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Abstract

How the human brain supports speech comprehension is an important question in neuroscience.
Studying the neurocomputational mechanisms underlying human language is not only critical to
understand and develop treatments for many human conditions that impair language and com-
munication but also to inform artificial systems that aim to automatically process and identify
natural speech. In recent years, intelligent machines powered by deep learning have achieved
near human level of performance in speech recognition. The fields of artificial intelligence and
cognitive neuroscience have finally reached a similar phenotypical level despite of their huge dif-
ferences in implementation, and so deep learning models can—in principle—serve as candidates
for mechanistic models of the human auditory system. Utilizing high-performance automatic
speech recognition systems, and advanced noninvasive human neuroimaging technology such
as magnetoencephalography and multivariate pattern-information analysis, the current study
aimed to relate machine-learned representations of speech to recorded human brain representa-
tions of the same speech. In one direction, we found a quasi-hierarchical functional organisation
in human auditory cortex qualitatively matched with the hidden layers of deep neural networks
trained in an automatic speech recognizer. In the reverse direction, we modified the hidden
layer organization of the artificial neural network based on neural activation patterns in human
brains. The result was a substantial improvement in word recognition accuracy and learned
speech representations. We have demonstrated that artificial and brain neural networks can be
mutually informative in the domain of speech recognition.

Author summary

The human capacity to recognize individual words from the sound of speech is a cornerstone of
our ability to communicate with one another, yet the processes and representations underlying
it remain largely unknown. Software systems for automatic speech-to-text provide a plausible
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model for how speech recognition can be performed. In this study, we used an automatic
speech recogniser model to probe recordings from the brains of participants who listened to
speech. We found that the parts of the dynamic, evolving representations inside the machine
system were a good fit for representations found in the brain recordings, both showing similar
hierarchical organisations. Then, we observed where the machine’s representations diverged
from the brain’s, and made experimental adjustments to the automatic recognizer’s design so
that its representations might better fit the brain’s. In so doing, we substantially improved the
recognizer’s ability to accurately identify words.

Introduction1

Speech comprehension—the ability to accurately identify words and meaning in a continuous2

auditory stream—is a cornerstone of the human communicative faculty. Nonetheless, there is still3

limited understanding of the neurocomputational representations and processes in the human4

brain which underpin it. One way to approach this question is in reverse: to find artificial systems5

which can accomplish the task, and use them to model and probe the brain’s solution. In the6

domain of engineering, automatic speech recognition (ASR) systems are designed to identify7

words from recorded speech audio. In this way, ASR systems provide a computationally explicit8

account of how speech recognition can be achieved, so correspondences between the human9

and machine systems are of particular interest; specifically, the question of whether the learned10

representations in an ASR can be linked to those found in human brains. Modern advances11

in high-resolution neuroimaging and multivariate pattern-information analysis have made this12

investigation feasible.13

In the present research, we took a bidirectional approach, relating machine-learned represen-14

tations of speech to recorded brain representations of the same speech. First, we used the15

representations learned by an ASR system with deep neural network (DNN) acoustic models16

[24] to probe the representations of heard speech in the brains of human participants undergoing17

continuous brain imaging. This provided a mechanistic evidence of speech responses in human18

auditory cortex. Then, in the opposite direction, we used the architectural patterns of neural19

activation we found in the brains to refine the DNN architecture and demonstrated that this im-20

proves ASR performance. This bidirectional approach was made possible by recently developed21

multivariate pattern analysis methods capable of comparing learned speech representations in22

living brain tissue and computational models.23

A computational model of speech recognition24

ASR encompasses a family of computationally specified processes which perform the task of25

converting recorded speech sounds to the underlying word identities. Modern ASR systems26

employing DNN acoustic and language models now approach human levels of word recognition27

accuracy on specific tasks. For instance, regarding English, the word error rate (WER) of28

transcribing careful reading speech with no background noise can be lower than 2% [35, 48],29

and the WER of transcribing spontaneous conversational telephone speech can be lower than30

6% [52, 66].31

For the present study, our ASR system was constructed based on a set of hidden Markov32

models (HMMs). For each, a designated context-dependent phonetic unit handled the transitions33

between the hidden states. A DNN model was used to provide the observation probability of a34

speech feature vector given each HMM state. This framework is often called a “hybrid system”35

in the ASR literature [6, 24].The Hidden Markov Model Toolkit (HTK: [67, 70]), among the most36

widely used ASR software, was used to train the DNN-HMMs and construct the overall ASR37

pipeline of audio to text. A version of this model comprised a key part of the first-place winner38

of the multi-genre broadcast (MGB) challenge of the IEEE Automatic Speech Recognition and39
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Understanding Workshop 2015 [4, 64]. In this paper, all ASR systems were built in HTK 40

using 200 hours of training data from the MGB challenge. We designed the experimental setup 41

carefully to use only British English speech and reduce the channel difference caused by different 42

recording devices. 43

Of particular importance for the present study is the inclusion of a low-dimensional bottleneck 44

layer in the DNN structure of our initial model. Each of the first five hidden layers contains 45

1000 nodes, while the sixth hidden layer has just 26 nodes. Since the DNN layers are feed- 46

forward and fully connected, each node in each layer is connected only with the nodes from 47

its immediately preceding layer, and as such the acoustic feature representations of the input 48

speech are forced to pass through each layer in turn to derive the final output probabilities of the 49

context-dependent phonetic units. The bottleneck layer representations are highly compressed 50

and discriminative, and are therefore widely used as an alternative type of input features to 51

acoustic models in ASR literature [21, 60, 64]. In addition, the inclusion of this bottleneck layer 52

greatly reduces the number of DNN parameters without significantly diminishing the accuracy 53

of word recognition [64], since it can prevent the model from over-fitting to the training data [5]. 54

Thus, the bottleneck layer representation provides a learned, low-dimensional representation of 55

speech which is both parsimonious and sufficient for high-performance speech recognition. This 56

is especially interesting for the present study, given the inherently low-dimensional parametri- 57

sation of speech that is given by articulatory features, which are a candidate characterisation of 58

responses to speech in human auditory cortex. 59

Speech responses in human auditory cortex 60

Recent electrocorticography (ECoG; [9, 18, 37, 38, 43, 44]) and functional magnetic resonance 61

imaging (fMRI; [1, 13]) studies in humans show differential responses to speech sounds exhibiting 62

different articulatory features in superior temporal speech areas. Heschl’s gyrus (HG) and 63

surrounding areas of the bilateral superior temporal cortices (STC) have also shown selective 64

sensitivity to perceptual features of speech sounds earlier in the recognition process [8, 40, 50, 56, 65

57]. Building on our previous work investigating phonetic feature sensitivity in human auditory 66

cortex [63], we focus our present analysis within language-related brain regions: STC and HG. 67

