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Abstract 11 

 12 

Hypothalamic vasopressin neurons are neuroendocrine cells which form part of the 13 

homeostatic systems that maintain osmotic pressure. In response to synaptic inputs 14 

encoding osmotic pressure and changes in plasma volume, they generate spike 15 

triggered secretion of peptide hormone vasopressin from axonal terminals in the 16 

posterior pituitary. The thousands of neurons’ secretory signals generate a summed 17 

plasma vasopressin signal acting at the kidneys to regulate water loss. Vasopressin is 18 

synthesised in cell bodies, packaged into vesicles, and transported to large stores in 19 

the pituitary terminals. Supported by activity-dependent upregulation of synthesis and 20 

transport, these stores can maintain a secretion response for several days of elevated 21 

osmotic pressure, tested by dehydration or salt loading. However, despite upregulated 22 

synthesis, stores gradually decline during sustained challenge, followed by a slow 23 

recovery. With no evidence of a store encoding feedback signal, previous modelling 24 

explained these synthesis dynamics based on activity-dependent upregulation of 25 

transcription and mRNA content. Here this model is adapted and integrated into our 26 

existing spiking and secretion model to generate a neuronal population model, able to 27 

simulate the secretion, store depletion, and replenishment, response to sustained 28 

osmotic challenge, matching the dynamics observed experimentally and making 29 

functional predictions for the cell body mechanisms.  30 

 31 

 32 

 33 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.27.497653doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497653
http://creativecommons.org/licenses/by/4.0/


2 
 

Introduction 34 

 35 

 Magnocellular vasopressin neurons, of the supraoptic and paraventricular 36 

nuclei of the hypothalamus, in response to input signals that encode osmotic pressure 37 

and plasma volume, synthesise and secrete the antidiuretic hormone vasopressin. 38 

Vasopressin in its antidiuretic role is a core element of the homeostatic system that 39 

maintains osmotic pressure (water/salt balance), signalling the kidneys to regulate 40 

how much water is retained. Acting as a heterogeneous population, these neurons are 41 

able to maintain a constantly functioning physiological signal over lifelong periods of 42 

time. To sustain such a signal the system must be both very robust and efficient. It 43 

must also be able to respond rapidly to large changes in demand.  44 

 Vasopressin is synthesised in the neuronal cell bodies and packaged into large 45 

dense core vesicles that are transported down the axons to the posterior pituitary, 46 

where the vesicles are stored in axon swellings and terminals that form larger reserve 47 

and smaller releasable pools. We have previously modelled the spiking and secretion 48 

mechanisms of these neurons (MacGregor and Leng, 2012, 2013), including the 49 

dynamics of these pools. Here we build and integrate with our existing model, a 50 

quantitative model of the synthesis mechanisms, to better understand how the 51 

properties of these neurons relate to their function on long timescales.  52 

 In normal (basal) conditions mammals drink and ingest sodium (in the diet) 53 

intermittently, but constantly lose water through respiration and perspiration. Under 54 

homeostatic regulation, osmotic pressure fluctuates around a ‘set point’; increases 55 

above this will be corrected by increased sodium excretion in urine, by increased 56 

thirst, and to compensate lack of availability or intermittent ingestion of water, by 57 

secreting vasopressin to concentrate the urine and minimise water loss. Falling below 58 

this set point occurs less commonly, when excess water has been consumed, or salt 59 

has been lost. Both tonic signalling and a response to perturbations must be 60 

maintained, and accordingly there is an almost continuous depletion of the pituitary 61 

vasopressin stores, which must be replenished by the synthesis, packaging, and 62 

transport of new vasopressin vesicles.  63 

 In conscious, normally hydrated rats, as in humans, the basal vasopressin 64 

plasma concentration is ~1 pg/ml (Robertson, Shelton and Athar, 1976; Verbalis, 65 

Baldwin and Robinson, 1986) and maximal antidiuresis is observed at a concentration 66 
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of about 10 pg/ml. At concentrations higher than this, vasopressin continues to have 67 

an important role by its vasoconstrictor actions, which compensate for loss of fluid 68 

volume in conditions of dehydration. The pituitary vasopressin stores are large, 69 

between 1 and 2 µg (Leng and Ludwig, 2008), sufficient to maintain basal levels for 70 

around a month (Jones and Pickering, 1972). These large stores buffer against rapid 71 

increases in demand, but the rate of synthesis is also activity dependent, upregulating 72 

production in response to sustained increase in demand, and downregulating 73 

production in response to sustained low demand (Verbalis, Baldwin and Robinson, 74 

1986). The system thus attempts to match supply and demand, minimising waste 75 

whilst protecting its stores (MacGregor, Clayton and Leng, 2013). 76 

 Upregulation of synthesis is limited however, and under conditions of 77 

sustained high demand, such as limited water access, the stores are depleted, falling to 78 

less than 30% after five days (Jones and Pickering, 1969). The activity-dependent 79 

synthesis rate is no longer able to match activity dependent secretion. When demand 80 

and the stimulating osmotic signal has returned to normal, the stores are gradually 81 

replenished, over a course of days (Young and Van Dyke, 1968). At this point the rate 82 

of synthesis must be exceeding the activity-dependent secretion rate.  83 

 Building a system, the simplest way to do this would be to have some 84 

feedback signal of store depletion. However we have no evidence for such a signal. 85 

The pituitary stores at the neurons’ secretory terminals are distant from the cell body 86 

and highly distributed among thousands of release sites, making the measuring and 87 

transmission of such a signal very difficult. The alternative is that some property of 88 

the synthesis mechanisms forms a memory of the challenge, sufficient to maintain 89 

higher synthesis rates beyond the direct stimulus. The best candidate for this is the 90 

pool of vasopressin mRNA. The mRNA pool increases in size several fold in response 91 

to prolonged challenge (Sherman, McKelvy and Watson, 1986). This mechanism was 92 

extensively investigated using both experimental and modelling work by a group in 93 

Pittsburgh in the late 1980s and early 1990s (Robinson et al., 1989; Fitzsimmons et 94 

al., 1992; Robinson and Fitzsimmons, 1993). They tested several alternative models 95 

(Fitzsimmons et al., 1992) and showed that the best match to observed dynamics of 96 

store depletion and replenishment uses an mRNA pool dependent rate of synthesis, 97 

combined with activity dependent upregulation of transcription. During a prolonged 98 

challenge the simulated mRNA pool increases in size, and following, the pool is 99 

gradually depleted, sustaining increased synthesis sufficient to replenish the stores, 100 
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without requiring any feedback signal.    101 

