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Abstract

While we often think of words as having a �xed meaning that we use to describe a changing world,
words are also dynamic and changing. Scienti�c research can also be remarkably fast-moving, with
new concepts or approaches rapidly gaining mind share. We examined scienti�c writing, both preprint
and pre-publication peer-reviewed text, to identify terms that have changed and examine their use.
One particular challenge that we faced was that the shift from closed to open access publishing meant
that the size of available corpora changed by over an order of magnitude in the last two decades. We
developed an approach to evaluate semantic shift by accounting for both intra- and inter-year
variability using multiple integrated models. Using this strategy and examining year-by-year changes
revealed thousands of change points in both corpora. We found change points for tokens including
‘cas9’, ‘pandemic’, and ‘sars’ among many others. The consistent change-points between pre-
publication peer-reviewed and preprinted text were largely related to the COVID-19 pandemic. We
developed a web app for exploration (https://greenelab.github.io/word-lapse/) that enables users to
investigate individual terms. To our knowledge, this analysis is the �rst to examine semantic shift in
biomedical preprints and pre-publication peer-reviewed text, and it lays the foundation for future
work to examine how terms acquire new meaning and the extent to which that process is encouraged
or discouraged by peer review.

Introduction
Language is constantly evolving, and the meaning that we ascribe to words changes over time. For
example, the word “nice” was used to mean foolish or innocent back in the 15th-17th century; then, it
underwent a positive shift to its current meaning of “pleasant or delightful”[1]. These shifts occur for
many reasons. For example, writers may use new metaphors or substitute words for others with
similar meanings in a process known as metonymy [1]. Studying these shifts can provide a nuanced
understanding of how language adapts to describe our world.

Scienti�c �elds of inquiry also change, sometimes rapidly, as researchers devise and test new
hypotheses and applications. For example, the repurposing of the CRISPR-Cas9 system to a pervasive
tool for genome editing has altered how we discuss molecular entities. Microbes use this as an
immune system to defend against viruses. Scientists repurposed this system for genome editing [2],
leading to changes in the use of the term. Science is a �eld with substantial written communication
[3], both via published papers [4] and preprints [5,6]. Examining scienti�c manuscripts with
computational linguistics can reveal longitudinal trends in scienti�c research.

Studying changes in the use of word meanings is called semantic shift detection. Approaches for
semantic shift detection examine time series datasets that capture word usage patterns, both with
respect to frequency and structure. Typically, these time series are generated for individual words by
training a unique model on text binned by a selected time period [7,8,9]. Methods are then applied to
identify “change points” where a word’s meaning has changed [11].

Semantic shifts have been examined in many sources. Analysis has included newspapers [12,13,14],
books [7], reddit [15], and Twitter [16]. Researchers have examined topics in information retrieval [17],
and in biomedicine COVID-19 has been examined multiple times [18,19,20]. The amount of open
access biomedical literature has dramatically increased in the last two decades, laying the groundwork
for the large-scale analysis of semantic shifts in biomedicine.

We examine these semantic shifts in this rapidly growing body of open access text. We include both
published papers and preprints in our analysis. We found that novel strategies integrating multiple
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models for each year sidestepped the challenge of instability in the machine learning models and
allowed us to estimate intra- and inter-year variability. We identify semantic change points for each
token. We examine key cases and provide the full set of research products, including change points
and machine learning models, as openly licensed tools for the community. We also created a
webserver that allows users to analyze tokens of interest on the �y, examining both the most similar
terms within a year and temporal trends.

Methods
Biomedical Corpora Examined

Pubtator Central

Pubtator Central is an open-access resource containing annotated abstracts and full-text annotated
with entity recognition systems for biomedical concepts [21]. The methods used are TaggerOne [22]
to tag diseases, chemicals, and cell line entities, GNormPlus [23] to tag genes, SR4GN [24] to tag
species, and tmVar [25] to tag genetic mutations. We initially downloaded this resource on December
07th, 2021, and processed over 30 million documents. This resource contains documents that date
back to the pre-1800s to the year 2021; however, due to the low sample size in early years, we only
used documents published from 2000 to 2021. The resource was subsequently updated with
documents from 2021. We also downloaded a later version on March 09th, 2022, and merged both
versions using each document’s doc_id �eld to produce the corpus used in this analysis. We divided
documents by publication year and then preprocessed each using spacy’s en_core_web_sm model
[26]. We replaced each tagged word or phrase with its corresponding entity type and entity id for
every sentence that contained an annotation. Then, we used spacy to break sentences into individual
tokens and normalized each token to its root form via lemmatization. After preprocessing, we used
every sentence to train multiple natural language models designed to represent words based on their
context.

