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The time taken for cells to complete a round of cell division is a stochastic process controlled, in
part, by intracellular factors. These factors can be inherited across cellular generations which gives
rise to, often non-intuitive, correlation patterns in cell cycle timing between cells of different family
relationships on lineage trees. Here, we formulate a framework of hidden inherited factors affecting
the cell cycle that unifies known cell cycle control models and reveals three distinct interdivision time
correlation patterns: aperiodic, alternator and oscillator. We use Bayesian inference with single-
cell datasets of cell division in bacteria, mammalian and cancer cells, to identify the inheritance
motifs that underlie these datasets. From our inference, we find that interdivision time correlation
patterns do not identify a single cell cycle model but generally admit a broad posterior distribution
of possible mechanisms. Despite this unidentifiability, we observe that the inferred patterns reveal
interpretable inheritance dynamics and hidden rhythmicity of cell cycle factors. This reveals that
cell cycle factors are commonly driven by circadian rhythms, but their period may differ in cancer.
Our quantitative analysis thus reveals that correlation patterns are an emergent phenomenon that
impact cell proliferation and these patterns may be altered in disease.

I. INTRODUCTION

Cell proliferation, the process of repeated rounds of
DNA replication and cell division, is driven by multiple
cell extrinsic and intrinsic factors [1, 2]. Stochasticity in
any or all of these factors therefore influences the time
taken for a cell to divide, generating heterogeneity in cell
cycle length, even in genetically identical populations.
For example, stochastic gene expression [3] can lead to
heterogeneity in cell cycle length [4–6] as these fluctua-
tions can be propagated by concerted cellular cues [7].
These cues can exhibit reproducible stochastic patterns
that are important in development, homeostasis and ul-
timately, for cell survival [8].

Single-cell technologies illuminate a world of cellu-
lar variation by replacing bulk-average information with
single-cell distributions. A key challenge is to exploit cell-
to-cell variability to identify the mechanisms of cellular
regulation and responses [8, 9]. Time-lapse microscopy
allows us to resolve cell dynamics such as division tim-
ing, growth and protein expression [10] (Figure 1a, left).
This has led to many discoveries in cell cycle dynamics
in bacteria [11–14] and mammalian cells [15–18]. Early
advances included measuring the distribution of division
times across single cells [19] and the correlations between
cellular variables leading to cell size homeostasis [11],
while more recent applications of time-lapse microscopy
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have captured multiple generations of proliferating cells,
making lineage tracing possible [20, 21].

While single-cell distributions measure variation be-
tween cellular variables, they ignore both temporal sig-
nals and variations propagating across generations to en-
tire lineage trees [24, 26, 27]. These lineage tree correla-
tion patterns can be robust and steady, similar to what
is known in spatio-temporal pattern formation [28, 29].
Common examples of lineage tree correlation patterns
concern the mother-daughter and the sister correlations
that have been used to study cell size homeostasis in E.
coli [11, 30] and other mechanisms generating correlated
interdivision times such as population growth rate [19]
and initiation of DNA synthesis [31].

A counter-intuitive correlation pattern presented by
many cell types is the ‘cousin-mother inequality’ [26],
where the interdivision times of cousin cells are more
correlated than those of mother-daughter pairs. This
inequality can be observed both in bacteria and mam-
malian cells (Figure 1b). More generally, lineage tree
data gives rise to correlation patterns by comparing a
single cell to any other cell on the tree (Figure 1a, right).
Family relations – such as daughter, grandmother, cousin
cells etc. – encode inheritance patterns, and correlations
between these related cells have been used to understand
the dynamics of cell populations [32, 33] (Figure 1c). Sev-
eral stochastic models have been proposed to explain in-
terdivision time correlation patterns. Most of them make
prior assumptions on the underlying mechanism control-
ling cell division such as those focusing on cell size control
[30], DNA replication [31, 34] or underlying oscillators
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FIG. 1. Using interdivision time data on lineage trees to infer the hidden cell cycle factors. (a) Time lapse
observations. Cartoon demonstrating how time-lapse microscopy allows single cells to be tracked temporally as they go through
the cell cycle to division. Multiple different factors affect the rate at which cells progress through the cell cycle from birth to
subsequent division. Interdivision time data. Example lineage tree structure with possible ‘family relations’ of a cell between
which correlations in interdivision time can be calculated. (b) Lineage correlation pattern. Plot of mother-daughter interdivision
time correlation against cousin-cousin interdivision time correlation for the six publicly available datasets used in this work
(Table S1, [13, 22–25]). The shaded red area indicates the region where the cousin-mother inequality is satisfied. (c) Identifying
hidden cell cycle factors. Schematic showing the model motivation and process. We produce a generative model that describes
the inheritance of multiple hidden ‘cell cycle factors’ that affect the interdivision time. The model is fitted to lineage tree data
of interdivision time, and we analyse the model output to reveal the possible biological factors that affect the interdivision time
correlation patterns of cells.