 Their model (Fitzsimmons et al., 1992) forms the basis for our work here. 102 

Focussed on testing different models of the mRNA pool and its relation to synthesis 103 

rate, they made the simplification that the synthesis rate always approaches a steady 104 

state equal to the rate of secretion. What limits this response and causes store 105 

depletion (and replenishment) in their model, is that this change in rate uses a long 106 

time constant, dependent on the half-life of mRNA, estimated by them at two days. 107 

They tested alternative models with activity dependent mRNA decay, and with longer 108 

and shorter fixed decay rates, but the best fit to the experimentally observed dynamics 109 

was with this model. The model was fitted to data from several sources (Young and 110 

Van Dyke, 1968; Jones and Pickering, 1969; Zingg, Lefebvre and Almazan, 1986; 111 

Roberts et al., 1991) measuring the changing vasopressin content during a prolonged 112 

osmotic challenge (water deprivation or salt loading through high Na+ drinking 113 

water), and the following recovery. It was also based on data estimating the rate of 114 

synthesis by measuring the accumulated vasopressin content at the cell bodies with 115 

transport blocked to the peripheral stores (Roberts et al., 1991). Synthesis rates were 116 

estimated to be ~1-3 ng/h at basal, and 10 ng/h under hyper-osmotic conditions (3 117 

days of salt loading). They also showed that the synthesis rates only gradually return 118 

toward basal levels in the days following the osmotic challenge and that the transport 119 

rates (from cell body to peripheral stores) up- and down-regulate in parallel (Roberts 120 

et al., 1991). This prolonged upregulation of synthesis and transport acts to replenish 121 

the peripheral stores.  122 

 The Pittsburgh model, which only simulates synthesis and the store, using the 123 

simplification that synthesis always tracks secretion, does not deal with the pathway 124 

between osmotic stimulus and regulation of mRNA. A representation of this pathway 125 

is required for our model, which takes as input a synaptic signal that encodes osmotic 126 

pressure. It is well established that osmotic stimulation increases vasopressin mRNA 127 

content (Sherman, McKelvy and Watson, 1986), and also known that hypo-osmotic 128 

conditions reduce mRNA content (Svane et al., 1995). As well as increasing 129 

transcription rates, prolonged osmotic stimulation increases the length of the mRNA 130 

poly(A) tails (Carrazana, Pasieka and Majzoub, 1988; Zingg, Lefebvre and Almazan, 131 

1988), and the overall changes in content are likely due to a combination. Longer 132 

poly(A) tails are thought to either increase mRNA stability or increase translation 133 

efficiency (Emanuel et al., 1998). The functional effect of either would be to increase 134 
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the amount of synthesis per unit of mRNA.   135 

 The pathway between osmotic stimulus and transcription is still uncertain. The 136 

major candidate is a pathway via cyclic AMP (Carter and Murphy, 1989; Sladek et 137 

al., 1996; Wong et al., 2003) that acts to drive the CREB3L1 transcription promoter 138 

(Greenwood et al., 2015). There is also evidence for a glutamate-NMDA receptor-139 

Ca2+ entry driven pathway (Lake, Corrêa and Müller, 2019). Here we are using a very 140 

simple representation to predict the necessary dynamics rather than any detailed 141 

modelling of the mechanisms.  142 

 Our objective here was to integrate, adapt and extend the Pittsburgh model 143 

into our existing integrated spiking and secretion model in order to fully simulate the 144 

pathway from osmotic signal to plasma hormone signal. The challenge we identified 145 

when testing the secretion model (MacGregor and Leng, 2013) is that heterogeneity, 146 

which brings essential benefits to producing a robust signal response, results in widely 147 

varying rates of secretion and store depletion across the population. The synthesis 148 

mechanism must be able to cope with varied demand not only as a population but also 149 

between individual neurons.  150 

 The new synthesis modelling has been kept as simple and general as possible, 151 

and should be capable of being adapted to other neuroendocrine cells, but is still able 152 

to produce strong quantitative as well as qualitative matches to the experimental data 153 

on synthesis rates, mRNA content, and depletion and repletion of vasopressin stores 154 

during prolonged osmotic challenge and recovery. However, in designing and fitting 155 

to match experimental data that shows a cycle of depletion and recovery during and 156 

after an osmotic challenge, the synthesis model is essentially constrained to fail at the 157 

task of matching supply to demand. By attempting to fix this in the model we explore 158 

why the stores get depleted; what are the limiting mechanisms, and why these limits 159 

might be necessary.    160 

 161 

 162 

Results 163 

 164 

Osmotic Challenge and Recovery Data 165 

 To set targets for fitting and testing the model, an extensive literature survey 166 

was used to gather multiple types of physiological data recorded in rats during a 167 
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prolonged osmotic challenge and the following recovery. This extends the examples 168 

of (Fitzsimmons et al., 1992) where they compared multiple sources measuring the 169 

depletion and recovery of pituitary vasopressin stores. The data used here (Figure 1) 170 

includes osmolarity, plasma Na concentration, plasma vasopressin concentration, 171 

hypothalamic vasopressin mRNA content, and pituitary vasopressin content, during 172 

depletion and recovery. The data was extracted and reconstructed mostly by using 173 

graphics software (Adobe Illustrator) to measure points plotted in figures. A full list 174 

of the sources and tables of the data are given in the supplementary material.  175 

 The comparisons between multiple sources are imperfect. Experiments use 176 

different breeds and ages of rat, different timings of measurements (which are likely 177 

to have circadian sensitivity), and different assay techniques. In particular plasma Na 178 

is measured both by flame photometry and by electrode based techniques. 179 

Measurements of plasma vasopressin by radioimmunoassay are dependent on varying 180 

sample extraction techniques and assay antibodies. Using multiple sources has 181 

attempted to provide as clear a consensus as can be achieved, providing data to fit and 182 

test the input osmotic stimulus (osmolarity and plasma Na), the internal mRNA 183 

content, and the output plasma vasopressin and pituitary content.  184 

 The osmotic stimulus protocols vary between using dehydration (water 185 

deprivation) and salt loading (high Na drinking water) to raise osmolarity. In all the 186 

measurements except for plasma vasopressin these two protocols appear to produce an 187 

equivalent response (Figure 1). The lower plasma vasopressin concentrations 188 

observed under salt loading (~4 pg/ml vs 15 pg/ml under dehydration) are inconsistent 189 

with the similar rates of pituitary content depletion. Content depletion is likely to be a 190 

more robust measure of sustained vasopressin secretion rates, and so the model here 191 

targets the higher and more consistent plasma vasopressin concentrations observed 192 

