modeling toolbox29. In this approach, several148

polynomials are smoothly joined together at ‘knots’. Placement of knots, at the start and end of each segment, is149

optimised by reducing root mean squared error. We fit straight lines, and varied the number of knots between four150

and seven, in order to identify the optimal number. The best piecewise regression fit, with six knots, is shown in151

Figure 4a. Corroborating our observation, the first internal knot was placed at 158ms. We took this inflection point as152

the end of the initial feedforward sweep of information through the visual cortex. The piecewise regression revealed153

further positive and negative slopes, suggesting that feedforward and feedback sweeps of activity continue during later154

stimulus processing22.155

2.4 Latency advantages during feedforward processing156

Having identified the timepoints during the motion epochs corresponding to early feedforward processing, we further157

investigated the relationship between training time and the time of peak stimulus-position likelihood. Figure 4b shows158

the peak time for moving objects during the feed-forward sweep, along with the first segment of the fitted piecewise159

linear regression. We were interested in comparing the latency and time-course of stimulus-related processing of static160
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Figure 4: Neural response latency during motion processing. a) Latencies of the peak stimulus-position likelihood
values during motion processing. The timepoint at which peak likelihood was reached is plotted against training time.
Errorbars around points show bootstrapped 95% confidence intervals of the peak shift parameter of the Gaussian fit
(see Figure 3 step 5). It can be observed that the peak time increases and decreases, then levels out. Points of inflection
within this timeseries were identified using piecewise regression (shown in black). The number of inflection points, or
knots, was established by comparing the R2 of piecewise regression fits, as shown in the inset graph. It was determined
that six knots was optimal; positions of these knots are marked by grey dotted lines on the main graph. b) Time to peak
likelihood during the initial feedforward sweep of activity through the visual cortex. Displayed is a subset of points
from those shown in panel A, corresponding to a restricted time-window between the first two knots, during which the
first feedforward sweep of activity was most likely occurring. The dotted diagonal shows the 45◦ line, where the time
of peak likelihood would equal the training time. Data points from static trials (green) should theoretically lie along
this line, as, in this case, the training and test data were subsets of the same trials. Straight lines were fit separately for
static and motion trials. Both lines had similar gradients, close to unity, indicating equivalent cumulative processing
delays for static and motion trials within this training time-window. However, the intercept for motion was much
earlier at -80ms. The mean distance between the two lines is marked, indicating that position representations were
activated ∼70ms earlier in response to a moving stimulus compared to a flashed one in the same location. Time to
peak likelihood at the beginning of the feedforward sweep was approximately 0ms, indicating near-perfect temporal
alignment with the physical position of the stimulus.

and motion trials in this restricted time-window, to establish whether the position of moving objects was predictively161

encoded. We therefore established time to peak likelihood for these same training timepoints in the static trials.162

Because the participant-averaged time-course of the stimulus-position likelihood for each training time was much less163

noisy for static than motion trials, the time of peak likelihood was computed as a simple maximum for each training164

time. Qualitatively, it can be observed that this lay along the diagonal of the TGM (Figure 2b, green points).165

For the static stimuli, a linear fit relating training time and time to peak likelihood was very similar to the 45◦ line166

(Figure 4b, upper line), revealing that each representation of the stimulus was active at roughly the same time in the167

training and test data (Figure 4b, grey dashes). A linear fit to the static datapoints was significantly better than a168

constant model (F(21,19) = 805.45, p = 1.24x10-17). The line which best described the relationship between static169

time to peak likelihood and training time was:170

ts peak = 0.85ttrain + 19.171

Both the intercept and gradient parameters were significantly different from zero (t = 5.48, p = 2.32x10-5; t = 28.38, p =172

1.24x10-17). The line had a gradient close to one (95% CIs: 0.79 to 0.92) and a small intercept (95% CIs: 12 to 27ms),173

indicating only a small shift in the peak time between training and testing. This line fit indicates that the patterns of174
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activity on which the classifiers were trained were most similar to activity at approximately the same timepoint in the175

test trials. This is as expected, as train and test data are subsets of the same static trials.176