The neuroimaging data used in this study comes from electroencephalography and magnetoen- 68

cephalography (EMEG) recordings of participants listening to spoken words in a magnetoen- 69

cephalography (MEG) brain scanner. High-resolution magnetic resonance imaging (MRI) was 70

acquired using a 3T MRI scanner for better source localization. As in our previous studies [19, 71

56, 63], the data (EMEG and MRI) has been combined to generate a source-space reconstruction 72

of the electrophysiological activity which gave rise to the measurements at the electroencephalog- 73

raphy (EEG) and MEG sensors. Using standard minimum-norm estimation (MNE) procedures 74

guided by anatomical constraints from structural MRIs of the participants [20, 23], sources were 75

localised to a cortical mesh at the grey-matter–white-matter boundary. Working with source- 76

space activity allows us to retain the high temporal resolution of EMEG, while gaining access 77

to resolved spatial pattern information. It also provides the opportunity to restrict the analysis 78

to specific regions of interest on the cortex, where an effect of interest is most likely to be found. 79

Multivariate methods for modelling dynamic brain states 80

Recent developments in multivariate neuroimaging pattern analysis methods have made it pos- 81

sible to probe the representational content of recorded brain activity patterns. Among these, 82

representational similarity analysis (RSA: [33]) provides a flexible approach which is well suited 83

to complex computational models of rich stimulus sets. The fundamental principle of our RSA 84

procedures was the computation of the similarity structures of the brain’s response to experi- 85

mental stimuli, and comparing the similarity structures with those derived from computational 86

models. In a typical RSA study, this similarity structure is captured in a representational dis- 87
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similarity matrix (RDM), a square symmetric matrix whose rows and columns are indexed by88

the experimental stimuli, and whose entries give values for the dissimilarity of two conditions,89

as given by their correlation distance in the response space.90

A key strength of RSA is that RDMs abstract away from the specific implementation of the91

DNN model or measured neural response, allowing direct comparisons between artificial and92

human speech recognition systems; the so-called “dissimilarity trick” [32]. The comparison93

between RDMs computed from the ASR model and RDMs from human brains take the form of94

a Spearman’s rank correlation ρ between the two [46].95

RSA has been extended using the fMRI searchlight-mapping framework [31, 46] so that represen-96

tations can be mapped through image volumes. Subsequently, searchlight RSA has been further97

extended into the temporal dimension afforded by EMEG data: spatiotemporal searchlight RSA98

(ssRSA: [55, 56]). Here, as in other studies using computational cognitive models (e.g. [27, 36]),99

ssRSA facilitates the comparison to a machine representation of the stimulus space which may100

otherwise be incommensurable with a distributed brain response.101

Outline102

In the machine-to-human direction, using ssRSA and the ASR system as a reference, we found103

that the early layers of the DNN corresponded to early neural activation in primary auditory104

cortex, i.e. bilateral Heschl’s gyrus, while the later layers of the DNN corresponded to late105

activation in higher level auditory brain regions surrounding the primary sensory cortex. This106

finding reveals that the neural network located within HG is likely to have a similar functional107

role as early layers of the DNN model, extracting basic acoustic features. The neurocomputa-108

tional function of superior temporal gyrus regions is akin to later layers of the DNN, computing109

complex auditory features such as articulation and phonemic information.110

In the reverse human-to-machine direction, using the pattern of results in the brain-image analy-111

sis, we improved the architecture of the DNN. The spatial extent of neural activation explained112

by the hidden-layer representations progressively reduced for higher layers, before expanding113

again for the bottleneck layer. This pattern, which mirrored the structure of the DNN itself,114

and (assuming an efficient and parsimonious processing stream in the brain) suggests that some115

pre-bottleneck layers might be superfluous in preparing the low-dimensional bottleneck compres-116

sion. We restructured the DNN model with the bottleneck layer moved to more closely resemble117

the pattern of activation observed in the brain, hypothesising that this would lead to a better118

transformation. With this simple, brain-inspired modification, we significantly improved the119

performance of the ASR system. It is notable that similar DNN structures have been developed120

independently elsewhere in order to optimise the low-dimensional speech feature representations121

from the DNN bottleneck layer. However, “reverse-engineer” human learning systems imple-122

mented in brain tissue in such a bidirectional fashion provides a complementary approach in123

developing and refining DNN learning algorithms.124

Results125

DNN bottleneck layer activations are organized by articulatory features126

A DNN acoustic model was trained to classify each input frame into one of the triphone units127

at each time step. The DNN had five 1000-node hidden layers followed by a single 26-node128

bottleneck (BN) layer, and is therefore denoted as DNN-BN7 since the bottleneck layer is the129

seventh layer (L7). We used it as the acoustic model of our DNN-HMM ASR system to estimate130

the triphone unit likelihoods corresponding to each frame. The log-Mel filter bank (FBK)131

acoustic features were used throughout the paper, which were extracted with a 25 ms duration132

and 10 ms frame shift. The first order differentials of the FBK features were also included to133
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extend the acoustic feature vectors. Nine consecutive frames of the acoustic features centred at 134

the current time step were stacked to form the DNN input vector, which covers a total range of 135

125 ms of the speech signal. More details about the DNN acoustic model can be found in the 136

Methods Section. 137

Our hypothesis was that the representations in auditory cortex would be organised according 138

to phones and features [63]. To investigate how the assignment of phonetic and featural labels 139

to each segment of the stimuli could explain hidden-layer representations in DNN-BN7, we 140

computed Davies–Bouldin clustering indices for representational spaces at each layer. Davies– 141

Bouldin clustering indices give an indication of the degree to which a layer’s response to each 142

segment of audio form clusters which correspond to a set of category labels. This in turn serves 143

as an indication of how suitably phonetic and feature labels might be assigned to hidden-layer 144

representations. 145

Davies–Bouldin indices for each layer and categorisation scheme are shown in Fig 1A. Of partic- 146

ular interest is the improvement of feature-based clustering in bottleneck layer L7 of DNN-BN7, 147

which shows that it is, in some sense, reconstructing the featural articulatory dimensions of 148

the the speaker. That is, though this was not included in the teaching signal, when forced 149

to parsimoniously pass comprehension-relevant information through the bottleneck, DNN-BN7 150

finds a representation of the input space which maps well onto the constraints on speech sounds 151

inherent in the mechanics of the speaker. L7 showed the best clustering indices out of all lay- 152

ers for manner and place features and phone labels, and the second-best for frontness features. 153