Biomedical Preprints

BioRxiv [5] and MedRxiv [6] are repositories that contain preprints for the life science community.
MedRxiv mainly focuses on preprints that mention patient research, while bioRxiv focuses on general
biology. We downloaded a snapshot of both resources on March 4th, 2022, using their respective
Amazon S3 bucket [27,28]. This snapshot contained 172,868 BioRxiv preprints and 37,517 MedRxiv
preprints. These resources allow authors to post multiple versions of a single preprint. To prevent
duplication bias, we �ltered every preprint to its most recent version and sorted each preprint into its
respective posted year. Unlike Pubtator Central, these �ltered preprints do not contain any
annotations. Therefore, we used TaggerOne [22] to tag every chemical and disease entity and
GNormplus [23] to tag every gene and species entity for our preprint set. Once tagged, we used spacy
to preprocess every preprint as described in our Pubtator Central section.

Constructing Word Embeddings for Semantic Change Detection

Word2vec [29] is a natural language processing model designed to model words based on their
respective neighbors in the form of dense vectors. This suite of models comes in two forms, a
skipgram model and a continuous bags of words (CBOW) model. The skipgram model generates these
vectors by having a shallow neural network predict a word’s neighbors given the word, while the
CBOW model predicts the word given its neighbors. We used the CBOW model to construct word
vectors for each year. Despite the power of these word2vec models, these models are known to di�er

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.27.497742doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497742
http://creativecommons.org/licenses/by/4.0/


both due to randomization within year and year-to-year variability across years [30,31,32,33]. To
control for run-to-run variability, we examined both intra-year and inter-year relationships. Each year,
we trained ten di�erent CBOW models using the following parameters: vector size of 300, 10 epochs,
minimum frequency cuto� of 5, and a window size of 16 for abstracts. Every model has its own unique
vector space following training, making it di�cult to compare two models without a correction step.
We used orthogonal Procrustes [34] to align models. We aligned all trained CBOW models for the
Pubtator Central dataset to the �rst model trained in 2021. Likewise, we aligned all CBOW models for
the BioRxiv/MedRxiv dataset to the �rst model trained in 2021. We used UMAP [35] to visually
examine the aligned models. We trained this model using the following parameters: cosine distance
metric, random_state of 100, 25 for n_neighbors, a minimum distance of 0.99, and 50 n_epochs.

Detecting semantic changes across time

Once word2vec models are aligned, the next step is to detect semantic change. 
Semantic change events are often detected through time series analysis [36]. We constructed a time
series sequence for every token by calculating its distance within a given year (intra-year) and across
each year (inter-year). We used the model pairs constructed from the same year to calculate an intra-
year distance. Then, we calculated the cosine distance between each token and its corresponding
counterpart for every generated pair. Cosine distance is a metric bounded between zero and two,
where a score of zero means two vectors are the same, and a score of two means both vectors are
di�erent. For the inter-year distance, we used the Cartesian product of every model between two
years and calculated the distance between tokens in the same way as the intra-year distance.
Following both calculations, we combined both metrics by taking the ratio of the average inter-year
distance over the average intra-year distance. Through this approach, tokens with high intra-year
instability will be penalized and vice-verse for more stable tokens. Along with token distance
calculations, it has been shown that including token frequency improves results compared to using
distance alone [37]. We calculated token frequency as the ratio of token frequency in the more recent
year over the frequency of the previous year. Then, we combined both the frequency and distance
ratios to make the �nal metric.

Following time series construction, we performed change point detection, which is a process that uses
statistical techniques to detect abnormalities within a given time series. We used the CUSUM
algorithm [11] to detect these abnormalities. This algorithm uses a rolling sum of the di�erences
between two timepoints and checks whether the sum is greater than a threshold. A changepoint is
considered to have occurred if the sum is greater than a threshold. We used the 99th percentile on
every generated timepoint as the threshold. Then, we ran the CUSUM algorithm using a drift of 0 and
default settings for all other parameters.