In contrast, we found evidence of a shift in the latency of activation of representations of the moving stimulus. A177

regression line was also found for time to peak likelihood in the motion epochs (F(21,19) = 40.91, p = 3.07x10-6),178

with equation:179

tm peak = 1.09ttrain − 82.180

Both parameters were again significantly different from zero (intercept: t = -4.06, p = 6.12x10-4; gradient: t = 6.40, p181

= 3.07x10-6). The 95% confidence intervals of the gradient overlapped with those of the flash line (flash: 0.79 to 0.92;182

motion: 0.73 to 1.45). This indicates that once position information was available in the cortex, successive cortical183

representations were sequentially activated along the same time-course for moving and static stimuli. In other words,184

delays that accumulate during cortical processing did not appear to be compensated when processing motion.185

Importantly, however, the linear fit to time to peak likelihood for motion stimuli had a large negative intercept of -82ms186

(95% CIs: -124 to -40ms), which is substantially lower than the intercept for static trials. At the beginning of the time-187

window of interest (ttrain = 75ms), the motion regression line crossed the y-axis at -1ms, while the static regression line188

crossed at 83ms. The mean distance between the two lines was 73ms, implying that the position of a moving object189

was represented with a latency that was approximately 70ms shorter than a static object in the same position. For190

early neural position representations (training times around 70-80ms), the latency of peak position representation was191

approximately 0ms. In turn, this means that these neural position representations were activated at the time that the192

moving object was physically centred on the corresponding position. Based on the training time, these representations193

likely originated in early visual cortex (V1-3), meaning that the early visual system was able to almost completely194

compensate for neural delays accumulated during processing up to that point and represent moving objects close to195

their real-time position.196

3 Discussion197

In this study we investigated how the visual system compensates for neural transmission delays when tracking the198

positions of moving objects. We investigated the latency of neural position representations of moving stimuli compared199

to unpredictably presented static stimuli, as well as the real-time position of the stimulus. By computing the timepoint200

at which each position representation of the moving stimulus was most similar to a static stimulus in the same location,201

we tracked the represented position of the stimulus over time across the visual hierarchy.202

We demonstrate that classifiers trained to locate static stimuli based on the stimulus-evoked EEG signal could also203

localise moving stimuli. This is the first study to demonstrate cross-classification between stationary and smoothly204

moving stimuli with EEG, and gave us access to the fine temporal resolution needed to investigate the timing of neural205

responses to motion in humans. We subsequently showed that, during the first feedforward sweep of activity, the206

neural response encoding the position of a moving object was shifted approximately 70ms earlier than the response to207

a static stimulus. The early decoded representations of the position of a moving stimulus aligned with the real-time208

position of the object, rather than the position corresponding to afferent retinal input (subject to transmission and209

processing delays) which would instead signal outdated position information in visual cortex. Finally, we showed that210

delay compensation was primarily achieved before information reached visual cortex, as later processing of static and211

motion stimuli followed a similar time-course. Overall, this study shows the first direct neural evidence of motion212

extrapolation enabling accurate real-time representation of moving objects in humans.213

These results are consistent with findings of receptive field (RF) shifts across the visual cortex in response to motion.214

Many earlier fMRI studies showing RF shifts against the direction of motion30;31;32 have been dismissed because of215

the ‘aperture-inward’ bias, in which the trailing edge of a motion stimulus evokes larger responses than the leading216

edge33. This is not an issue for the present study, as we can determine the timing of neural responses at a fine temporal217

scale, rather than looking at aggregate responses over whole motion trajectories. Neural recordings from animals218
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and more recent fMRI studies in humans have reliably shown RF shifts throughout the visual cortex in response to219

motion14, and that these displacements are against the direction of motion13;7;34. However, several differences remain220

between the previous fMRI results and the present study. Harvey and Dumoulin14 found that RF shifts in response to221

motion scale with the size of the RF across the visual hierarchy. This implies that visual areas higher up the processing222

hierarchy that are activated later in time, for example MT, would shift their RFs more than lower visual areas, for223