For closeness alone, L7 was not the best, but was still better than its adjacent layer L6. The 154

general trend was that clustering improved for successively higher layers. Layers prior to the 155

bottleneck tended to have larger clustering indices, indicating that their activations were not as 156

well accounted for by phonetic or featural descriptions. 157

To further illustrate and visualise the representational space for L7, we used the phonetic par- 158

titioning of our stimuli provided by HTK, and averaged the activation across hidden nodes in 159

L7 for each window of our 400 stimulus words which was eventually labeled with each phone. 160

This gave us an average L7 response vector for each phone. We visualised this response space 161

using Sammon nonlinear multidimensional scaling (MDS; [51]). Place/position features are 162

highlighted in Fig 1B, and manner features are highlighted in Fig 1C. 163

To be clear, the presence of these feature clusters does not imply that there are individual nodes 164

in L7 which track specific articulatory features. However, using the reasoning of RSA, we can 165

see that articulatory features are descriptive of the overall arrangement of phones in the L7 166

response space. This ability to characterize and model an overall pattern ensemble in a way 167

abstracted from the specific response format and distributed neural representations is one of the 168

strengths of the RSA technique. 169

Hidden-layer representations differentially explain early human auditory cor- 170

tex representations through space and time 171

We used the dynamic representations from each layer of DNN-BN7 to model spatiotemoral 172

representations in the auditory cortices of human participants in an EMEG study by applying 173

ssRSA. Areas of auditory cortex (Fig 2A) were defined using the Desikan–Killiany Atlas (STC 174

and HG). 175

Fig 2 shows the left hemisphere results of this analysis. The brain maps in Fig 2B show threshold- 176

free-cluster-enhanced t-maps [54] computed from the model RDMs of each hidden layer, thresh- 177

olded at p < 0.01. Model RDMs computed from all DNN layers except L5 showed significant fit 178

in left STC and HG. Input layer FBK peaked early in left posterior STC at 0–70 ms, and later 179

in left anterior STC and HG at 140–210 ms. Hidden-layer models L2–L4 and L6–L7 peaked 180

later than FBK, achieving maximum cluster size at approximately 170 ms. Layers L5 and TRI 181
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Figure 1: Arrangement of phonetic space represented in DNN-BN7. (A) Davies–Bouldin
clustering indices for hidden-layer representations. Each plot shows the Davies–Bouldin clus-
tering index for the average hidden-layer representation for each phonetic segment of each stimulus.
Lower values indicate better clustering. Indices were computed by labelling each segment by its
phonetic label (top right panel), or by place, manner, frontness or closeness features (other pan-
els). Colored shapes on the DNN-layer axis indicate the placement of the bottleneck layer for each
System. (B) Average activation of phones for L7 Sammon nonlinear multidimensional scaling
(MDS) of average pattern of activation over phones, annotated with features describing place and
position of articulation. (C) The same MDS arrangement annotated with features describing manner
of articulation.
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showed no significant fit in the regions of interest. Overall, significant cluster size increased 182

between layers FBK–L3, diminished for L4 and L5, and re-emerged for L6 and L7. 183

The line graphs in Fig 2C show the time-courses of each layer as they attain their maximum 184

cluster extent. In general, there appeared to be two distinct peaks across the superior temporal 185

region: an early peak in left posterior STC for the DNN input layer FBK, and another late 186

peak in left anterior STC for DNN layers L1–L4 and L6–L7, throughout the whole epoch, but 187

attaining a maximum cluster size at approx 170 ms. Details of timings for each layer are shown 188

in S2 Table. Right hemisphere results are included in S3 Fig. 189

Repositioning the DNN bottleneck layer to match human brain improves ASR 190

performance and featural organization 191

The overall minimal spatiotemporal clusters for L5 of DNN-BN7 suggested that while early 192

layers (L2–L3) were performing analogous transformations to early auditory cortex, and that 193

the bottleneck (L7) was representing speech audio with a similarly parsimonious basis as left 194

auditory cortex, there was a divergence of representation at intermediate layers (L4–L6). With 195

the supposition that the arrangement of auditory cortex would be adapted specifically to speech 196

processing, we hypothesised that by moving the bottleneck layer into the positions occupied by 197

divergent layers in DNN-BN7, the network might learn representations that closer resemble those 198

of human cortex, and thus improve the performance of the model. To this end, we built and 199

studied another DNN model, DNN-BN5, which has the same number of parameters as DNN-BN7 200

but has the bottleneck layer moved from L7 to L5 (see Fig 3C. For purposes of comparison, and 201

following the same naming convention, we expanded our investigation with another two DNN 202

models, DNN-BN4 and DNN-BN6 were also built for DNNs whose bottleneck layers are L4 and 203

L6 respectively. In all models the number of parameters was kept to 5.0 million, matching the 204

4.9 million parameters of DNN-BN7. 205

As shown in Table 1 and Fig 4C, adjusting the design of the DNN structure to better fit with 206

the representations exhibited in the human subjects led to improved DNN performance in terms 207

of WER in (DNN-BN6). The MGB Dev set contains sufficient testing samples with diversified 208

speaker and genre variations. The 1.0% absolute WER reduction (relatively 3.3%) obtained 209

by comparing DNN-BN7 with DNN-BN5 is substantial [4, 64]. Regarding the stimulus set, the 210

changes of WERs are consistent with those on the MGB Dev set. 211

What is not immediately clear, however, is whether this improvement in performance arises from 212

a corresponding improvement in the model’s ability to extract a feature-based representation. 213

In other words, if the bottleneck layer learns a representation akin to articulatory features, by 214

moving the layer to improve performance does this enhance this learned representation? To 215

answer this question, we investigated how the assignment of phonetic and featural labels to each 216

segment of the stimuli could explain their hidden-layer representations. As before, we probed 217

the organization of the representational space of each hidden layer according to phones and 218

features using Davies–Bouldin clustering indices. 219

The clustering results exhibited two overall patterns of note. First, clustering (i.e. suitability of 220

assignment of phonetic and featural labels to hidden layer representations) was improved on the 221

DNNs whose design had been inspired by the human brains. Second, the optimum clustering 222

level was often found in the bottleneck layer itself (highlighted on the graphs in Fig 4A). The 223

clustering index at the bottleneck layers alone are separately graphed in inset panels in Fig 4A, 224

and show that bottleneck layer clustering was also improved in DNN-BN5 and DNN-BN6. 225

In other words, the placement of the bottleneck layer in position 5 and 6 yielded, as predicted, 226

the best clustering results both overall and in the bottleneck layer itself. Moving the bottleneck 227

layer too far back (DNN-BN4) yielded worse clustering results generally and in the bottleneck 228

layer—indicated by the characteristic U-shaped curves in Fig 4B. 229
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Figure 2: Clusters of significant fit of hidden-layer models to left-hemisphere EMEG data.
(A) Location of region of interest mask for auditory cortex. (B) Maps describing fit of DNN
layer models to EMEG data. Latency represents the time taken for the brain to exhibit neural
representations that fit the DNN model prediction. All maps thresholded at p < 0.01 (corrected).
(C) Line graphs showing the time-courses of cluster extents for each layer which showed significant
fit.
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Figure 3: Brain-informed DNN design refinement. (A) Original DNN-BN7 design. Numbers
beside layers indicate number of nodes. (B) Degree of fit with EMEG brain representations. Shapes
here and other panels indicate bottleneck positions for DNN-BN4–7 (C) Candidates for adjusted DNN
design: DNN-BN4 (bottleneck at L4), DNN-BN5 (bottleneck at L5) and DNN-BN6 (bottleneck at
L6).