[14]. For example, inheritance of DNA content can ex-
plain the correlation in interdivision time between sister
cells in bacteria [31]. Similarly, it has been shown that
a simple model with interdivision time correlations [27]
cannot satisfy the ‘cousin-mother inequality’ [26], but a
more complex kicked cell cycle model does [35]. It is
presently unclear what information correlation patterns
carry about the underlying mechanisms that generate
them. This is because a unified and systematic frame-
work to generate any desired interdivision time correla-
tion pattern is lacking.

Here, we propose a stochastic model to investigate how
cell cycle factors – which we define in this work as hid-
den properties that affect interdivision time – shape the
lineage tree correlation patterns of cells. These could in-
clude physiological factors, such as cell size, growth rate
and cell cycle checkpoints, or specific cell cycle drivers
such as CDKs, mitogens and division proteins. We will

only focus on data describing patterns of interdivision
time in bacterial and mammalian cell types, which cir-
cumvents intricate measurements of cell volume, mass,
and DNA replication. This also avoids dealing with fluo-
rescent reporter strains that may be difficult to engineer
depending on cell type. We propose a generative model
of correlation patterns that involves a number of hidden
cell cycle factors and reduces to common mechanistic cell
cycle models for specific parameter choices. Our theory
predicts three distinct lineage correlation patterns; ape-
riodic, alternator and oscillator. We demonstrate how
the model can be used to identify these patterns using
Bayesian inference in bacteria and mammalian cells. Our
analysis reveals several dynamical signatures of cell cycle
factors hidden in lineage tree interdivision time data.
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II. RESULTS

A. A general inheritance matrix model provides a
unified framework for lineage tree correlation

patterns

Previous studies [26, 27] found that simple inheritance
rules, where interdivision times are correlated from one
generation to another through a single parameter, can-
not explain the lineage correlation patterns seen in exper-
imental single-cell data. To address this issue, we propose
a unified framework where the interdivision time is de-
termined by a number of cell cycle factors that represent
hidden variables such as cell cycle phase lengths, protein
levels, cell growth rate or other unknowns (Figure 1c),
that each have their own inheritance pattern.

The states of the cell cycle factors is assumed to be
a vector yp = (yp,1, yp,1, . . . , yp,N )> that determine the
interdivision time of a cell with index p via

τp = f(yp). (1)

Inheritance from mother to daughter of the N cell cy-
cle factors is described by a nonlinear stochastic Markov
model on a lineage tree:

y2m = g (ym) + e2m,

y2m+1 = g (ym) + e2m+1,
(2)

where m in N denotes the mother cell index and 2m
and 2m+ 1 the daughter cell indices. Here the functions
f : RN+ → R+, g : RN+ → RN+ are possibly nonlinear and

ep = (ep,1, ep,2, . . . , ep,N )> is a noise vector for which the
pair e2m, e2m+1 are identically distributed random vec-
tors with covariance matrix independent of m. Note that
a non-zero covariance between these noise vectors can ac-
count for correlated noise of sister cells. We implicitly as-
sume symmetric cell division such that the deterministic
part of the inheritance dynamics g is identical between
the daughter cells.

The general model includes many known cell cycle
models as a special case. For example, the interactions
between cell cycle factors could model cell size control
mechanisms (SI Section D 4 a), the coordination of cell
cycle phases (SI Section D 4 b), or deterministic cues such
as periodic forcing in a kicked cell cycle model (SI Sec-
tion D 4 c).