example V1, which are activated earlier. In contrast, our results suggest that later visual areas show RF shifts of the224

same magnitude as earlier visual areas. However, it is not clear whether it is possible to map time elapsing after225

stimulus onset in EEG to processing in different visual areas as recorded by fMRI. The longer timescale of the fMRI226

signal means that it could be indexing later activity than we are recording with EEG, or include signals that emerge227

after integration of many feedforward and feedback sweeps of activity. While further research is needed to understand228

how extrapolation operates at different spatial scales, this converging evidence of RF shifts against the direction of229

motion suggests that the positions of moving objects are predictively encoded during processing, such that they are230

represented closer to their real-time position. Furthermore, we provide novel evidence that RF shifts likely correspond231

to changes in position representations during the initial feedforward sweep of the visual response.232

Our findings point to several mechanisms that have been proposed to compensate for neural delays. We found that233

the early visual response to moving stimuli is shifted in time, such that the neural delays accumulated up to that point234

are compensated. However, during subsequent cortical processing, there is no further compensation for delays. As235

discussed in the Introduction, retinal ganglion cells respond to the leading edge of moving stimuli4. This effectively236

shifts the encoding of the position of a moving stimulus forward relative to a static stimulus at the earliest stage of237

processing. Additionally, evidence of a latency advantage for moving stimuli has been identified in the cat lateral238

geniculate nucleus of the thalamus35, where visual information is transmitted en-route to the visual cortex. However,239

none of the previous evidence suggests that these pre-cortical mechanisms are sufficient to account for compensation240

for neural delays, to the extent we observe here. Therefore, it is likely that some cortical mechanisms do play a role. For241

example, there is evidence that a model of object motion is encoded in MT+, and influences neural response profiles242

in earlier visual areas through feedback connections12;36. These feedback connections could transmit information to243

neurons into whose receptive fields the moving stimulus will soon enter, driving an anticipatory response. Similarly,244

within-layer horizontal connections might activate neurons further ahead on the motion path37. Benvenuti et al.37245

show that this input from feedback and horizontal connections can drive spiking responses in cat V1. Crucially, our246

findings suggest that these mechanisms act only early in the course of stimulus processing, and therefore are present247

only early in the visual cortical hierarchy.248

Even though we find temporal alignment between the early representations of the stimulus and its physical position,249

this alignment is lost during further processing. In a recent theoretical paper, Hogendoorn and Burkitt15 argue that250

cortical motion extrapolation is necessary to minimise the discrepancy (prediction error) between an internal model of251

object position and the external world in the case of time-varying stimulation. There are two possible implementations252

of this cortical extrapolation: either delays are compensated through extrapolation in both feedforward and feedback253

activity, or, alternatively, extrapolation only occurs in feedback activity. Although the authors argue that the model254

including feedforward and feedback extrapolation is more parsimonious, this study suggests that feedforward cortical255

delays are not compensated. We therefore support the proposition that, if prediction errors are to be minimised,256

extrapolation might be implemented only in feedback connections. However, the present analysis approach may257

not be suitable to uncover this process, as cortical extrapolation could be a motion-specific computation enacted by258

different neural populations from those that encode static stimuli. Nevertheless, a complete model of compensation for259

neural delays in motion perception should account for extensive extrapolation early in visual processing, as observed260

here.261

A limitation of the present study is that the localisation accuracy of moving stimuli was considerably lower than that262

of static stimuli. This is because classifiers were trained and tested on different stimulus types; neural populations263

that encode the position of static stimuli do not completely overlap with neural populations that encode the position264

of moving objects38;6. Additionally, previous fMRI studies show that, following a strong onset response, the neural265
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response to moving stimuli decreases over time39;40;41;42. This potentially leads to a decreasing signal-to-noise ratio266

over the course of a single motion trial. Furthermore, because motion epochs were quite long (up to 5s), the later267

parts of each motion trial could have been susceptible to slow drift of the EEG signal. Nevertheless, significant cross-268

classification between static and motion trials was still achieved, ruling this out as a major problem.269