Results
Models can be aligned and compared within and between
years

We examined how the usage of tokens in biomedical text changes over time. Our evaluation was
derived from machine learning models designed to predict the actual token given a portion of its
surrounding tokens. Each token was represented as a vector in a coordinate space constructed by
these models. However, training these models is stochastic, which results in arbitrary coordinate
spaces. Model alignment is an essential step in allowing word2vec models to be compared [38,39].
Before alignment, each model has its own unique coordinate space (Figures 1A), and each word is
represented within that space (Figure 1B). Alignment projects every model onto a shared coordinate
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space (Figure 1C), enabling direct token comparison. We randomly selected 100 tokens to con�rm that
alignment worked as expected. In aligned models, tokens in the global spcae were more similar to
themselves within year than between years, while identical tokens in unaligned models were
completely distinct (Figure 1D). Local distances were una�ected by alignment (Figure 1D), as token-
neighbor distances were una�ected by the alignment procedure.

Figure 1:  A. Without alignment, each word2vec model has its own coordinate space. This is a UMAP visualization of
5000 randomly sampled tokens from 5 distinct Word2Vec models trained on the text published in 2010. Each data point
represents a token, and the color represents the respective Word2Vec model. B. The highlighted token ‘probiotics’
shows up in its respective clusters. Each data point represents a token, and the color represents the Word2Vec model.
C. After the alignment step, the token ‘probiotic’ is closer in vector space. Each data point represents a token, and the
color represents the di�erent Word2Vec models. D. In the global coordinate space, token distances appear to be vastly
di�erent without alignment, but become closer upon alignment, while local distances, evaluated using neighbors, are
una�ected. This boxplot shows the average distance of 100 randomly sampled tokens shared in every year from 2000 to
2021. The x-axis shows the various groups being compared (tokens against themselves via intra-year and inter-year
distances and tokens against their corresponding neighbors. The y axis shows the averaged distance for every year.

The landscape of biomedical publishing has changed rapidly during the period of our dataset. The
texts for our analysis were open access manuscripts available through PubMed Central. The growth in
the amount of available text and the uneven adoption of open access publishing during the interval
studied was expected to induce changes in the underlying machine learning models, making
comparisons more di�cult. We found that the number of tokens available for model building, i.e.,
those in PMC OA, increased dramatically during this time (Figure 2A). This was expected to create a
pattern where models trained in earlier years were more variable than those from later years simply
due to the limited sample size in early years. We aimed to correct for this change in the underlying
models by developing a statistic that, instead of using pairwise comparisons of token distances
between individual models, integrated multiple models for each year by comparing tokens’ intra- and
inter-year variabilities. We de�ned the statistic as the ratio of the average distance between two years
over the sum of the average distance within each year respectively.
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Figure 2:  A. The number of tokens our models have trained on increases over time. This line plot shows the number of
unique tokens seen by our various machine learning models. The x-axis depicts the year and the y-axis shows the token
count. B. Earlier years compared to 2010 have greater distances than later years. This con�dence interval plot shows the
collective distances obtained by sampling 100 tokens that are present from every year using a single model approach.
The x-axis shows a given year and the y-axis shows the distance metric. C. Later years have a lower intra-distance
variability compared to the earlier years. This con�dence interval plot shows the collective distances obtained by
sampling 100 tokens that are present from every year using our multi-model approach. The x-axis shows a given year
and the y-axis shows the distance metric.

We expected most tokens to undergo minor changes from year to year, while substantial changes
likely suggested model drift as opposed to true linguistic change. We measured the extent to which
tokens di�ered from themselves using the standard single-model approach and our integrated
statistic. We �ltered the token list to only contain tokens present in every year and compared their
distance to the midpoint year, 2010, using the single-model and integrated-models strategies. We
found that distances tended were markedly larger in the earliest years, where we expected models to
be least stable, using the traditional approach (Figure 2B). The integrated model approach did not
display the same pattern in the earliest years (Figure 2C). Both trends reinforce that training on
smaller corpora will lead to high variation and that an integrated model strategy is needed [32]. Based
on these results, we used the integrated-model strategy to calculate inter-year token distances for the
remainder of this work.

Terms exhibit detectable changes in usage
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Figure 3:  A. The number of change points increases over time in PMCOA. The x-axis shows the various time periods,
while the y-axis depicts the number of detected change points. B. Regarding preprints, the greatest number of change
points was during 2018-2019. The x-axis shows the various time periods, while the y-axis depicts the number of
detected change points. C. The token ‘cas9’ was detected to have a change point at 2012-2013. The x-axis shows the
time period since the �rst appearance of the token, and the y-axis shows the change metric. D. ‘sars’ has two detected
change points within the PMCOA corpus. The x-axis shows the time period since the �rst appearance of the token, and
the y-axis shows the change metric.