Discussion 230

We have used a DNN-based ASR system and spatiotemporal imaging data of human auditory 231

cortex in a mutually informative study. In the machine-to-human direction, we have used a 232

computational model of speech processing to examine representations of speech throughout space 233

and time in human auditory cortex measured as source-localised EMEG data. In so doing, we 234

have produced a functional map in human subjects for each part of the multi-stage computational 235

model. We were able to relate dynamic states in the operating machine speech recognizer 236

to dynamic brain states in human participants by using ssRSA, extended to account for a 237

dynamically changing model. In a complementary analysis, we have improved the performance 238

of the DNN-based ASR model by adapting the layered network architecture inspired by the 239

staged neural activation patterns observed in human auditory cortex. 240

Locations of spatiotemporal clusters 241

The input layer FBK representing purely acoustic information (i.e. not a learned or task-relevant 242

representation) showed a later and smaller effect (cluster in human posterior STC) than that of 243

higher layers L2 and L3. The strongest peak for FBK was early, and the later peak appears to 244

be a weaker version of those for higher hidden-layer models. The late peak for FBK indicates 245

that there is some involvement of both low-level acoustic features and higher-level phonetic in- 246

formation in the later neural processes at around 170 ms. However, since there is an intrinsic 247

correlation between acoustic information and phonetic information, it is hard to completely 248

dissociate them. Another explanation for the mixture of high and low levels of speech repre- 249

sentations in a single brain region at the same time is the existence of feedback connections in 250

human perceptual systems. (However, the ASR systems used in this paper can achieve high 251

degree of accuracy without the top-down feedback loop from higher to lower hidden layers.) It 252

should be noted that while the FBK, L2 and L4 clusters all register as significant at a latency of 253

0 ms, timings correspond to a 25 ms window of EMEG data being matched against model state 254

computed for the central 25 ms of 125 ms windows of audio, so only approximates the actual 255

latency. 256

Moving up to hidden layers L2 and L3, we saw later clusters which fit the brain data more 257

strongly than FBK in the left hemisphere. All hidden layers including L2 and L3 activate 258
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Figure 4: (A) Davies–Bouldin clustering indices for hidden-layer representations. Each plot
shows the Davies–Bouldin clustering index for the average hidden-layer representation for each pho-
netic segment of each stimulus. Lower values indicate better clustering. Indices were computed
by labelling each segment by its phonetic label (top right panel), or by place, manner, frontness or
closeness features (other panels). Colored shapes on the DNN-layer axis indicate the placement of
the bottleneck layer for each System. Inset axes show clustering indices for bottleneck-layers only.
Each plot shows the clustering index for the average bottleneck-layer representation for each phonetic
segment of each stimulus. Indices were computed by labeling each segment by its phonetic label
(top right), or by place, manner, frontness or closeness features. Colored shapes on the DNN-layer
axis indicate the placement of the bottleneck layer for each System. (B) WERs for each DNN
system. Upper panel shows WERs on the MGB Dev set. Lower panel shows WERs for the stimuli.
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System Bottleneck layer
Accuracy% WER%
Train HV MGB Dev Stimuli

DNN-BN7 L7 44.0 41.5 33.3 6.5
DNN-BN6 L6 44.6 42.3 32.4 6.3
DNN-BN5 L5 44.2 42.3 32.3 5.8
DNN-BN4 L4 42.6 41.1 33.5 7.3

Table 1: The performance of DNN-HMM systems with different bottleneck layer positions. The
WERs (the lower the better) were given on both the MGB challenge official development subset (MGB
Dev), which is a general purpose large vocabulary continuous speech recognition testing set, as well as
the 400 isolated words used as the stimuli in our listening experiments to derive the RDM (Stimuli).
The MGB Dev WERs are reliable indicators for the general performance of the systems in realistic
ASR tasks. The Stimuli WERs are the most direct indicators of the model performance on the data
used in our brain-machine comparison experiments. The classification accuracy values (the higher the
better) were obtained by classifying each frame into one of the 6,027 triphonetic DNN output units
were obtained on both the training and held-out validation (HV) sets. For fair comparisons, DNN
structures of all systems were constrained to have the same amount of model parameters (about
5M for each model, as shown in Figure 3). Accuracy can be considered as an auxiliary performance
metric, which indicates that DNN-BN6 suffered more from over-fitting compared to DNN-BN5, since
DNN-BN6 is better in the training accuracy but not in the HV accuracy.

according to learned parameters. Progressively higher layers L4 and L5 fit with smaller clusters 259

in human STC, with L5 showing no significant vertices at any time point (p > 0.01) in the left 260

hemisphere but a very small cluster in the right hemisphere. However, the highest hidden layers 261

L6 and L7 once again showed string fit with activations in left anterior STC. 262

Of particular interest is this re-emergence of fit in anterior STC to the representations in the 263

bottleneck layer L7. In this layer of the DNN, the 1000-node representation of L6 is substantially 264

constrained by the reduced size of the 26-node L7. In particular, the fact that ASR accuracy 265

is not greatly reduced by the inclusion of this bottleneck layer indicates that, for the machine 266

solution, 26 nodes provide sufficient degrees of freedom to describe a phonetic space for purposes 267

of word recognition. This, in conjunction with the re-emergence of fit for L7 to STC represen- 268

tations makes the representations of this layer of particular interest. The hidden layers in the 269

DNN learn to sequentially transform acoustic information into phonetic probabilities in a way 270

which generalises across speakers and background acoustic conditions. There is no guarantee 271

that the features the DNN learns to identify for recognition are comparable to those learned by 272

the brain, so the fact that significant matches in the RDMs were found between machine and 273

human solutions of the same problem is worthy of further consideration. 274

Brain-informed ASR architecture 275

Artificial Intelligence (AI) and machine learning have already been extensively applied in neu- 276

roscience primarily in analysing and decoding large and complex neuroimaging or cell recording 277

data sets. Here, DNN-based ASR systems were used as a model for developing and testing 278

hypothesis and neuroscientific theories about how human brains perform speech recognition. 279