We additionally found that the earliest signals containing information about static stimuli were not informative about270

the location of the moving stimulus. Because of the spatial uncertainty associated with EEG, we do not know exactly271

where signals originate in the brain; source localisation in EEG is an ill-posed problem without co-registration with272

fMRI43. However, the timing of the earliest flash-evoked activity (∼60ms after stimulus onset) suggests a source273

within V144;45;46;47;48. In contrast, the position of the moving stimulus was decodable only on the basis of represen-274

tations formed after approximately 100ms. The lack of cross-generalisation when training on early static stimulus-275

evoked activity suggests that this analysis approach does not capture the earliest motion-evoked V1 activity. One276

possibility is that, due to variability in when stimulus processing begins across trials49, the signal-to-noise ratio in277

the static trials at these earlier timepoints may be too low to cross-generalise to moving stimuli. Alternatively, early278

processing of motion could be different to static stimuli: there is some evidence that direct connections from either279

LGN or the pulvinar to MT+ (bypassing V1) are used when processing motion50. This issue is hard to overcome, as280

training classifiers on moving stimuli would render capturing latency differences impossible; any latency shift in the281

test data would also be present in the training data. However, one promising approach was taken by Benvenuti et al.37,282

who used recordings of monkey V1 to compare responses to trajectories of different lengths. They found that response283

latency decreased with increasing trajectory length: sub-threshold activation built up in front of the moving stimuli,284

preparing neural populations to fire upon the arrival of the stimulus in their RF. A similar approach could be taken285

in human EEG research to avoid the comparison between moving and non-moving stimuli. Additionally, this line of286

research would benefit from use of fMRI co-registered with EEG, which provides the temporal and spatial resolution287

necessary to pinpoint signals to a particular time, stimulus position and neural source.288

Of relevance to these results is the flash-lag effect (FLE), a visual illusion in which a moving bar is perceived ahead289

of a flashed bar despite them being physically aligned1. This illusion demonstrates that moving objects are indeed290

perceived in an extrapolated position. Theories of the FLE can mainly be sorted into two camps: spatial explanations291

and temporal explanations36. Spatial models, for example motion extrapolation1;51, suggest that the encoded positions292

of moving objects are shifted forwards to compensate for neural delays. In contrast, temporal models, for example293

differential latencies52;53, suggest that motion is processed faster than flashes or that there is a temporal integration294

window over which position signals are averaged54;55. A range of psychophysical evidence has been presented to295

support each of these theories (and others), suggesting they all play a role in the FLE and, therefore, motion processing.296

However, our results are congruent only with spatial explanations; temporal models cannot explain how latency shifts297

could be greater than the latency of the unshifted neural response. We show that parts of the visual system encode298

moving objects at a position that afferent sensory information could not yet indicate. A similar result was found using299

EEG analysis of apparent motion56, where a sensory template of an expected stimulus within the apparent motion300

sequence was pre-activated, before any sensory evidence was present. An outstanding question remains about whether301

neural representations of moving objects flexibly incorporate information about stimulus speed, as seen in animal V1302

recordings5;6 and the FLE57.303

3.1 Conclusion304

This study used multivariate analysis of EEG data to investigate the latency of position representations of moving305

and static stimuli. We show that, during the first feedforward sweep of activity, the latency of the neural response306

to moving stimuli is substantially reduced compared to the response to unpredictable static stimuli. The effect of307

this latency advantage is that early visual areas represent moving objects in their real-time position, suggesting that308

(potentially a combination of) retinal, subcortical and cortical extrapolation mechanisms can overcome neural delays309

very early on in visual processing. Additional delays accumulated during subsequent cortical processing appear not to310

be compensated. These results demonstrate that the visual system predictively encodes the position of moving stimuli,311

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.26.496535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.26.496535
http://creativecommons.org/licenses/by-nc-nd/4.0/


Latency of position representations of moving objects

and provide an evidence base to constrain models of how and when motion extrapolation is achieved in the human312

visual system.313
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7 Methods and Materials325