under dehydration.  193 
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 194 
Figure 1. Experimental data gathered during prolonged osmotic challenge and recovery 195 
The data here is gathered from multiple published sources where rats have been measured 196 
during a prolonged osmotic challenge consisting of several days of dehydration or salt loading 197 
(high sodium drinking water), and the following recovery period, with normal water access 198 
restored. During the challenge osmolarity and plasma Na (top panels) rise mostly linearly, with 199 
some data showing a reduced rate of rise and plateau towards day 4 and 5. Radioimmunoassay 200 
measured plasma vasopressin concentration (mid left) mostly shows a matching linear rise, but 201 
data is mostly limited to three days, and varies in magnitude between dehydration (higher) and 202 
salt loading (lower) protocols. Vasopressin cell body mRNA content (mid right) shows a mostly 203 
linear rise after one day that eventually plateaus. The data is variable, but the most consistent 204 
experiments, with more time points, suggest a five to eight fold rise in content. The core target 205 
data for the model is the measurements of pituitary store content (bottom). During the challenge 206 
there is a mostly linear fall in pituitary content, which slows after day 3, falling to around 15 to 207 
30% of normal content. During recovery, where osmolarity rapidly (a few hours) returns to 208 
normal, the stores are slowly replenished over about two weeks. The faster recovery shown 209 
here (blue squares) is in rats made hypo-osmotic after the prolonged hyper-osmotic challenge. 210 
Detail on the sources is given in supplementary Figure S1.  211 
 212 
 213 
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The Spiking and Secretion Models 214 

 The spiking model used to generate the results here uses parameters (Table 1) 215 

chosen to simulate a typical magnocellular vasopressin neuron, based on detailed fits 216 

to in vivo recordings (MacGregor and Leng, 2012). As the synaptic input rate is 217 

increased, spiking shifts from silence to irregular spiking, phasic patterned spiking 218 

(long bursts and silences), increasing burst durations, and eventually continuous 219 

spiking. Figure 2 shows phasic spiking in the model. The non-linear stimulus-220 

response properties of the secretory terminals (frequency facilitation and fatigue), 221 

simulated by the secretion model, are such that the phasic pattern is optimal in terms 222 

of secretion per spike. Thus the increase in the rate of secretion slows as the neuron is 223 

driven into less optimal continuous spiking.  224 

 225 

 226 
Figure 2. Spike activity dependent regulation of transcription 227 
Phasic spiking in a highly stimulated integrate-and-fire based model neuron is both driven by 228 
and generates Ca2+ entry, producing an intracellular Ca2+ signal that is used to drive the model’s 229 
vasopressin mRNA transcription rate. The essential dynamic is that the mechanism translates 230 
the rapidly changing and noisy electrical activity into a sustained slow-changing measure of 231 
activity.   232 
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The secretion model is modified from the previously published version as 233 

described in the Methods. It is coupled to a model of plasma diffusion and clearance 234 

which we previously developed to simulate oxytocin plasma concentrations (Maícas-235 

Royo, Leng and MacGregor, 2018), with parameters adjusted using experimental data 236 

on vasopressin plasma concentrations and clearance rates, again as described in the 237 

Methods.  238 

 239 

Synthesis Model Basic Function and Tuning 240 

 The synthesis model was initially tested using a single neuron. The secretion 241 

rate is scaled to the number of neurons to maintain comparable secretion and plasma 242 

concentrations independent of population size.  243 

 The transcription rate (T) half-life λT = 1000 s and upregulation rate kT = 0.33 244 

were chosen to produce a plausible timescale transcription rate signal, taking with 245 

input rate Ire = 380 Hz, ~1 h to reach equilibrium T = ~ 60 (arbitrary units) from an 246 

initial T = 0 (Figure 2). This signal forms a long timescale measure of spike activity 247 

which in turn drives the increase in mRNA content.  248 

 Figure 3 illustrates the basic function of the model with steady input rate Ire = 249 

380 Hz, corresponding to a sustained hyperosmotic state. Vasopressin mRNA content 250 

rises very slowly towards an equilibrium at a rate and level determined by the balance 251 

between the transcription rate and depletion due to translation and synthesis. The rate 252 

of synthesis is directly proportional to the mRNA content (m). The secretion rate and 253 

plasma concentration driven by the single phasic neuron are noisy but sustain steady 254 

levels until the reserve store is depleted. The releasable pool (which is refilled from 255 

the reserve) buffers the secretion response to maintain a steady rate until the reserve 256 

store is very heavily depleted. With no synthesis, the store fully depletes and plasma 257 

concentration falls to zero. With synthesis, the rate is insufficient to match the highly 258 

stimulated secretion rate and the store is still depleted, though at a slower rate. When 259 

it is depleted, secretion and plasma concentration is sustained, at a level purely 260 

dependent on the upregulated synthesis rate. We would not expect to observe this in 261 

the heterogeneous population in vivo, but this is what we would predict in a 262 

homogeneous population, assuming a sustained osmotic stimulus.     263 

   264 

 265 

 266 
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 267 
Figure 3. Single neuron transcription-dependent regulation of mRNA content and 268 
synthesis rates.  269 
For illustration, rather than physiological simulation, the model here is initialised with a full 270 
store and zero stimulus, switching at time 0 to a sustained highly osmotic input signal. 271 
Transcription drives the accumulation of mRNA content, which in turn determines the rate of 272 
synthesis which maintains (or slows the depletion of) hormone stores. In the rapid change to a 273 
highly stimulated state here, elevated synthesis is not sufficient to match the rate of secretion, 274 
and stores are gradually depleted. When the stores are depleted the rate of secretion becomes 275 
purely synthesis rate dependent.  276 
 277 

The secretion model parameters were fixed by fitting the secretion model to in vitro 278 
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data as described in the Methods and detailed in (MacGregor and Leng, 2013; 279 

Maícas-Royo, Leng and MacGregor, 2018). Coupled to the plasma model, this allows  280 

the prediction of the rates of secretion that correspond to plasma concentrations 281 

observed in vivo. In basal normo-osmotic conditions rat plasma vasopressin in vivo is 282 

~ 1 pg/ml. In highly stimulated hyper-osmotic conditions plasma vasopressin in vivo 283 

rises to around 20 pg/ml. The left panels of Figure 4 show the single neuron model 284 

sustaining a mean 1 pg/ml plasma concentration with input rate Ire = 252 Hz. The 285 

initial value for mRNA content (m = 15), was set using an initial test to find its stable 286 

value at this input rate. The first target for tuning the synthesis model parameters was 287 

for synthesis to match secretion in basal conditions, in order to sustain a stable reserve 288 

store. The reserve store plot shows this achieved by reducing the synthesis rate (sr = 289 