This type of mechanistic or generative model—where the computational model can perform 280

the behavioral task with realistic data (in this case, spoken word recognition)—can serve as a 281

comprehensive framework for testing claims about neurocognitive functional organization [30] 282

Moreover, insights can flow both ways; the neuroimaging data can also guide the exploration of 283

the model space and lead to improvements in model performance, as we have seen. 284

While our use of neurological data only indirectly informed the improvements to ASR architec- 285
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ture, the present work can be seen as an initial step toward extracting system-level designs for286

neuromorphic computing from human auditory systems. This goal in itself is not new (see e.g.287

[58]), however the key novel element of our approach is the ability to relate the machine and288

human solutions in complementary directions. The power of RSA, and in particular ssRSA, to289

relate the different forms of representations in these systems is key in this work. In summary,290

the methodology illustrated here paves the way for future integration of neuroscience and AI291

with the two fields driving each other forwards.292

Relating dynamic brain and machine states: comparing and contrasting com-293

putational models in vision and audition294

There has been some recent successes in comparing machine models of perception to human295

neuroimaging data. This has primarily been in the domain of visual object perception (e.g. [7,296

11, 12, 17, 22, 27–29, 34]), with less progress made in speech perception (though see our previous297

work; [56, 63]).298

The visual systems of humans and other primates are highly related, both in their architecture299

and in accounts of the neurocomputational processes they facilitate. There is evidence of a300

hierarchical organisation of cortical regions in the early visual systems of human and non-301

human primates. There are also detailed accounts of process sequencing from early visual cortex302

through higher perceptual and semantic representation which exist for visual object perception303

in several primate models (e.g. [16, 34, 47, 59, 61]). This is not so the case for speech processing304

and audition to the same degree.305

In parallel, machine models for vision have often been designed based on theories of primate306

cortical processing hierarchies. This extends to recent work employing deep convolutional neural307

networks (CNN) for visual object processing, in particular those featuring layers of convolution308

and pooling. Furthermore, the convolutional layers in CNNs appear to learn features resembling309

those in the receptive fields of early visual cortex, and higher layers’ representational spaces also310

match those found in higher visual cortex, and other regions in the visual object perception311

networks [22, 27, 62]. Importantly, this means that the internal structures of machine vision312

systems are potentially informative and relevant to our understanding of the neurocomputational313

architecture of the natural system (and vice versa), and not just whether they generate equivalent314

outputs (for example in object classification tasks). To date, these common features are not well315

established for DNNs or other type of acoustic models widely used for ASR systems.316

Certain aspects of the human auditory processing system have resemblances to those in other317

primate models [3, 49]. However, no non-human primate supports anything like human speech318

communication, where intricately modulated sequences of speech sounds map onto hundreds of319

thousands of learned linguistic elements (words and morphemes), each with its own combination320

of acoustic-phonetic identifiers.321

Perhaps due to this lack of neurocomputationally explicit models of spoken word recognition,322

the design of ASR systems has typically not been guided by existing biological models. Rather,323

by optimising for engineering-relevant properties such as statistical learning efficiency, they have324

nonetheless achieved impressive accuracy and robustness.325

It is striking, therefore, that we have been able to show that the regularities that successful ASR326

systems encode in the mapping between speech input and word-level phonetic labelling can327

indeed be related to the regularities extracted by the human system. In addition, like animal328

visual systems have inspired the field of computer vision, we have demonstrated that human329

auditory cortex can improve ASR systems using ssRSA.330

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.27.497678doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497678
http://creativecommons.org/licenses/by/4.0/


Conclusion and future work 331

We have shown that our deep artificial neural network model of speech processing bears resem- 332

blance to patterns of activation in the human auditory cortex using the combination of ssRSA 333

with multimodal neuroimaging data. The results also showed that the low-dimensional bot- 334

tleneck layer in the DNN could learn representations that characterize articulatory features of 335

human speech. In ASR research, although the development of systems based around the extrac- 336

tion of articulatory features has a long history (e.g. [15]), except for a small number of exemplars 337

(e.g. [39, 69]), recent studies mostly rely on written-form-based word piece units [53, 65] that 338

are not directly associated with phonetic units. Our findings imply that developing appropriate 339

intermediate representations for articulatory features may be central to speech recognition in 340

both human and machine solutions. In human neuroscience studies, this account is consistent 341

with previous findings of articulatory feature representation in the human auditory cortex [13, 342

37, 63], but awaits further investigation and exploitation in machine solutions for speech recog- 343

nition. Recently, large deep artificial neural network models pre-trained on a massive amount of 344

unlabelled waveform features (e.g. [2, 10, 25]), have demonstrated strong generalisation abilities 345

to ASR and many para-linguistic speech tasks [41]. It would be useful to apply our methods 346

used in this paper to study similar types of models and tasks. This may contribute to under- 347

standing the hierarchical structures in the human auditory cortex and improve such large scale 348

speech-based computational models. 349

Materials and methods 350

Deep neural networks for automatic speech recognition 351

We have presented four DNNs which can each be included as a component in the hybrid DNN- 352

HMM set-up of HTK. This is a widely used speech recognition set-up in both academic and 353

industrial communities [24], whose architecture is illustrated in Fig 5. Each network comprises 354

an input layer, six hidden layers, and an output layer, which are all fully-connected feed-forward 355

layers. 356

Building DNN-HMM acoustic models for ASR 357

As introduced previously, the input audio stream is divided into 25 ms-long overlapping windows. 358

Each of these windows is transformed into a 40-dimensional FBK feature vector representing 359

a speech frame with an offset of 10 ms. When being fed into the DNN input layer, the 40- 360

dimensional feature vectors are augmented with their first-order time derivatives (also termed 361

as delta features in speech recognition literature) to form an 80-dimensional vector ot for the t-th 362

frame. The final DNN input feature vector, xt, is formed by stacking nine consecutive acoustic 363

vectors around t, i.e. xt = {ot−4, ot−3, . . . , ot+4}. Therefore, the DNN input layer (denoted as 364

the FBK layer from Figure 1 to Figure 5) has 720 nodes and covers a 125 ms long input window 365

starting at (10× t− 50) ms and ending at (10× t+ 75) ms. Where this wider context window 366

extended beyond the limits of the recording (i.e. at the beginning and end of the recording), 367

boundary frames were duplicated to make up the nine consecutive frames. 368

Following the input layer FBK, there are five 1000-node hidden layers (L2–L6), a 26-node “bot- 369

tleneck” layer (L7), and the output layer (TRI). All hidden nodes use a sigmoid activation 370

function and the output layer uses a softmax activation function to estimate pseudo posterior 371

probabilities for 6,027 output units. There are 6,026 such units corresponding to the tied tri- 372

phone HMM states which are obtained by the decision tree clustering algorithm [68]. The last 373

output unit is relevant to the non-speech HMM states. The DNN was trained on a corpus con- 374

sisting of 200 hours of British English speech selected from 7 weeks of TV broadcast shows by the 375