7.1 Participants326

Twelve participants (2 male; mean age = 27.0yrs, s.d. = 4.93yrs) completed all six testing sessions and were included327

in analyses. These were drawn from a larger initial pool of participants, including an additional fifteen participants328

that completed only the first session, which was used for screening. Of these additional participants, two withdrew329

from the study, three were excluded as the eyetracker could not consistently track their eye position, and the remaining330

ten were excluded after analysis of their first session data, due to poor fixation (more than 15% of trials with fixation331

lost) or poor EEG classification performance (less than 51.5% average classification accuracy when discriminating332

the location of static trials). Exclusion criteria included requiring glasses to view the computer screen and a personal333

or family history of epilepsy. Participants were recruited online through SONA and gave written informed consent334

before participation. Participants were reimbursed AU$15/hour for their time, as well as an additional AU$20 if they335

completed all six sessions. Ethical approval was granted by the University of Melbourne Ethics Committee (Ethics336

ID: 1954628.2).337

7.2 Experimental Design338

Stimuli were presented using MATLAB Version R2018a and the Psychophysics Toolbox extension version 358;59;60.339

Stimuli were presented on an ASUS ROG PG258 monitor (ASUS, Taipei, Taiwan) with a resolution of 1920 X 1080340

running at a refresh rate of 200 Hz. Participants were seated, resting their heads on a chinrest, at a viewing distance of341

50cm from the screen in a quiet, dimly-lit room.342

Figure 1 shows the stimulus configuration and trial structure of the experiment. Stimuli were presented on a grey343

background, with a central fixation target61. Stimuli were black, filled circles with a radius of 1.29 degrees visual344

angle (dva) presented in a hexagonal configuration with 37 possible stimulus positions. A trial consisted of the stimulus345

flashing in a single location on the grid for 250ms (static trials), or moving in a straight line at a velocity of 10.36dva/s346

through the grid (motion trials), such that the amount of time spent travelling the length of the stimulus diameter was347

the same as the duration of the static stimulus. Motion vectors started and finished 7dva away from the grid to reduce348
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the effects of stimulus onset on the EEG signal. The stimulus passed through between four and seven flash positions,349

depending on the eccentricity of the vector, taking 400ms to travel between grid positions. Static and motion trials350

were randomly shuffled within each experimental session, with an inter-stimulus interval randomly selected from a351

uniform distribution between 350 and 450ms. In each testing session, each static stimulus location was repeated 42352

times, while each of the 42 motion vectors (6 directions X 7 parallel starting positions) was repeated 18 times. Trials353

were split into seven blocks, with a duration of approximately nine minutes each. After each block, participants could354

rest and sit back from the chinrest. Six times within each block (every 50 trials), participants could take a mini-break,355

in which the experiment was paused but they were required to remain in the chinrest. This procedure was repeated356

over six sessions, totalling 252 static trials in each location and 108 repetitions of each motion vector.357

Participants performed a simple target detection task in order to ensure they attended to the stimuli. While maintaining358

fixation on the fixation point at the centre of the screen, they responded as quickly as possible with the space-bar when359

the stimulus flashed red for 40ms. This happened at random 45 times per block, and trials containing a target were360

discarded from analysis to ensure that the target and response did not interfere with the relevant EEG analysis. Each361

of the target trials was then repeated at the end of the block without a target to maintain equal trial numbers for each362

static stimulus position/motion vector. Participants completed one practice block of twenty trials at the start the first363

session to become acquainted with the task. The practice block could be repeated upon request.364

EEG and eyetracking data were collected from participants while they viewed the stimuli. Eyetracking data were365

collected using an EyeLink 1000 eye tracker (SR Research). The eyetracker was calibrated at the start of each block,366

and drift correction was applied after each mini-break. The conversion of the EyeLink 1000 .edf files to .mat files and367

offline fixation checks were performed with the EyeCatch toolbox62.368

Continuous EEG data were recorded at 2048Hz using a 64-channel BioSemi Active-Two system (BioSemi, Ams-369

terdam, The Netherlands), connected to a standard 64-electrode EEG cap. Two external electrodes were placed on370

the mastoids, to be used as a reference. Electrooculography (EOG) was recorded using six electrodes: on the canthi371