0.65) compared to the final heterogeneous model parameter (sr = 1.1), which produces 290 

a small rise in the store, with synthesis exceeding secretion.   291 

 292 

Simulating Sustained Osmotic Challenge and Recovery 293 

 The second target for tuning the model was to match the experimental data 294 

measuring vasopressin store content in rats during a five day osmotic challenge (no 295 

water access, or salt loading using high Na+ drinking water) and the following 296 

recovery (Figure 1). Experiments measuring osmolarity (or equivalent plasma Na+) 297 

and plasma vasopressin during similar protocols (Walters and Hatton, 1974; 298 

Nordmann, 1985; Yue et al., 2008) suggest that the osmotic stimulus rises mostly 299 

linearly during the challenge for at least the first three days before levelling off at 300 

sustained high levels, and rapidly recovering after the challenge period. We simplified 301 

this by using a linear ramp in the input rate to simulate the prolonged osmotic 302 

challenge, illustrated in the right hand panels of Figure 4. The initial input rate 252 Hz 303 

was ramped to 640 Hz over 5 days and then returned to 252 Hz, targeted to match the 304 

store depletion observed in the experimental data. 305 

 The transcription rate mostly tracks the osmotic stimulus. The stores decline in 306 

content to ~ 25% before slowly recovering following the challenge, matching the 307 

experimental data and the results with the original Pittsburgh synthesis model. The 308 

mRNA content shows a more non-linear increase, and decline during the recovery 309 

period, as it sustains elevated synthesis rates to replenish the stores. However, the 310 

reduced synthesis rate (sr = 0.65) used to match secretion at basal levels (Figure 4 left)  311 
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 312 
Figure 4. Single neuron basal activity and prolonged osmotic challenge and recovery 313 
The plots on the left show basal activity sustaining a mean 1pg/ml plasma vasopressin. The 314 
transcription rate rapidly rises to sustain mRNA content at 15 units. With default synthesis 315 
rate scaling sr = 1.1, the synthesis rate slightly exceeds the secretion rate and the reserve store 316 
increases (blue). Setting sr = 0.65 (green) maintains a stable store. Removing synthesis by 317 
setting sr = 0 shows a depleting store. The plots on the right show a 5 day osmotic challenge 318 
(a linear ramp from basal, simulating progressive dehydration or salt loading) followed by 10 319 
day recovery (input returned to basal). The transcription rate mostly tracks the osmotic 320 
stimulus with some drop off due to non-linearities in the spiking response. The mRNA 321 
content rises non-linearly as the balance shifts between transcription, and depletion due to 322 
synthesis (translation). The synthesis rate increases but fails to track the increasing secretion 323 
rate. The reserve store is gradually depleted to ~27%. Plasma vasopressin increases initially 324 
linearly but then slows as the neurons shift from phasic to continuous spiking. Following the 325 
ramped challenge, secretion falls to basal rates, but elevated synthesis is sustained by the 326 
increased mRNA content, depleting this to recharge the reserve store.  327 
 328 
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produces more depletion of the stores and an incomplete recovery. As shown below, 329 

the synthesis model was more difficult to tune for a homogeneous than a 330 

heterogeneous population.  331 

 332 

Synthesis Response in a Heterogeneous Population 333 

 Osmotically stimulated vasopressin neurons recorded in vivo show widely 334 

varying spiking rates. We can simulate this heterogeneity by randomly varying the 335 

amount of synaptic input received by each model neuron, applying a varied input 336 

density parameter, as detailed in the Methods. This heterogeneity has a substantial 337 

functional advantage, producing a much more linear plasma vasopressin response to a 338 

changing osmotic input signal than a homogeneous population (MacGregor and Leng, 339 

2013). This matches the response that has been observed experimentally, however it 340 

results in also producing highly heterogeneous secretion rates and store depletion 341 

across the population. Here we tested how the synthesis model would respond to these 342 

varied stimulus and store depletion rates, and how this would affect the summed 343 

population response. The model was set up to record both the summed population and 344 

the individual neuron mRNA content, reserve store, and secretion rates.  345 

 A 100 neuron heterogeneous population was randomly generated with a 346 

lognormal distribution, illustrated in the inset of Figure 5. The basal population input 347 

rate (which is modified by each neuron’s input density) was set to 207 Hz to produce 348 

a sustained 1 pg/ml plasma vasopressin concentration. The initial values for m were 349 

set for each neuron by running the model with a 207 Hz population input until the 350 

neurons’ m values had stabilised, starting with common values of m = 10. No other 351 

parameter adjustment was required from the same basal protocol tested with the 352 

homogeneous model (Figure 4). This produced both a stable plasma vasopressin 353 

signal and a stable summed reserve store. As well as the summed population data 354 

Figure 5 shows a sample of three neurons from the low, middle, and high end of the 355 

activity distribution. The low and middle neurons (blue and green) both had very low 356 

spiking and secretion rates. Their mRNA content m was down-regulated to almost 357 

zero, with a matching low synthesis rate. This matches what is observed 358 

experimentally in hypo-osmotic conditions, showing the ability to down-regulate as 359 

well as upregulate from the basal synthesis activity. The high activity neurons 360 

(example here in red) show an increased mRNA content and a sustained secretion rate 361 

much higher than the population mean. They also show a gradual increase of their  362 
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 363 
Figure 5. Basal activity and prolonged challenge and recovery in a heterogeneous 364 
population 365 
The data here show a 100 neuron heterogeneous population following the same protocols as 366 
Figure 4. The inset distribution shows the heterogeneous input rates and the colour coded 367 
example neurons. In the left hand plots, with default synthesis scaling sr = 1.1, the 368 
heterogeneous population sustains a stable reserve store at basal activity (1 pg/ml plasma 369 
vasopressin). The majority of the secretion is from the more active neurons (red) and these show 370 
gradual increase of individual neuron stores. In the right hand plots, the challenge and recovery 371 
protocol shows similar results to the single neuron (Figure 4), but with a more stable and linear 372 
plasma signal. The individual neurons show some complex divergence in their store recovery, 373 
due to varied non-linearities in secretion and synthesis. The more active cells, even with highly 374 
elevated mRNA, show more rapid depletion, but also a more rapid, and even excess recovery. 375 
 376 

stores as synthesis exceeds the secretion rate.  377 

   Testing the ramped challenge and recovery protocol (initial population input 378 

rate 207 Hz ramped to 595 Hz over 5 days then returned to 207 Hz), plasma 379 

vasopressin and the summed population data shows very similar results to the 380 

homogeneous population. In this highly stimulated protocol the middle activity 381 

neuron more closely matches the mean population rates. The secretion rates of 382 
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individual neurons are much more non-linear than the population mean, and the 383 

plasma concentration shows a more linear response to the ramped stimulus than the 384 

homogeneous population.  385 

 386 

 387 
Figure 6. Model challenge and recovery compared to experimental data 388 
The 100 neuron heterogeneous population here simulates 2 days of basal activity, followed by 389 
5 days of dehydration, and 15 days of recovery, compared against experimental data from 390 
Figure 1. Two input signal protocols are compared, a default linear ramp (black) and a non-391 
linear ramp (red) with a more rapid initial increase in osmotic signal. Within the variability of 392 
the experimental data both ramps are potentially consistent. The linear ramp varies from the 393 
store data in its slower initial decline in content, more closely matched by the non-linear ramp, 394 
which produces a faster increase in secretion than synthesis, resulting in more rapid initial store 395 
depletion. The model was further tested with an added delay between synthesis and store fill 396 
rate (blue), simulating the estimated 24h transport delay. The delay only moderately changes 397 
the population store depletion and recovery profile, however more active neurons become fully 398 
depleted, resulting in a drop off in the plasma signal.  399 
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Model Compared to Experimental Data 400 