BBC covering all genres. Using such a training set with a reasonably large amount of realistic 376

speech samples guarantees our DNN model to be properly trained and close to the models used 377
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Figure 5: Schematic of the overall procedure. A–D: Automatic speech recognition system
HTK. Our ASR model is a hybrid DNN–HMM system built with HTK. (A) An acoustic vector is
built from a window of recorded speech. (B) This is used as an input for a DNN acoustic model
which estimates posterior probabilities of triphonetic units. Numbers above the figure indicate the
size of each layer. Hidden layer L7 is the bottleneck layer for DNN-BN7. (C) The triphone posteriors
(TRI) are converted into log likelihoods, and used in a set of phonetic HMMs. (D) A decoder
computes word identities from the HMM states. E–G: Computing dynamic RDMs. (E) A pair
of stimuli is presented to each subject, and the subjects’ brain responses are recorded over time.
The same stimuli are processed using HTK, and the hidden-layer activations recorded over time.
(F) The spatiotemporal response pattern within a patch of each subject’s cortex is compared using
correlation distance. The same comparison is made between hidden-layer activation vectors. (G)
This is repeated for each pair of stimuli, and distances entered into a pairwise comparison matrix
called a representational dissimilarity matrix (RDM). As both brain response and DNN response
evolve over time, additional frames of the dynamic RDM are computed.
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in real-world speech recognition applications. The DNN model was trained to classify each of 378

the speech frames in the training set into one of the output units based on the cross-entropy 379

loss function. 380

When performing speech recognition at test-time, the posterior probabilities, P (sk | xt), are
converted to log-likelihoods to use as the observation density probabilities of the triphone HMM
states. Specifically, the conversion is performed by

ln p(xt | sk) = lnP (sk | xt) + ln p(xt)− lnP (sk),

where sk is a DNN output for target k, and P (sk) is the frequency of frames corresponding to 381

the units associated with target k in the frame-to-HMM-state alignments of the training set [24]. 382

Recorded speech stimuli 383

This study used speech stimulus recordings from [19], which consists of 400 English words 384

spoken by a native British English female speaker. The set of words consisted of nouns and 385

verbs (e.g. talk, claim), some of which were past-tense inflected (e.g. arrived, jumped). We 386

assume that the words’ linguistic properties are independent of the acoustic-phonetic properties 387

presently under investigation. We also assume that this sample of recorded speech provides a 388

reasonable representation of naturally occurring phonetic variants of British English, with the 389

caveat that the sampled utterances are restricted to isolated words and a single speaker. 390

Audio stimuli, which were originally recorded and presented to subjects with a 22.1 kHz sampling 391

rate, were down-sampled to 16 kHz before building models, as the DNN was trained on a 16 kHz 392

audio training set. After the DNN was first trained on the data from BBC TV programs, it was 393

further adapted to fit the characteristics of the speaker and the recording channel of the stimuli 394

data using an extra adaptation stage with 976 isolated words (see [71] for details of the approach). 395

This is to avoid any potential bias to our experimental results caused by the differences between 396

the DNN model training set and the stimuli set, without requiring the collection of a large 397

amount of speech samples in the same setting as the stimuli set to build a DNN model from 398

scratch. There are no overlapping speech samples (words) between the adaptation and stimuli 399

sets. This guarantees that the model RDM obtained using our stimuli set is not over-fitted into 400

the seen data, and guarantees our results and conclusions to be as general as possible. 401

Evaluating clustered representations 402

Davies–Bouldin indices [14] indicate the suitability of category label assignment to cluster high- 403

dimensional data, with lower values indicating better suitability (and with 0 the minimum 404

possible value). To compute Davies–Bouldin indices, we recorded the vector of hidden-layer 405

activations elicited by each input time window of the stimuli for each layer in each DNN. There 406

was a high level of correlation between many activation vectors resulting from overlapping ad- 407

jacent input vectors. To minimise the effect of this, we used average vectors from each hidden 408

layer over each contiguous phonetic segment. For example, in the word “bulb”, the hidden- 409

layer representations associated with each frame corresponding to the acoustic implementation 410

of the first [b] were combined, and separately the representations for the final [b] were com- 411

bined. Then, to each combined vector, we assigned a label under five separate labeling schemes: 412

closeness features, frontness features, place features, manner features, and phonetic label. For 413

place and manner features, we considered only phones which exhibited a place or manner feature 414

(i.e. obstruents). For frontness and closeness features, we likewise considered only phones which 415

exhibited frontness or closeness features (i.e. syllabic vowels). Where a phone had more than 416

one appropriate feature assignment, we used the most appropriate feature. The full assignment 417

of feature labels for phones used in the clustering analysis is given in S1 Fig. 418

We computed p-values for each Davies–Bouldin index calculation using a permutation procedure 419

in which phone labels were randomized after averaging activation vectors for each segment of 420
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input (5,000 permutations). p-values were computed by randomizing the labels and recomputing421

Davies–Bouldin indices 5,000 times, building a distribution of Davies–Bouldin indices under the422

null hypothesis that phone and feature labels did not systematically explain differences in hidden-423

layer activations. In all cases, the observed Davies–Bouldin index was lower than the minimum424

value in the null distribution, yielding an estimated p-value of exactly 0.0002. Since the precision425

of this value is limited by the number of permutations performed, we report it as p < 0.001. All426

Davies–Bouldin index values reported were significant at the p < 0.001 level.427

Computing model RDMs from incremental machine states428

To encapsulate the representational space of each of the DNN’s hidden layer representations429

through time, we computed model RDMs from the activation of each layer using the following430

procedure, illustrated in Fig 5. RSA computations were performed in Matlab using the [46]431

RSA toolbox.432

As described previously, the input layer of the DNN had access to 125 ms of audio input at each433

time step, to estimate the triphone-HMM-state likelihoods. Since we can only compute model434

RDMs where the DNN has activations for every word in the stimuli set, only the activations435

corresponding to the frames whose ending time is smaller than 285 ms (the duration of the436

shortest word) are used in our experiments Since each frame has a 25 ms duration and a 10 ms437

shift, only the activations of the first 27 frames of each word are reserved to construct our model438

RDMs (as the frame index t is required to satisfy 10× t+ 25 6 285).439

For each fixed position of the sliding time window on each pair of our 400 stimulus words, we440

obtained the pattern of activation over the nodes in a particular layer of the DNN. By computing441