(horizontal) and above and below the eyes (vertical).372

7.3 EEG Pre-processing373

EEG pre-processing was conducted using EEGLAB version 2021.163, running in MATLAB R2017b. First, EEG374

data were re-referenced to the mastoid channels. Data were down-sampled to 128Hz to reduce computation time and375

memory load required for further pre-processing and analysis. No filtering was applied to data so as not to distort376

event timing64. Bad channels were noted during data collection and were interpolated using spherical interpolation.377

On average, 0.49 electrodes were interpolated per recording session. Additionally, one complete session was dropped378

from further analysis for one participant, due to a poor connection to the mastoid channels. Data were epoched from379

100ms before flash/motion onset to 100ms after flash/motion offset. The 100ms period before onset was used to380

baseline correct each epoch, by subtracting the mean amplitude in this period from the whole epoch.381

Eye movement data were used to check fixation: static trials in which gaze deviated more than 2.1dva from fixation382

(i.e. was closer to another stimulus position than the central fixation point) at any point while the stimulus was on383

screen were discarded from analysis, as these eye movements would disrupt retinotopy. On average, 11.2% of trials384

were rejected on this basis. Participants’ eye positions during flashes were further analysed to ensure that there were385

no systematic eye movements which could be exploited by classifiers during the EEG analysis (see Supplementary386

Figure 1). No motion trials were rejected on the basis of eye movements. This is because motion trials were only used387

for testing classifiers; if no systematic eye movements are present in the training set, then the classifier cannot learn to388

distinguish trials on the basis of eye movements, so any eye movements in the test data are irrelevant to the analysis.389

Epochs were then automatically rejected through an amplitude threshold. For static trials, epochs were rejected if390

the standard deviation of the amplitude of any channel exceeded four standard deviations from the mean standard391

deviation of that channel across all epochs. This resulted in 8.3% of epochs being rejected across all observers.392

Motion trials were rejected with a threshold of five standard deviations from the mean standard deviation. This less393
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stringent threshold reflects the longer duration of motion trials; more variability in amplitude can be expected. 7.5%394

of motion trials were rejected across all observers. Finally, static and motion epochs were demeaned. The average395

amplitude of each electrode across all static stimulus locations was subtracted from each trial amplitude, while for396

motion trials, the average amplitude from motion vectors of the same length was subtracted. This ensured that the397

classifiers could leverage any changes in the signal corresponding to stimulus location, without the potential confound398

of overall amplitude differences in static compared to motion trials22.399

7.4 EEG Analysis400

Analyses were programmed using MATLAB Version R2017b and run on the University of Melbourne Spartan High401

Performance Computing system. Time-resolved multivariate pattern analysis was used to classify EEG data according402

to the location of the static stimuli. Linear discriminant analysis (LDA) classifiers with a shrinkage regularisation403

parameter of 0.0565 were trained to discriminate the location of static stimuli at timepoints from 0-350ms (i.e. from404

stimulus onset to 100ms after stimulus offset). Code for classification analysis was adapted from Mostert et al.65 and405

Hogendoorn and Burkitt18.406

In this analysis, time elapsing post stimulus onset can be seen as a proxy for processing stage. As time passes, stimulus-407

evoked activity will progress through the visual system22;66. Our aim was to establish, for each training timepoint, the408

timepoint in the test data at which the stimulus was most likely to be at a certain position. This tells us the latency of409

a particular pattern of activity, or representation of the stimulus, in the training data compared to the test data.410