We next sought to identify tokens that changed during the 2000-2021 interval for the text from
PubMed Central’s Open Access Corpus (PMCOA) and the 2015-2022 interval for our preprint corpus.
We performed change point detection using the CUSUM algorithm with distances calculated with the
integrated-model approach to correct for systematic di�erences in the underlying corpora. We found
41281 terms with a detected change point from PMCOA and 2266 terms from preprints (Figures 3A
and 3B), and the vast majority (38019 for PMCOA and 2260 for preprints) had just a single change-
point.

We explored individual change points. We detected one in PMCOA for ‘cas9’ from 2012 to 2013 (Figure
3C). Before the change point, its closest neighbors were related genetic elements (e.g., ‘cas’1-3). After
the change point, its closest neighbors became terms related to targeting, sgRNA, and gRNA, as well
as other genome editing strategies, ’talen’ and ‘zfns’ (Table 1). For some terms, we detected multiple
change points within the studied interval. We detected change points for ‘SARS’ from 2002 to 2003 and
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2019 to 2020 (Figure 3D), consistent with the emergences of SARS-CoV [40] and SARS-CoV-2 [41,42] as
observed human pathogens. We found miscellaneous neighbors before each change point, with use
consistent with the acronym for Severe Acute Respiratory Syndrome after each (Tables 2 and 3).

Out of all change points, we observed 200 tokens with at least one change point in each corpus. Only
25 of the 200 terms were detected to have simultaneous changes between the preprint and PMCOA
corpora. We examined the overlap of detected change points between preprints and published
articles. Many of these 25 were related to the COVID-19 pandemic (Supplementary Table S1). The
complete set of detected change points is available for further analysis (see Data Availability and
Software).

Table 1:  The �fteen most similar neighbors to the token ‘cas9’ for the years 2012 and 2013.

2012 2013

cas2 sgrna

crispr1 talen

cas3 spcas9

cas1 zfns

cas10 grna

crispr3 zfn

tracrrna dcas9

crispr nickase

csn1 pcocas9

crispr4 crispr

cas7 sgrnas

cas6e meganuclease

cas4 tracrrna

cse1 crispri

cas6 crrna

Table 2:  The �fteen most similar neighbors to the token ‘sars’ for the years 2002 and 2003.

2002 2003

qsar species_227859

herbicidal mesh_c000657245

antiplasmodial severe acute respiratory syndrome-related coronavirus (species_694009)

arylpiperazine unidenti�ed human coronavirus (species_694448)

a]pyridine SARS1 (gene_6301)

leishmanicidal ebola virus sp. (species_205488)

naphthyridine pandemic

indolo[2,1 coronavirus infections (mesh_d018352)

b]quinazoline-6,12 coronavirus

nematocidal ebola virus (species_1570291)
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2002 2003

f]isoxazolo[2,3 severe acute respiratory syndrome (mesh_d045169)

5-(4 paramyxovirus

cholinephosphotransferase viruse

oxovanadium(iv drosten

catecholase virologist

Table 3:  The �fteen most similar neighbors to the token ‘sars’ for the years 2002 and 2003.

2019 2020

g.o. sar

nsp13 mers

40/367 cov

lissodendoryx sars-1

lutken severe acute respiratory syndrome-related coronavirus (species_694009)

sarr coronaviruse

sar middle east respiratory syndrome-related coronavirus (species_1335626)

ophiura ophiura
(species_72673) cov.

verrill coronavirus infections (mesh_d018352)

hirondelle mers-

kobelt covs

azorean severe acute respiratory syndrome coronavirus 2 (species_2697049)

rusby severe acute respiratory syndrome (mesh_d045169)

d’orbigny sarscov

psychropotes longicauda
(species_55639) sarscov-2

The word-lapse application is an online resource for manual
examination of biomedical tokens
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Figure 4:  A. The trajectory visualization of the token ‘pandemic’ through time. It starts at the �rst mention of the token
and progresses through each subsequent year. Every data point shows the top �ve neighbors for the respective token.
B. The usage frequency of the token ‘pandemic’ through time. The x-axis shows the year, and the y-axis shows the
frequency for each token. C. A word cloud visualization for the top 25 neighbors for the token ‘pandemic’ each year. This
visualization highlights each neighbor from a particular year and allows for the comparison between two years. Tokens
in purple are shared within both years, while tokens in red or blue are unique to their respective year.