Pearson’s correlation distance (1−r) between activation pattern for each pair of words, we built442

a 400 × 400 model RDM whose rows and columns were indexed by the stimulus words. Then,443

by moving the sliding time window in 10 ms increments and recomputing model RDM frames444

in this way, we produced a series of model RDMs which varied throughout the first 260 ms of445

the stimuli. We repeated this procedure for each hidden layer L2–L7, as well as the input and446

output layers FBK and TRI, producing in total eight series of model RDMs, or 216 individual447

model RDM frames. When building a model RDM frame from the input layer FBK, we used448

only the 40 log-mel filterbank values within the central 25 ms window (and did not include the449

first derivatives or overlapping context windows).450

Brain mapping451

EMEG data collection452

Sixteen right-handed native speakers of British English (six male, aged 19–35 years, self-reported453

normal hearing) participated in the study. For each participant, recordings of 400 English words,454

as spoken by a female native British English speaker, were presented binaurally. Each word was455

repeated once. The study was approved by the Peterborough and Fenland Ethical Committee456

(UK). Continuous MEG data were recorded using a 306 channels VectorView system (Elektra-457

Neuromag, Helsinki, Finland). EEG was recorded simultaneously from 70 Ag-AgCl electrodes458

placed within an elastic cap (EASYCAP GmbH, Herrsching-Breitbrunn, Germany) according459

to the extended 10/20 system and using a nose electrode as the recording reference. All data460

were sampled at 1 kHz with a band-pass filter from 0.03 Hz to 330 Hz. Details of the EMEG461

procedure can be found in [19].462

EMEG source estimation463

In order to track the cortical locations of brain–model correspondence, we estimated the location464

of cortical sources using the anatomically constrained MNE [23] with identical parameters to465

those used in [19, 56, 63]. MR structural images for each participant were obtained using a466
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GRAPPA 3D MPRAGE sequence (TR = 2250 ms; TE = 2.99 ms; flip-angle = 9 deg; acceleration 467

factor = 2) on a 3 T Trio (Siemens, Erlangen, Germany) with 1 mm isotropic voxels. From the 468

MRI data, a representation of each participant’s cerebral cortex was constructed using FreeSurfer 469

software (https://surfer.nmr.mgh.harvard.edu/). The forward model was calculated with a 470

three-layer boundary element model using the outer surface of the scalp as well as the outer and 471

inner surfaces of the skull identified in the anatomical MRI. This combination of MRI, MEG, 472

and EEG data provides better source localization than MEG or EEG alone [42]. 473

The constructed cortical surface was decimated to yield approximately 12,000 vertices that were 474

used as the locations of the dipoles. This was further restricted to the bilateral superior temporal 475

mask as discussed previously. After applying the bilateral region of interest mask, 661 vertices 476

remained in the left hemisphere and 613 in the right. To perform group analysis, the cortical 477

surfaces of individual subjects were inflated and aligned using a spherical morphing technique 478

implemented by MNE [20]. Sensitivity to neural sources was improved by calculating a noise 479

covariance matrix based on the 100 ms pre-stimulus period. The activations at each location of 480

the cortical surface were estimated over 1 ms windows. 481

This source-reconstructed representation of the electrophysiological activity of the brain as the 482

listeners heard the target set of 400 words was used to compute brain RDMs. 483

Computing brain RDMs in a spatiotemporal searchlight 484

To match the similarity structures computed from each layer of the DNN to those found in 485

human participants, in the ssRSA procedure, RDMs were calculated from the EMEG data 486

contained within a regular spatial searchlight patch and fixed-width sliding temporal window. 487

We used a patch of vertices of radius 20 mm, and a 25 ms sliding window to match the 25 ms 488

frames used in ASR. The searchlight patch was moved to centre on each vertex in the masked 489

source mesh, while the sliding window is moved throughout the epoch in fixed time-steps of 490

10 ms. From within each searchlight patch, we extracted the spatiotemporal response pattern 491

from each subject’s EMEG data. We computed word-by-word RDMs using Pearson’s correlation 492

distance (1− r) on the resulting response vectors. These RDMs were averaged across subjects, 493

resulting in one brain RDM for each within-mask vertex. Our 25 ms ssRSA sliding window 494

moved in increments of 10 ms throughout an EMEG epoch of [0, 540] ms, giving us a series of 495

RDMs at each vertex for sliding windows [t, t + 25] ms for each value of t = 0, 10, . . . , 510. In 496

total, this resulted in a total of 66,300 brain RDM frames. By using the ssRSA framework, we 497

make this vast number of comparisons tractable by systematising the comparison. 498

Systematic brain–model RDM comparisons 499

The model RDMs computed from the DNN layer activations describe the changing represen- 500

tational dissimilarity space of each layer throughout the duration of the stimulus words. We 501

can think of this as a dynamic model timeline for each layer; a collection of RDMs indexed by 502

time throughout the stimulus. Similarly, the brain data-derived RDMs computed from brain 503

recordings describe the changing representational dissimilarity space of the brain responses at 504

each searchlight location throughout the epoch, which we can think of as a dynamic data time- 505

line. It takes non-zero time for vibrations at the eardrum to elicit responses in auditory cortex 506

(Fig 6A). Therefore, it does not make sense to only compare the DNN RDM from a given time 507

window to the precisely corresponding brain RDM for the same window of stimulus: to do so 508

would be to hypothesize instantaneous auditory processing in auditory nerves and in the brain. 509

Instead, we offset the brain RDM’s timeline by a fixed latency, k ms (Fig 6B). Then, matching 510

corresponding DNN and brain RDMs at latency k tests the hypothesis that the DNN’s repre- 511

sentations explain those in auditory cortex k ms later. By systematically varying k, we are able 512

to find the time at which the brain’s representations are best explained by those in the DNN 513
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Figure 6: Matching model and data RDMs at systematic latencies. (A) Both DNN and brain
representations change throughout the time-course of the stimulus, and are aligned to the start of
the stimulus at t = 0. Some amount of time (”processing latency”) elapses between the sound
reaching the participants’ eardrums and the elicited response in auditory cortex. Thus the brain
representations recorded at time t were elicited by the stimulus earlier in time. (B) For a given
hypothesized processing latency, we RDMs from DNN layers and brain recordings are matched up,
and an overall level of fit is computed. This modelled latency is systematically varied, the resultant
level of fit thereby indicating how well the DNN’s representation matches the brain’s at that latency.

layers.514

Thus, for each such potential processing latency, we obtain a spatial map describing the degree515

to which a DNN layer explains the brain’s representations at that latency (i.e. mean Spearman’s516

rank correlation coefficient between DNN and brain RDMs at that latency). Varying the latency517

then adds a temporal dimension to the maps of fit.518

This process is repeated for each subject, and data combined by a t-test of the ρ values across519

subjects at each vertex within the mask and each latency. This resulted in one spatiotemporal520

t-map for each layer of the DNN. For this analysis, we used latencies ranging from 0 ms to521