The full model can only be solved for specific choices
of f and g, and these functions are generally unknown in
inference problems. To overcome this limitation, we as-
sume small fluctuations resulting in an approximate lin-
ear stochastic system (see SI Section D 1 for a derivation)
involving the interdivision time

τp = τ̄ +α>xp. (3a)

The vector of cell cycle factor fluctuations
xp = (xp,1, xp,2, · · · , xp,N )> obeys

x2m = θxm + z2m,

x2m+1 = θxm + z2m+1.
(3b)

Here, τ̄ is the stationary mean interdivision time, θ
is the N × N inheritance matrix and z2m and z2m+1

are two noise vectors of length N that capture the
stochasticity of inheritance dynamics and differentiate
the sister cells (Figure 2a). We denote the N × N co-
variance matrices S1 = Var(z2m) = Var(z2m+1) and
S2 = Cov(z2m, z2m+1), for all m in N of the noise terms
z (and e) in individual cells and between sister cells,
respectively. The noise terms are independent for all
other family relations. α = (α1, α2, . . . , αN )> is a bi-
nary vector of length N made up of 1s and 0s depending
on whether the function f determining the interdivision
time has dependence on a given cell cycle factor (see SI
Section D 1 for details).

When the special case of a single cell cycle factor
(N = 1) is considered, the system reduces to a well-
known model with correlated division times [27, 36–38],
and we will refer to this case as simple inheritance rules.
In the following, we will explore the correlation patterns
generated by multiple cell cycle factors.

B. The inheritance matrix model reveals three
distinct interdivision time correlation patterns

Here, we define a correlation pattern to be the correla-
tion coefficients of pairs of cells on a lineage tree. Here we
introduce a function ρ(k, l) which we call the generalised
tree correlation function:

ρ(k, l) =
Cov(τk, τl)

σ2
τ

, (4)

where τk and τl are the interdivision times of cells in
the pair (k, l), and στ is the interdivision time standard
deviation. The coordinate (k, l) describes the distance
in generations from each cell in the pair to their shared
nearest common ancestor (Figure 2b,c). We have de-
rived a closed-form formula for ρ(k, l) in terms of the
model parameters that lends itself to simple interpreta-
tion (Eq. (A2) in Methods A; see SI Section D 2 for a full
derivation).

Our theoretical analysis reveals three distinct correla-
tion patterns that can be generated by the inheritance
matrix model (Methods B). These can be classified by
the eigenvalues of the inheritance matrix θ: (i) if the
inheritance matrix exhibits real positive eigenvalues, we
observe an aperiodic pattern (Figure 2d); (ii) if the inher-
itance matrix has a real eigenvalue and at least one neg-
ative eigenvalue, we observe an alternator pattern (Fig-
ure 2e); and (iii) if there is a pair of complex eigenvalues
we observe an oscillator pattern (Figure 2f). An intuitive
interpretation of the eigenvalue decomposition is that it
transforms the cell cycle factors into effective factors in-
herited independently. Hence, the inheritance matrix is
diagonal in this basis. However, the analogy is limited
to the case where the inheritance matrix is symmetric
and the eigenvalues are real. For simplicity, we will focus
on models with two cell cycle factors and note that in
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FIG. 2. Analysis of the inheritance matrix model identifies three distinct lineage tree correlation patterns.
(a) Diagram illustrating the inheritance matrix model with two cell cycle factors which affect the interdivision time of a cell.
Each factor in the mother exerts an influence on a factor in the daughter through the inheritance matrix θ. (b,c) Schematics
showing how the coordinate (k, l) introduced in Section II B is determined. This coordinate describes the distance to the most
recent common ancestor for chosen pair of cells. Examples shown are (b) sister pairs with (k, l) = (1, 1), and (c), aunt-niece
pairs with (k, l) = (2, 1). (d-o) Panels demonstrating the three correlation patterns that arise from the inheritance matrix
model with two cell cycle factors. (d-f) Example inheritance matrices θ that produce the desired patterns: (d) aperiodic,
(e) alternator and (f) oscillator correlation patterns. (g-i) Three-dimensional plot of the generalised tree correlation function
(Equation A2) demonstrating each of the three patterns. On each plot we highlight the lineage generation correlation function
(k = 0 or l = 0) (red line) and the cross-branch generation correlation function (k = l) (blue line). The shading of the 3D
plot indicates the correlation coefficient at that point on the surface. (j-l) The lineage and cross-branch generation correlation
functions plotted individually, showing the different dynamics for each of the three corresponding patterns. (m-o) Region plots
showing parameter values where the relevant pattern is obtained (orange) and where the cousin-mother inequality is satisfied
(blue) for the θ matrices given in panels (d-f). White bands on (o) indicate where P = 2

k
which results in real eigenvalues

and therefore does not produce an oscillator pattern. Within the parameter region that both produces the desired pattern and
also satisfied the cousin-mother inequality, we choose a parameter set (red cross) which is used for the corresponding plots in
the panels above. In all panels we fix α = (1, 1)T and the noise vector z to have covariance equal to the identity matrix.
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higher dimensions (N ≥ 3), the correlation patterns in-
volve a mixture of the three patterns discussed in detail
in this section (SI Figure S5i,j and u,v).