We constructed an online application that allows users to examine how tokens change through time.
The application supports token input as text strings or as MeSH IDs, Entrez Gene IDs, and Taxonomy
IDs. Users might elect to explore the term ‘pandemic’, for which we detected a change point between
2019 and 2020. Users can examine the token’s nearest neighbors through time (Figure 4A). Using the
token ‘pandemic’ as an example, users can observe that ‘epidemic’ remains similar through time, but
taxid:114727 (the H1N1 subtype of in�uenza) only entered the nearest neighbors with the swine �u
pandemic in 2009 and that MeSH:C000657245 (COVID-19) appears in 2020. The application also shows
a frequency chart depicting how often the particular token is used each year (Figure 4B), which can be
displayed as a raw count or adjusted by the total size of the corpus. When change points are detected,
they are indicated on this panel (Figure 4B). The �nal visualization shows the union of the nearest 25
neighbors from each year ordered by the number of years that neighbor was present (Figure 4C). This
visualization has a comparison function that allows users to examine di�erences between years. All
functionalities are fully supported across the PMCOA and preprint corpora, and users can toggle
between the two.

Discussion and Conclusion
Language is rapidly evolving, and the usage of words changes over time with words assimilating new
meanings or associations [1]. Some e�orts have been made to study semantic change using
biomedical text [18,19,20]; however, no such work has examined the changes evident in both pre-
publication peer-reviewed and preprinted biomedical text. We examined semantic change in both
open-access biomedical corpora from Pubmed (PMCOA) and bioRxiv/MedRxiv for the 2000-2021
interval. Studies like this one have only become feasible recently with the rapid uptake of open access
publishing. To be able to span two decades with very di�erent data availability, we developed a novel
statistic that incorporated multiple models using both inter- and intra-year distances. Without the
correction, comparing between stable and unstable models is challenging as previously reported
[32,43]. Our analysis revealed more than 41,000 di�erent change points, including tokens such as
‘cas9’, ‘pandemic’, and ‘sars’. Many change points overlapping between PMCOA and preprints were
related to COVID-19, indicating that the COVID-19 pandemic has been strong and immediate enough
to induce rapid semantic change across both publishing paradigms.

As the amount of preprinted text grows, future work may be able to determine the consistency and
time-lag of semantic change between preprint and pre-publication peer-reviewed text - potentially
predicting future change in pre-publication peer-reviewed text. We developed a web application to
enable users to investigate individual tokens - automatic approaches that use orthogonal metrics to
estimate change point validity would make analysis at scale more straightforward. Furthermore,
including corpora such as the arXiv [44] or psyArXiv [45] repositories may reveal consistencies across a
broader swath of �elds or within-�eld analyses may reveal the earliest starting points of semantic
changes that ultimately sweep through biomedicine.

Data Availability and Software

An online version of this manuscript is available under a Creative Commons Attribution License at
https://greenelab.github.io/word_lapse_manuscript/. The source for the research portions of this
project is licensed under the BSD-2-Clause Plus Patent at https://github.com/greenelab/biovectors.
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Our Word Lapse website can be found at https://greenelab.github.io/word-lapse, and the code for the
website is available under a BSD-3 Clause at https://github.com/greenelab/word-lapse. Full-text access
for the bioRxiv repository is available at https://www.biorxiv.org/tdm. Full-text access for the medRxiv
repository is available at https://www.medrxiv.org/tdm. Access to Pubtator Central’s Open Access
subset is available on NCBI’s FTP server at https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/.
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Supplemental Tables

Table S1:  The intersection of changepoints found between published papers and preprints.

Token Changepoint

lockdown 2019-2020

2021 2020-2021

distancing 2019-2020

2019 2018-2019

ace2 2019-2020

pandemic 2019-2020

2020 2019-2020

coronavirus 2019-2020

bcl2a1 2018-2019

peak3 2020-2021

3.6.2 2019-2020

quarantine 2019-2020

cobl 2020-2021

injectrode 2020-2021

nrc3 2020-2021

4.0.5 2020-2021

TMPRSS2 (gene_7113) 2019-2020
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bin1 2017-2018
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omicron 2020-2021
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