 Figure 6 uses the same heterogeneous population model as Figure 5, with an 401 

extended time protocol for comparison with the experimental data, 2 days of basal 402 

activity followed by a 5 day osmotic challenge and 15 days of recovery. The results 403 

show a population store that falls to ~ 25 % during the 5 day challenge and 404 

replenishes to almost full over the 15 day recovery period, very similar to the 405 

experimental data in rats. A notable difference however is that the model’s store using 406 

the linear ramp (black) protocol shows a slower initial decline. The match was 407 

improved by using a more non-linear ramp (red) in the osmotic input signal, 408 

producing a more rapid initial increase that gradually slows. Experimental evidence 409 

for the ramp in osmotic input and plasma vasopressin is variable and limited by 410 

temporally sparse measurements but suggests something that lies between these two. 411 

The model was further modified (blue) by adding a 24 h delay between the synthesis 412 

rate and the store fill rate representing the slow transport of new vesicles from the cell 413 

body to the pituitary stores, thought to take up to 24 h depending on osmotic status 414 

(Russell, Brownstein and Gainer, 1981). The delay more closely matches the 415 

depletion observed experimentally, but its effect is modulatory, and not sufficient to 416 

explain store depletion alone. 417 

 418 

What Limits the Synthesis Response? 419 

 The current model matches the limited upregulation of synthesis, and 420 

depletion of stores, observed in the experimental data. Changes to the model, 421 

attempting to improve this response, were tested to predict which mechanisms might 422 

be responsible for this limited ability to match secretion demand (Figure 7). Two 423 

methods were found which were able to produce a much faster upregulation of 424 

synthesis while maintaining the ability to function in basal and stimulated states 425 

without under- or over-filling the stores. The first method (red in Figure 7) accelerates 426 

the upregulation of transcription. This required three parameter changes, increasing 427 

the rate of transcription but also compensating the increased amount so that only the 428 

speed of the response was changed (kT 0.33 to 3.3, sbasal 0.7 to 7, sr 1.1 to 0.11). The 429 

produces a much faster increase in the mRNA store and corresponding synthesis rate, 430 

resulting in a much smaller vasopressin store depletion. However it also predicts a 431 

much larger increase in mRNA than is observed experimentally (20-fold compared to 432 

~5 to 8-fold). The second method (blue in Figure 7) increases the rate of translation 433 
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 434 
Figure 7. Improving synthesis performance by enhancing transcription or translation 435 
Two enhancements are compared to the basic (black) experimental data fitted model (Figure 5 436 
and 6), attempting to predict what limits the synthesis response in vivo. Accelerating 437 
transcription (red) produces a much faster upregulation of mRNA content and synthesis rate, 438 
reducing store depletion but depending on a larger mRNA capacity. Increasing the proportional 439 
translation rate (blue) similarly produces a faster upregulation of synthesis, with a more rapid 440 
depletion of mRNA content resulting in a lower equilibrium level. This reduces store depletion 441 
but likely depends on a translation rate which is beyond the capability of the cells.  442 
 443 

(sbasal 0.7 to 3), increasing the rate of synthesis in exchange for a faster depletion of 444 

the mRNA store. This similarly produces a faster upregulation and reduced 445 

vasopressin store depletion but also results in a much smaller increase in the mRNA 446 

store, since the mRNA equilibrium level is determined by the balance between 447 

transcription and translation. Thus, the model predicts that the main elements 448 

responsible for vasopressin store depletion are the lag in upregulation of mRNA, and 449 

the maximum mRNA capacity, combined with a limit on the rate of translation. It 450 

may be that cells are capable of exceeding these limits, but that it is not efficient to 451 

maintain this capacity.      452 
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Discussion 453 

 454 

  This study is part of a project aimed at understanding how vasopressin 455 

neurons function as part of a physiological system on very long time scales. On the 456 

surface they appear to perform a very simple signal processing task, producing a 457 

plasma hormone signal that linearly encodes osmotic pressure. However, they have 458 

many complex features, in particular their distinctive phasic firing, its relationship 459 

with the highly non-linear properties of their secretory terminals, and their highly 460 

heterogeneous activity levels. The phasic firing is asynchronous and not reflected in 461 

the functional signal of their plasma summed secretory output. It appears that the 462 

complexity is not about computation, but about being robust, adaptable, and efficient, 463 

and maintaining function over lifelong periods of time. This relationship between 464 

complexity and function is likely to be true of many neuro-physiological systems, and 465 

the experimentally accessible and well-studied vasopressin neurons therefore serve as 466 

a very good model system.     467 

      Essential to understanding the long term function of neuroendocrine 468 

neurons (and other endocrine cells) is the dynamics of hormone storage and synthesis 469 

and the focus here has been building and testing a synthesis model to integrate with 470 

our existing spiking and secretion model. The new model is built on the work of 471 