To demonstrate the aperiodic correlation pattern, we
utilise an inheritance matrix with positive real eigenval-
ues (Figure 2d). Characteristically, the modelled interdi-
vision time correlations decay to zero as the distance to
the most recent ancestor increases (Figure 2g). To look
more closely at the patterns on the tree, we utilise two
reductions of the generalised tree correlation function.
These are the lineage correlation function (ρ(k, l) for k or
l = 0) and the cross-branch correlation function (ρ(k, l)
for k = l). We look at these functions for continuous
k, l to visualise better the patterns that occur down the
lineage and across the branches of the tree. The lineage
correlation function gives the correlation dynamics as you
go down the lineage tree, whereas the cross-branch cor-
relation function gives the correlation dynamics as you
move across neighbouring branches of the lineage tree.
We observe that the interdivision time correlations de-
crease as we move both across generations and branches
(Figure 2j).

In contrast, the alternator pattern generates oscilla-
tions with a fixed period of two generations in the lin-
eage correlation function. We demonstrate this corre-
lation pattern for the generalised tree correlation func-
tion (Figure 2h) using a diagonal θ matrix (Figure 2e).
We observe alternating correlations across generations in
the lineage correlation function, and the continuous in-
terpolation of the cross-branch correlation function (Fig-
ure 2k). Although the period is fixed to two generations,
the amplitude of the correlation oscillation varies with
the absolute magnitude of the eigenvalues (Methods B).

To investigate the oscillator correlation pattern, we
propose a hypothetical inheritance matrix θ with eigen-
values λ = (De+i 2πP , De−i

2π
P ) which are complex for

D,P 6= 0 and P 6= 2
k , k in Z (Figure 2f). The parameters

P and D control the period and the respective damping
of an underlying oscillator, i.e., the limit D → 1 leads to
an undamped oscillation and D → 0 corresponds to an
overdamped oscillation (see Methods C for details). Cor-
respondingly, the graph of the generalised tree correlation
function (Figure 2i) shows clear oscillations across gen-
erations. These correlation oscillations are also evident
in the lineage correlation function but are absent in the
cross-branch correlation function (Figure 2l). However,
oscillations are possible in the cross branch correlation
function for other choices of θ with complex eigenvalues
(see model fits in Section II D and Methods B). In sum-
mary, the qualitative behaviour of the interdivision time
correlation patterns can be studied using the eigenvalue
decomposition of the inheritance matrix θ.

C. The cousin-mother inequality is not required to
generate complex correlation patterns

Our analysis shows that of the three specified patterns,
only the oscillator pattern cannot arise from simple in-
heritance rules. This is because it requires at least two in-
herited cell cycle factors (N ≥ 2) for the inheritance ma-
trix to possess complex eigenvalues. We therefore asked
whether the oscillator pattern is necessary for the cousin-
mother inequality to be satisfied. We find that this is
not the case, but instead, all three correlation patterns
can be compatible with the cousin-mother inequality if
N ≥ 2. To demonstrate this, we choose three specific
two-dimensional inheritance matrices θ that produce the
required eigenvalue structure (Figure 2d-f). We then use
these matrices with our analytical solution for the gen-
eralised tree correlation function (Methods A) to map
the regions where the cousin-mother inequality can be
satisfied (Figure 2m-o). Interestingly, we find that oscil-
lations can arise even in parameter regions that violate
the cousin-mother inequality (Figure 2o). We conclude
that both the cousin-mother inequality and the oscillator
pattern are sufficient but not necessary conditions to rule
out simple inheritance rules.