We first demonstrated that stimulus position could be discriminated even when static stimuli were close together, by411

averaging classification results according to distance between stimulus locations. Next, we calculated the latency of412

representations when training and testing on static stimuli. This was used as a baseline to which the motion was413

compared, as the static stimulus locations were unpredictable. Any shifts in latency seen in the motion trials must414

be due to the predictable preceding trajectory. The key analysis was, therefore, training classifiers to discriminate the415

location of static stimuli and testing on motion vectors. In this case, in the training data, the stimulus was centred at a416

certain position, so the timepoint at which the test data is most similar should be the timepoint at which the stimulus417

was represented in the brain at this position in the trajectory. This analysis was repeated across all training times,418

which allowed us to ‘track’ the neural representation of the stimulus as it was processed and compare compensation419

for neural delays at different stages of processing. Full compensation for neural delays would be seen if the brain420

represents moving stimuli aligned to their real-time position, while if there was no compensation, there would be no421

difference in the latency of the peak response between static and moving stimuli.422

To avoid bias that often emerges from multi-class classification67, classifiers were trained using pairwise combinations423

of stimulus positions, such that a classifier was trained to discriminate each location from every other location. As424

it is redundant to train classifiers to discriminate e.g., position 1 vs 2 and also 2 vs 1, this resulted in in 666 trained425

classifiers at 90 timepoints over a 350ms period. The number of trials in each class was balanced by sampling trials426

without replacement from the majority class to equal the number of trials in the minority class. These classifiers were427

then tested on either unseen static trials (five-fold cross-validation between train and test sets) or motion trials. At each428

timepoint, pairwise classification results were combined to estimate the likelihood of the stimulus being in a given429

position68;69. We can estimate P(position i|stimulus is in s) as430

ps(i) =

∑
j ̸=i

1

rij
− (k − 2)

−1

431

where rij is the classification performance for position i vs position j, and k is the total number of classes (the 37432

stimulus positions, in this case). Such that the probability across all positions was equal to 1, the estimated likelihoods433

were then normalised between 0 and 1. If decoding performance was at chance-level, we would expect uniform434

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.26.496535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.26.496535
http://creativecommons.org/licenses/by-nc-nd/4.0/


Latency of position representations of moving objects

likelihood across all stimulus positions, at:435

1

k
≈ 0.027027 . . .436

A likelihood greater than this indicates a location-specific neural response to the stimulus. An example probability437

mass functions of the likelihood across all stimulus positions can be found in Figure 3 step 2. For the main analysis, we438

investigated the evolution over time of the likelihood of the stimulus being at the presented position, ps(s), referred to439

as the stimulus-position likelihood. Where relevant, chance-level (1/37) was subtracted from the likelihood for easier440

interpretation in graphs.441

7.5 Statistical Analysis442

Statistical significance of classification results was ascertained through permutation testing. After running the clas-443

sification analyses as described above, class labels were randomly shuffled when calculating the stimulus-position444

likelihood, ensuring that the permuted classification results were uninformative about stimulus location. This proce-445

dure was repeated 1000 times per participant, providing a null distribution against which our results could be compared446

with Yuen’s t-test, one-tailed, α = 0.0570. Cluster-based correction for multiple comparisons was applied with 1000447

permutations (cluster-forming alpha = 0.05,71;72). Code for the cluster-based correction came from the Decision De-448

coding Toolbox73, which uses code originally from LIMO EEG74 to implement Yuen’s t-test.449

To test significance of linear regression models against a constant model, we used one-tailed F-tests. To test whether450

individual regression coefficients were significantly different from zero, we used two-tailed t-test.451

7.6 Data Availability452

Code and summarised data files, which can be used to reproduce all figures, will be made available at https:453

//osf.io/jbw9m/. Raw or pre-processed data files are available upon request, to reduce the environmental impact454

of hosting large datafiles online unnecessarily75.455

References456

[1] Nijhawan, R. Motion extrapolation in catching. Nature 370, 256–257 (1994). URL http://www.nature.com457

/articles/370256b0. Publisher: Nature Publishing Group.458

[2] Friston, K. The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 11, 127–138459

(2010).460

[3] Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and461

Brain Sciences 36, 181–204 (2013). Publisher: Cambridge University Press.462

[4] Berry, M. J., Brivanlou, I. H., Jordan, T. A. & Meister, M. Anticipation of moving stimuli by the retina. Nature463

398, 334–338 (1999).464
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