Fitzsimmons et al (Fitzsimmons et al., 1992) which showed that activity-dependent 472 

upregulation of mRNA content could best explain the experimentally observed 473 

dynamics of store depletion and recovery. The challenge here was to integrate and 474 

adapt the model to function without any direct tie between the rates of synthesis and 475 

secretion, and for it to function within individual neuron models as part of a 476 

heterogeneous population. This has been successful, providing further evidence that 477 

the accumulation of mRNA is key to synthesis dynamics. In normal and hypoosmotic 478 

conditions mRNA content functions to measure and service current demand. In 479 

hyperosmotic conditions it serves as a memory of sustained challenge and following 480 

the challenge provides a resource to recover depleted hormone stores. 481 

 The mechanisms of the robust new model components presented here are very 482 

simple. The key to this was the strongly quantitative properties of the secretion and 483 

plasma model. The existing vasopressin neuron model was also further developed 484 

here by integrating a new model of hormone diffusion and clearance in plasma, and 485 
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by refining the quantitative scaling of the existing secretion model, based on previous 486 

work in oxytocin neurons (Maícas-Royo, Leng and MacGregor, 2018). The 487 

importance of this was in relating rates of secretion to experimentally observed 488 

plasma concentrations, thereby accurately simulating hormone store depletion (and 489 

recovery) and constraining synthesis rate demands. Initial attempts at building the 490 

synthesis model, before the secretion rate scaling had been corrected, and the apparent 491 

synthesis rate demands were much higher, used an additional activity-dependent 492 

component for the translation rate, shown ghosted in Figure 8. This was not robust, 493 

being very sensitive to the balance between parameter values driving the activity 494 

dependent transcription and translation components. The version presented here uses 495 

only a fixed translation rate, proportional to the mRNA content. Thus, making the 496 

model more quantitatively accurate actually reduced the necessary complexity.   497 

 The model also uses a simple representation of the relationship between 498 

osmotic stimulus and transcription, making use of the spiking model’s Ca2+ variable. 499 

Rather than the mechanism necessarily being Ca2+-dependent, the necessary 500 

assumption here is that transcription closely tracks spike activity. This helps the 501 

model to maintain a tracking between the synthesis and secretion rates without any 502 

cross-communication. If transcription was more directly driven by synaptic input then 503 

the complexities of phasic firing would disrupt this tracking.  504 

 Where the model’s behaviour becomes more complex is in the dynamics of 505 

stores in a heterogeneous population. Heterogeneous activity levels would be 506 

expected to present a big challenge to maintaining the tracking between synthesis and 507 

secretion rates and it was surprising how robust the heterogeneous population proved 508 

to be. This is partly because heterogeneity as well as adding complexity, also removes 509 

some by linearising the relationship between the input and output signals. However, 510 

there is some variation across the heterogenous population in how well stores are 511 

maintained, suggesting that a statically heterogeneous population will gradually 512 

diverge in store content. The simple model tested here puts no limits on the mRNA 513 

content or vasopressin stores in individual neurons. These limits are likely to exist in 514 

some form and would act to reduce the divergence between neurons, but it does 515 

nevertheless seem likely that a static heterogeneous population would struggle to 516 

maintain function over long periods. Thus the model here has developed a tool to 517 

further examine rather than solve the problem of store divergence identified in the 518 

previous work (MacGregor and Leng, 2013).   519 
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 The alternative is dynamic or regulated heterogeneity. Here we refer to our 520 

neurons as a population, connected only at their functional input and output signals. 521 

However vasopressin neurons have the ability to communicate through dendritic 522 

release of various signals including vasopressin, and potentially act as a network. 523 

There is evidence that these signals act to modulate the activity of neighbouring 524 

neurons (Gouzènes et al., 1998) and it has been proposed that the network might act 525 

to cycle activity levels (Scott and Brown, 2010), letting rested neurons replace those 526 

that have been more active and become depleted. Such a mechanism would also 527 

contribute to the lifetime robustness of the system by compensating for lost neurons. 528 

The question for this that arises from the work here is what measure would regulate 529 

the dendritic signals? For the same reasons that synthesis rates are not thought to be 530 

directly coupled to secretion (distant and distributed stores), it would be difficult to 531 

directly measure store depletion. Do the stores available for dendritic release deplete 532 

sufficiently in parallel to the peripheral stores? Could elements of the synthesis 533 

mechanism also regulate dendritic signalling? 534 

 One of the main limitations in interpreting the results here is the highly 535 

simplified simulation of the prolonged osmotic challenge. The linear ramp is based on 536 

experimental data measuring vasopressin concentrations, osmotic pressure, and/or 537 

plasma Na+ which show mostly linear increases with time during an osmotic 538 

challenge over at least three days. After three days however, these increases tend to 539 

slow, probably as the high sustained vasopressin output, and regulation of other 540 

elements involved in osmotic homeostasis, such as salt excretion, achieve some sort 541 

of new equilibrium. There is also evidence of this in the data measuring store content, 542 

where the rate of depletion appears to fall towards the latter part of the challenge. We 543 

began addressing this here in the model using a non-linear input ramp, but a much 544 

better approach in terms of gaining understanding would be to integrate the neural 545 

population model into a simple system model of osmotic homeostasis, providing 546 

feedback between the vasopressin output and the osmotic input signal.  547 

 Another assumption here is the simple linear encoding between osmotic 548 

stimulus and the rate of synaptic input. Recent work in oxytocin neurons (Maícas 549 

Royo, Leng and MacGregor, 2019) modelling osmotic stimulus in more detail, to 550 

simulate experiments in which plasma oxytocin was measured in response to Na+ 551 

injections or infusions, supports this. The linear encoding assumption was sufficient 552 

to closely match experimental plasma concentrations with the model, and it is 553 
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reasonable to assume similar in vasopressin neurons. The exceptions to this are likely 554 

to be in special conditions such as pregnancy. 555 

 The work here has modelled the activity-dependent hormone synthesis 556 

mechanisms of vasopressin neurons and integrated this into a model of spiking and 557 

secretion, further refined and developed to accurately simulate plasma vasopressin 558 

concentrations in response to dynamic osmotic stimuli. It has shown that the idea of 559 

synthesis driven by the regulation of mRNA content remains robust without any 560 

assumption of synthesis directly coupled to secretion, and within the complexities of 561 

population heterogeneity. The model provides a strong base for future work exploring 562 

the mechanisms that coordinate vasopressin neurons as a network to maintain function 563 

over lifelong periods of time, including investigation of the dysfunction of these 564 

systems. 565 

 566 

 567 

Methods 568 

  569 

The Spiking Model 570 

 Many vasopressin neurons when stimulated generate a distinctive phasic 571 

pattern of spiking, alternating between sustained bursts and silences lasting tens of 572 

seconds. This is modelled here using an integrate-and-fire based model (MacGregor 573 

and Leng, 2012) modified to include a set of activity-dependent potentials that 574 

modulate excitability to shape spike patterning and generate an emergent bistability, 575 

matching the observed phasic firing and detailed spike patterning measured using 576 

analysis such as the inter-spike interval (ISI) histogram and hazard function (Sabatier 577 

et al., 2004). Importantly the model also matches the changes in the phasic spiking 578 

that occur in response to a changing input signal.  579 

 The excitability modulating potentials include a hyperpolarising afterpotential 580 

(HAP), a fast depolarising afterpotential (DAP), and a slow after hyperpolarisation 581 