250 ms, in 10 ms increments.522

We applied threshold-free cluster enhancement (TFCE: [54]) to the t-maps from each layer of523

the DNN. TFCE is an image-enhancement technique which enables the use of cluster-sensitive524

statistical methods without the requirement to make an arbitrary choice of initial cluster-forming525

threshold and is used as the standard statistical method by the FSL software package [26]. All526

t-maps presented for the remainder of this paper have TFCE applied (see S4 Appendix for527

details).528

Group statistics and correction for multiple comparisons529

To assess the statistical significance of the t-maps, we converted the t-values to p values using530

a random-effects randomisation method over subjects, under which p-values are corrected for531

multiple spatiotemporal comparisons [45, 54, 55]. In the random-effects test, a null-distribution532
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of t-values is simulated under the null hypothesis that Spearman’s rank correlation values ρ 533

are symmetrically distributed about 0 (i.e. no effect). By randomly flipping the sign of each 534

individual subject’s ρ-maps before computing the t-tests across subjects and applying the TFCE 535

transformation, we simulate t-maps under the null hypothesis that experimental conditions are 536

not differentially represented in EMEG responses. From each such simulated map, we record the 537

map-maximum t-value, and collect these into a null distribution over all permutations. For this 538

analysis we repeated the randomisation 1000 times, and collected separate null distributions for 539

each hemisphere. To assess the statistical significance of a true t-value, we see in which quantile 540

it lies in the simulated null distribution of map-maximum randomisation t-values. 541

We performed this procedure separately for the models derived from each layer of the DNN, 542

allowing us to obtain t-maps which could be easily thresholded at a fixed, corrected p-value. 543

Improving DNN design 544

From the maximum cluster extents of the DNN layers shown in Figure 2, the activations of the 545

DNN acoustic model significantly correspond to the activity in the left-hemisphere of human 546

brain when listening to the same speech samples. This suggests that the DNN and human brain 547

rely on similar mechanisms and internal representations for speech recognition. 548

Human speech recognition still has superior performance and robustness in comparison to even 549

the most advanced ASR systems, so we reasoned that it could be possible to improve the DNN 550

model structure based on the evidence recorded from the brain. 551

From the maximum cluster extents of layer L5 in Figure 3A and Figure 3B, hidden layer L5 of 552

the DNN model has a much smaller overall fit to both the left and right hemisphere, compared 553

to the other layers. This indicates the possibility that the calculations in DNN layer L5 are 554

less important for recognising the speech accurately since brain does not appear to use such 555

representations in the recognition process. On the other hand, although a bottleneck layer is 556

positioned at L7, its strong correspondence to the brain reveals the importance of the calculations 557

performed in that layer. Thus, it is natural to assume that more parameters and calculations 558

in important layers can improve speech recognition performance, while fewer calculations can 559

reduce the complexity of the model DNN structure without sacrificing the performance too 560

much. 561

We verified this by building new DNN models with the bottleneck layer in different positions, 562

controlling the number of parameters by scaling the sizes of the hidden layers in the new DNNs. 563

All the training and test procedures are kept to be the same as previously described. The details 564

of the new DNN structures are shown in Figure 3C. 565

We tested the derived DNN models with different bottleneck layer positions using two tasks: 566

general large-vocabulary continuous speech recognition with recordings from BBC TV programs, 567

and in-domain isolated-word recognition using the stimuli set. The MGB Dev set was derived 568

as a subset of the official development set of the MGB speech recognition challenge [4], which 569

includes 5.5 hours of speech. Since the MGB testing set involves sufficient samples (8,713 570

utterances and 1.98M frames) from 285 speakers and 12 shows with diversified genres, and the 571

related WER results are reliable metrics to evaluate the general performance of the DNN models 572

for speech recognition. In contrast, the WERs on the stimuli set are much more noisier since it 573

only consists of 400 isolated words from a single female speaker. However, the stimuli set WERs 574

are still important metrics since the same 400 words are used to build the RDMs used in the 575

key experiments. These results are presented in Table 1 and Fig 4C. 576
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Supporting information577

S1 Fig. Phone–feature matrix: Assignment of features to phones. Empty circles578

indicate presence of the feature for a phone. Where a phone has more than one feature for a579

given category, full circles indicate the dominant feature, used in clustering analysis.580

S2 Table. Clusters of fit for DNN-BN7 in EMEG study. Latencies for left- and right-581

hemisphere clusters (p < 0.01) for each hidden-layer model.582

S3 Fig. Clusters of significant fit of hidden-layer models to right-hemisphere EMEG583

data. (a) Location of region of interest mask for auditory cortex. (b) Maps describing fit of584

DNN layer models to EMEG data. All maps thresholded at p < 0.01 (corrected). (c) Line585

graphs showing the time-courses of cluster extents for each layer which showed significant fit.586

S4 Appendix. Threshold-free cluster enhancement Threshold-free cluster enhancement587

(TFCE: [54]) transforms a statistical image in such a way that the value at each point becomes588

a weighted sum of local supporting clustered signal. Importantly, the shape of isocontours, and589

hence locations of local maxima, are unchanged by the TFCE transformation. For a t-map590

comprised of values tv,k for vertices v and latencies k, the TFCE transformation is given by591

TFCE (tv,k) =

∫ tv,k

0
h2

√
e(h) dh (1)

where e(h) is the cluster extent of the connected component of (v, k) at threshold h. We592

approximated (1) with the sum593

i∆h ≤ tv,k < (i+1)∆h∑
i=0

(i∆h)2
√
e(i∆h) (2)

where ∆h was set to 0.1. The choice of ∆h affects the accuracy of the approximation (2) but594

should not substantially bias the results.595
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Left hemisphere

Cluster latency (ms)

DNN layer model Start Max End Peak extent (vertices)

FBK (early cluster) 0 20 70 93
FBK (late cluster) 150 180 200 100
L2 0 160 230 270
L3 0 170 250 237
L4 140 170 200 43
L5 (n.s.)
L6 20 180 230 151
L7 40 170 230 129
TRI (n.s.)

Right hemisphere

Cluster latency (ms)

DNN layer model Start Max End Peak extent (vertices)

FBK 0 170 120 186
L2 0 70 110 172
L3 0 0 110 341
L4 0 0 110 411
L5 0 50 70 20
L6 0 50 120 264
L7 0 40 120 286
TRI (n.s.)
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Code availability 624

The DNN-based ASR system was created using an open-source toolkit, the HTK toolkit ver- 625

sion 3.5 (https://htk.eng.cam.ac.uk/). The RSA procedure for this paper was performed using 626
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