To understand which datasets can be explained by sim-
ple inheritance rules, we fit the one-dimensional model
(N = 1) to six publicly available lineage tree datasets
(Table S1) using Bayesian methods (Methods D). These
datasets were chosen as they each had a sufficient number
of cells for correlation analysis and covered a broad range
of cell types. We found that the model fit is poor for the
datasets that display the cousin-mother inequality, which
is the case for cyanobacteria, clock-deleted cyanobacteria,
neuroblastoma and human colorectal cancer cells (SI Fig-
ure S1a-f). Despite not obeying the cousin-mother in-
equality, the fit is also poor for mouse embryonic fibrob-
lasts (SI Figure S1f) as the median inferred correlation
lies outside the 95% confidence intervals for both the
grandmother and cousin correlations which are included
in the model fit, and the confidence intervals for the data
vs the credible intervals from the inference show minimal
overlap (SI Figure S2f). Another inequality may be vio-
lated in this dataset that cannot be explained using the
one-dimensional model, suggesting that the absence of
the cousin-mother inequality cannot rule out more com-
plex division rules. The only cell type that has a good fit
for the one-dimensional model is mycobacteria (SI Fig-
ure S1c). We thus conclude that the majority of the
datasets must be described by higher dimensional inher-
itance dynamics of multiple cell cycle factors.

D. The two-dimensional inheritance matrix model
fits interdivision time correlation patterns from a

range of cell types

We asked whether the correlation patterns are bet-
ter described by a two-dimensional inheritance matrix
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FIG. 3. The inheritance matrix model with two cell cycle factors fits interdivision time correlation patterns
for a range of cell types. Posterior correlation functions based on fitting to mother-daughter, grandmother-granddaughter,
sister-sister and cousin-cousin correlations for three bacterial (left) and three mammalian (right) datasets: (a) cyanobacteria,
(b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human colorectal cancer, (e) neuroblastoma, and (f) mouse embryonic
fibroblasts. Pearson correlation coefficients (white circles) and 95% bootstrapped confidence intervals (error bars) obtained
through re-sampling with replacement of the original data (10,000 re-samples). Posterior distribution samples were clustered
into aperiodic, alternator, and oscillator patterns (bar charts). We show multiple representative samples (solid and shaded
lines) drawn from the posterior distribution (cf. SI Figure S2 without clustering). Where correlations appear missing, this is
in cases where the lineage trees in the data were not deep enough for the correlations to be calculated. Only lineage and cross
branch generations 1 and 2 were used in model fitting. Here all panels assume α = (1, 1)>, but taking α = (1, 0)> produces
similar results (SI Figure S4).

model. For this, we again used Bayesian inference
(Methods D) which produced a good model fit for all
six datasets (Figure 3a-f) for the two-factor inheritance
matrix model, within relatively narrow error bars of
mother, grandmother, sister and cousin correlations (Ta-
ble S1). The credible intervals from the Bayesian infer-
ence matched the confidence intervals of correlations used
for fitting (SI Figure S2). We estimated the goodness
of fit using the AIC for each dataset and compared these
to the one-dimensional model (Table S1). The AIC val-
ues indicate that the two-factor inheritance matrix model
provides the best fit for all cell types used here, except
for the mycobacteria data, where simple inheritance rules
were selected. We expected this match where the cousin-
mother inequality was satisfied such as in cyanobacteria,
clock-deleted cyanobacteria, neuroblastoma and human
colorectal cancer cells. The match with the two-factor
inheritance matrix model in fibroblasts was less obvious.