(AHP). Each of these is modelled using a single variable that is step incremented with 582 

each spike and decays exponentially. This simple form has proven sufficient to 583 

produce close quantitative matches to experimentally measured spike patterning and 584 

is used here for the activity dependent elements of the model.  585 

 The phasic firing mechanism uses a slow DAP based on a Ca2+ inactivated 586 
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hyperpolarising K+ leak current VL (i.e. an activity-dependent depolarisation generated 587 

by switching off a hyperpolarisation). This is modulated by two opposing step-and-588 

decay variables representing spike generated Ca2+ entry, and dendritic dynorphin 589 

release, which slowly accumulates to oppose the action of Ca2+ and reactivate the K+ 590 

leak current, eventually terminating a burst and sustaining the period of inter-burst 591 

silence.     592 

 With more detail in (MacGregor and Leng, 2012; Maícas Royo et al., 2016), 593 

the spiking model is summarised by: 594 

 595 

𝑉 = 𝑉!"#$ + 𝑉#%& − 𝐻𝐴𝑃 − 𝐴𝐻𝑃𝑠𝑙𝑜𝑤 + 𝐷𝐴𝑃 − 𝑉' 596 

 597 

where V is the membrane potential, Vrest is the resting potential, and Vsyn is the 598 

summed synaptic input signal described below. AHPslow is the renamed AHP of 599 

(MacGregor and Leng, 2012) to distinguish it from the medium AHP of (Maícas 600 

Royo et al., 2016). The default parameters are given in Table 1. 601 

 602 
 603 
Table 1: Spiking Model Parameters 604 
 605 

Name Description Value (units) 
Ire excitatory input rate 230 (Hz) 
Iratio inhibitory input ratio 0.75 
eh EPSP amplitude 3 (mV) 
ih IPSP amplitude -3 (mV) 
λsyn PSP half life 7.5 (ms) 
kHAP HAP amplitude per spike  60 (mV) 
λHAP HAP half life 9 (ms) 
kDAP fast DAP amplitude per spike 1 (mV) 
λDAP fast DAP half life 150 (ms) 
kAHPslow slow AHP activation factor 0.00012 (mV/nM) 
λAHPslow slow AHP half life 10000 (ms) 
CAHPslow minimum [Ca]i to activate slow AHP 200 (nM) 
Crest rest [Ca]i 113 (nM) 
kC [Ca]i increase per spike 11 (nM) 
λC [Ca]i half life 2500 (ms) 
kD dynorphin activation per spike 2.693 
λD dynorphin half life 7500 (ms) 
kL K+ leak calcium sensitivity  36 (nM) 
gL K+ leak maximum voltage 8.5 (mV) 
Vrest resting potential -62 (mV) 
Vthresh spike threshold potential -50 (mV) 

 606 

 607 
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Synaptic Input Signal   608 

 The osmotic stimulus is encoded by a mixed train of excitatory and inhibitory 609 

post-synaptic potentials (EPSPs and IPSPs). Mixed synaptic input contributes to 610 

producing a more linear spiking response to an increasing input signal (Leng et al., 611 

2001; Maícas Royo et al., 2016). This synaptic input signal Vsyn is simulated using a 612 

Poisson random process to generate small (3 mV) exponentially decaying positive and 613 

negative perturbations to the membrane potential. The proportion of inhibitory to 614 

excitatory PSPs uses a fixed value of 0.75, reduced from the previous 1.0 ratio, based 615 

on more detailed modelling of magnocellular neurons (Leng, Leng and MacGregor, 616 

2017). The strength of the stimulus is represented by the mean EPSP rate Ire.  617 

 618 

Secretion and Plasma Model 619 

 Good quantitative scaling is essential to understanding the qualitative 620 

properties of the neurons, and relating mechanism to function. A necessary element 621 

for understanding the synthesis mechanisms is to be able to relate the input signal and 622 

spiking activity to the output plasma concentration, in order to constrain the rates of 623 

secretion and synthesis. Plasma concentration is the most accessible measure of 624 

secretion in the experimental data. Our previous work developing the vasopressin 625 

secretion model used a simple, single volume estimate of the relation between 626 

secretion rate and plasma concentration (MacGregor and Leng, 2013). More recently 627 

we adapted the secretion model to oxytocin neurons and integrated a new model of 628 

plasma diffusion and clearance (Maícas-Royo, Leng and MacGregor, 2018) which is 629 

able to accurately predict experimental measurements of oxytocin plasma 630 

concentration in response to both an acute stimulus (CCK injection, (Maícas-Royo, 631 

Leng and MacGregor, 2018)) and slower osmotic challenges (Maícas Royo, Leng and 632 

MacGregor, 2019).  633 

 The plasma model’s volume, clearance, and diffusion rate parameters were 634 

fitted using experimental data testing exogenous infusions of oxytocin (Ginsburg and 635 

Smith, 1959; Fabian et al., 1969). It models peripherally secreted oxytocin as 636 

distributed between plasma and extravascular fluid (EVF) compartments, with 637 

roughly similar volumes (8.5 ml and 9.75 ml respectively for a 250g rat), diffusing 638 

between the two according to the concentration gradient with a time constant 639 

estimated by the experimental data. Clearance is a single component from the plasma,  640 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.27.497653doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497653
http://creativecommons.org/licenses/by/4.0/


24 
 

 641 
Figure 8. Refinement of the secretion model  642 
The quantitative fit of the published secretion model (MacGregor and Leng, 2013) was 643 
improved using more detailed in vitro data and better parameter tuning methods based on recent 644 
work applying the model to oxytocin neurons (Maícas-Royo, Leng and MacGregor, 2018). The 645 
model is fitted to data measuring both frequency facilitation (top panel) and fatigue (lower 646 
panel), simulating the in vitro experimental protocols. The changed parameters are given in the 647 
table. The major adjustment was to reduce α which scales the rate of secretion to units of pg.  648 
 649 

representing the total clearance from the kidneys and other organs. There are no 650 

equivalently detailed data available for vasopressin, however the vasopressin peptide 651 

has a very similar size and transport properties, and we assume that the same volumes 652 

and diffusion can be applied to vasopressin.  653 

 There are differences however in the clearance rates, mainly due to the added 654 

component of bound vasopressin cleared at the kidneys. Experiments measuring the 655 

stable plasma concentrations in response to sustained infusions of oxytocin and 656 

vasopressin (Robinson et al., 1989) estimated the total clearance rate of vasopressin as 657 

almost exactly double that of oxytocin. This is consistent with previous experiments 658 

that show higher oxytocin concentrations in response to the same stimulus (Dogterom, 659 

Van Wimersma Greidanus and Swabb, 1977; Windle et al., 1993). Thus we modified 660 

the plasma model by reducing the clearance half-life parameter from 68s to 34s. 661 

Combined with the diffusion component this produces an overall clearance half-life of 662 
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~51s. This matches the estimate of (Ginsburg and Heller, 1953) but is shorter than 663 

other estimates of 120s (Czaczkes and Kleeman, 1964).       664 

 As well as adding the plasma model we also refitted the existing vasopressin 665 

secretion model (MacGregor and Leng, 2013) using the same technique and 666 

equivalent data as used to fit the oxytocin secretion model (Maícas-Royo, Leng and 667 

MacGregor, 2018). The improved fits (Figure 8) reduced the scaling of secretion per 668 

spike (parameter α) by a factor of seven, consistent with the smaller total functional 669 

volume estimate of the improved plasma model (18 ml reduced from 100ml).    670 

 671 

The Synthesis Model 672 

 The development of the synthesis model tested many more complex forms 673 

than those presented here. Our aim was to produce a concise and robust model which 674 

is sufficient to make a close qualitative and quantitative match to the available 675 

experimental data. The new model adds only two new variables to the integrated 676 

vasopressin neuron spiking, secretion, and plasma model, representing the rate of 677 

transcription, and the mRNA store (Figure 9).   678 

 Transcription is upregulated with the osmotic stimulus. Without any 679 

quantitative data available we have not attempted to make any detailed model of the 680 

proposed cAMP or other messenger dependent pathway. The essential property of this 681 

mechanism is that it needs a sustained activity-dependent signal, acting on a much 682 

slower timescale than the rapidly changing electrical activity of the neuron. Informed 683 

by previous experience of signal transduction across timescales in modelling circadian 684 

and circannual rhythms (Macgregor and Lincoln, 2008) this uses a two-step process. 685 

The spiking model’s existing activity-dependent Ca2+ variable (C) is used, relative to 686 

basal Ca2+ (Crest = 113 nM), to drive the transcription rate (T), which increases in 687 

proportion to C at rate 0.001 kT units per s, and decays exponentially with half-life λT 688 

= 1000s: 689 

 690 
𝑑𝑇
𝑑𝑡 = 0.001	𝑘((𝐶 − 𝐶!"#$) −

𝑇
𝜏(

 691 

 692 

𝜏( =
𝜆(
ln(2) 693 

 694 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.27.497653doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497653
http://creativecommons.org/licenses/by/4.0/


26 
 

 695 
Figure 9. The integrated synthesis model  696 
The spiking model, stimulated by synaptic input that encodes osmotic pressure, drives the 697 
synthesis model through its Ca2+ variable C. This regulates the transcription rate T which 698 
increases the store of vasopressin mRNA m. The synthesis rate s is proportional to m using a 699 
fixed translation rate, and also depletes m. The ghosted link showing activity-dependent 700 
regulation of translation was not used in the results here. The synthesis model is coupled to 701 
the secretion model through the charging of its reserve store r.   702 
 703 

 704 

The half-life is very approximate, chosen to produce a slowly changing value that 705 

reaches an equilibrium proportional to the osmotic input stimulus (Figure 2). The 706 

0.001 scaling factor produces a more convenient scale for parameter kT.   707 

 The mRNA store (m) accumulates at a rate proportional to T. Contrary to the 708 

Pittsburgh model, it has no explicit exponential decay component, but is depleted in 709 

proportion to the synthesis rate (s). However, m does decay exponentially when 710 

translation is at a fixed rate proportional to m (parameter tlbasal), as it is in the results 711 

here.  712 

 713 
𝑑𝑚
𝑑𝑡 = 𝑠#)*+"𝑇 − 𝑠 714 

 715 

𝑠 = 𝑡𝑙,*#*+𝑠#)*+"𝑚 716 

 717 

The model includes functional timescales ranging from ms to days, and parameter 718 

sscale is used to scale the rates between the spiking and secretion model and the 719 
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synthesis model. The results here use a fixed value, but it was convenient for testing 720 

to be able to use this parameter to accelerate the synthesis timescale.  721 

 The reserve store r equation from the secretion model (eqn 8 in (MacGregor 722 

and Leng, 2013)) was modified to add the synthesis component: 723 

 724 
𝑑𝑟
𝑑𝑡 = 𝑠!𝑠 − 𝛽

𝑟
𝑟-*.

	𝑤ℎ𝑒𝑟𝑒	𝑝 < 𝑝-*.; 	𝑠!𝑠	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 725 

 726 

where parameter sr scales the synthesis units to pg units of stored vasopressin, and 727 

parameter β is the refill rate of the secretion model’s releasable pool p. The default 728 

parameters are given in Table 2. To simulate a transport delay between synthesis and 729 

the store, s in this equation was replaced sdelay, using the recorded value for s from an 730 

earlier timestep.  731 

 732 
Table 2: Default Synthesis Model Parameters 733 

Name Description Value (units) 
kT transcription upregulation rate 0.33 (T units s-1) 
λT transcription rate half-life 1000 (s) 
tlbasal fixed translation rate 0.7 
sscale synthesis time scaling factor 0.000003 
sr vasopressin scaling factor 1.1 (pg per s unit) 

 734 

 735 

Population Simulation and Heterogeneity 736 

 The population was simulated by running in parallel 100 copies of the coupled 737 

spiking, secretion, and synthesis model, with the secretion rate outputs forming a 738 

summed input to the single plasma model. A heterogeneous population is generated 739 

by randomly varying the proportional input rates (synaptic input density Isyn) for each 740 

neuron using a lognormal distribution with mean = 0 and standard deviation = 0.25. 741 

This approximates the highly heterogeneous range of spiking rates observed 742 

experimentally (MacGregor and Leng, 2013). The stimulus is then represented by the 743 

population input rate Ipop and individual neuron input rates are generated using: 744 

 745 

𝐼!" = 𝐼/0/𝐼#%& 746 

 747 

 748 
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Implementation 749 

 The differential equations were integrated using the first order Euler method. 750 

We can do this safely since the step size (1 ms) inherited from the spiking model is 751 

much smaller than any of the time constants in the model. Using the same fixed time 752 

step makes it simple to couple the synthesis model, and the secretion and plasma 753 

models, to the integrate-and-fire based spiking model. The modelling software was 754 

developed in C++, using the open source wxWidgets graphical interface library. Each 755 

neuron runs as a duplicate integrated spiking, secretion, and synthesis model thread, 756 

with secretion rates feeding into a single plasma model thread. A typical run of the 757 

full model, simulating 22 days of activity for a population of 100 neurons takes ~18 758 

minutes on an AMD Ryzen 9 5900X 12-core processor. 759 

 The model source code, and software, compiled for Windows PC, are 760 

available at https://github.com/HypoModel/MagNet/releases. 761 

 762 
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