Crucially, we find that the model has a good predictive
capacity for correlations further down the lineage tree.
For each pattern, we show several samples from the con-
ditional posterior distribution (solid and shaded lines) to
illustrate fits of the lineage correlation and cross-branch
correlation function (Figure 3a-f). For all datasets ex-
cept neuroblastoma, the curves also intercept the great-
grandmother and great-great-grandmother correlations
that were not used for fitting (Figure 3a-d,f), and boot-
strapped confidence intervals from the data overlapped
with the credible intervals obtained from Bayesian infer-
ence (SI Figure S2). We then asked which correlation
patterns underlay the data. To assess this, we calculated
the eigenvalues of each posterior sample of the inheri-
tance matrix to categorise the aperiodic, alternator and
oscillator patterns (Figure 3a-f, bar charts). We found
that in every dataset, the dominant correlation pattern
was identifiable with probabilities well above 50%, except
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FIG. 4. Bayesian inference predicts hidden dynamical correlations between cell cycle factors. (a) Posterior
distribution histograms for θ11 depend on the realisations of a Gibbs sampler and do not settle to a stationary distribution.
(b) A log-log plot of mean squared displacement for the four θ variables that make up the inheritance matrix θ. The mean
squared displacement for all four parameters increases linearly, meaning the sampling does not settle in any particular region
of parameter space. (c) Sampled posterior distribution histograms for the eigenvalue λ1 for each realisation. The histograms
are almost identical across the four averages, showing the distribution has converged. (d) Mean squared displacement for the
eigenvalues of the inheritance matrix θ settles to a finite value. Plots (a) - (d) utilise sampling from the inference for the
clock-deleted cyanobacteria dataset. (e) Density histogram of the real eigenvalue pairs for clock-deleted cyanobacteria (pink)
and neuroblastoma (brown) demonstrating where the eigenvalues lie in the aperiodic (yellow) and alternator (red) regions. (f)
Density histogram of same-factor against alternate-factor mother-daughter correlation for clock-deleted cyanobacteria (pink)
and neuroblastoma (brown). We take a minimum threshold of 0.3 for the probability density to remove irrelevant samples. (g-h)
Influence diagrams for same factor vs alternate factor correlations for (g) clock-deleted cyanobacteria and (h) neuroblastoma.
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for mycobacteria (Figure 3c) that was better described by
simple inheritance rules (SI Figure S1c).

Cyanobacteria, (Figure 3a), human colorectal cancer
(Figure 3d) and mouse embryonic fibroblasts (Figure 3f)
display a dominant oscillator pattern, but we see that
their lineage correlation functions exhibit widely differ-
ent periodicities. For example, the posterior lineage cor-
relation for cyanobacteria displays a higher frequency os-
cillation than those in human colorectal cancer cells and
fibroblasts. Clock-deleted cyanobacteria (Figure 3b) and
mycobacteria (Figure 3c) display a dominant alternator
pattern which could be induced by strong sister corre-
lations. We see that clock-deleted cyanobacteria (Fig-
ure 3b) has a 100% alternator pattern in contrast to the
100% oscillator pattern seen for wild type cyanobacteria,
suggesting that the deletion of the clock gene has com-
pletely transformed the correlation pattern and has abol-
ished the underlying oscillation. Neuroblastoma (Fig-
ure 3e) displays a dominant aperiodic pattern. The pre-
dictive capacity for this cell type is weaker than for the
other datasets, which we assume is due to the tight con-
fidence interval in the correlations. Despite this discrep-
ancy, we find that the inheritance matrix model produces
excellent fits and has good predictive capacity for all
other cell types studied in this work.

E. Bayesian inference reveals that individual
inheritance parameters are not identifiable

We next ask which mechanisms are responsible for gen-
erating the observed correlation patterns. The Bayesian
inference used for model fitting (Methods D) samples pa-
rameters using a MCMC Gibbs sampler. The Gibbs sam-
pler can be thought of as a random walk in parameter
space that settles around parameter regions with high
likelihood. We found that the explorations of the Gibbs
sampler did not settle in a particular parameter subspace
but meandered off to explore vast areas of the parameter
space without improving the likelihood values (SI Fig-
ure S3a,b). Such behaviour is expected when model pa-
rameters are not identifiable and the posterior distribu-
tion of parameters cannot be efficiently sampled [39, 40].

To provide further evidence of unidentifiablity, we ob-
tained four histograms of a single parameter of the in-
heritance matrix for different initialisations. The four
distributions are very different (Figure 4a), showing that
the random walk does not settle to a stationary distri-
bution. We further observe that the mean squared dis-
placement increases without bound (Figure 4b) showing
that the sampling does not settle in a particular sub-
set of the parameter space. In contrast to the individ-
ual parameters, the sampled posterior distribution of the
eigenvalues is consistent across the averages (Figure 4c)
and their mean squared displacement converges rapidly
(Figure 4d). We note that unidentifiability arises for the
inheritance matrix model with multiple cell cycle factors
and does not feature for simple inheritance rules. This

ultimately demonstrates that the interdivision time cor-
relation patterns do not identify a single set of inheri-
tance parameters, but rather need to be described by a
distribution of inheritance mechanisms.

F. The inheritance matrix model predicts the
hidden dynamical correlations of cell cycle factors

Clock-deleted cyanobacteria and neuroblastoma both
satisfy the cousin-mother inequality (Figure 1b), which
indicates that at least two cell cycle factors are respon-
sible for the corresponding correlation patterns. The
eigenvalues of the inheritance matrix concentrate in dif-
ferent regions of the admissible parameter space (Fig-
ure 4e), suggesting the correlation patterns that generate
the cousin-mother inequality are distinct. For the clock-
deleted cyanobacteria dataset, we found that all posterior
samples were consistent with an alternator correlation
pattern, while most posterior samples presented aperi-
odic correlation patterns in neuroblastoma (Figure 3b,e
bar charts).

We hypothesised that different inheritance models
generate these patterns. To verify this hypothesis
and since we cannot identify the cell cycle factors di-
rectly, we computed the mother-daughter correlations
between the two hidden cell cycle factors. Since
the order of factors is interchangeable, we only dis-
tinguish between mother-daughter correlations between
the same (corr(xm,i, x2m,i) and corr(xm,i, x2m+1,i) for
i = 1, 2) and alternate factors (corr(xm,i, x2m+1,j) and
corr(xm,i, x2m,j) for i 6= j = 1, 2). The resulting poste-
rior distributions revealed distinct correlation patterns of
cell cycle factor correlations for clock-deleted cyanobac-
teria and neuroblastoma (Figure 4f). For clock-deleted
cyanobacteria, we predict that at least one factor has
a negative mother-daughter correlation while its cross-
correlation with the other factor must be positive; while
the correlations are of opposite sign for neuroblastoma
(Figure 4f). We sketch influence diagrams that sum-
marise these relationships between factors (Figure 4g,h).
Thus, the different interdivision time correlation patterns
observed for clock-deleted cyanobacteria and neuroblas-
toma stem from distinct hidden correlation patterns of
cell cycle factor fluctuations.

G. The inheritance matrix model reveals biological
rhythms underlying the cell cycle

We observe that the lineage correlation functions of
cyanobacteria, human colorectal cancer cells, and fibrob-
lasts exhibit vastly different correlation oscillation peri-
ods (Figure 3). Next, we are interested to see whether
the oscillations seen in these datasets are compatible with
biological oscillators known to affect cell cycle control.
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FIG. 5. The inheritance matrix reveals the periodicity of hidden biological oscillators underlying the cell cycle.
(a) Schematic showing how sampling a high frequency rhythm at each cell division could result in a lower frequency oscillator
being constructed. (b) Possible oscillator periods (Equation 6) indexed by n for a correlation oscillation period T0 = 3τ̄ .
(c) Density plot of the complex eigenvalue output from the model sampling for cyanobacteria (purple) and mouse embryonic
fibroblasts (orange). (d) Posterior distributions of the correlation oscillation period T0 in cyanobacteria (purple) and mouse
embryonic fibroblasts (orange). (e) Posterior distributions of the oscillator period T−1 in cyanobacteria (purple) and mouse
embryonic fibroblasts (orange). Arbitrary units in (d) and (e) are used to compare histograms, the density values are not
normalised in relation to each other in order to display both histograms clearly on the same plot. (f) Density plot of complex
eigenvalues for human colorectal cancer. (g) Posterior distributions of the correlation oscillation period in human colorectal
cancer (shaded area) and oscillator clusters corresponding to positive (cluster A, orange) and negative real parts (B, blue).
The bar chart shows the posterior mass of the clusters. (h) Posterior distributions of the oscillator periods T−1 corresponding
to (g). (i) Model fit and 95% credible intervals for human colorectal cancer (cf. legend of Figure 3). Red area indicates
the grandmother granddaughter correlation explored in (j). (j) Posterior distribution of oscillator vs alternator clusters give
grandmother correlations with opposite signs. (k) Lineage and cross-branch correlation functions of oscillator clusters A
(orange) and B (blue) in human colorectal cancer. Red area indicates the great-grandmother great-granddaughter correlation
explored in (l). (l) Posterior distributions of oscillator clusters A (orange) and B (blue) have great-grandmother correlations
of opposite signs.
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1. Correlation oscillations and underlying rhythms can
exhibit vastly different periods

The period of the correlation oscillation is related to
the location of the eigenvalues of the inheritance matrix
on the complex plane. We consider an eigenvalue λ of the
inheritance matrix. In terms of the mean interdivision
time τ̄ , the correlation period T0 is:

T0 = τ̄
2π

|Arg(λ)|
≥ 2τ̄ , (5)

and the inequality means that the period T0 is always
greater than twice the mean interdivision time τ̄ . More
generally, there is an oscillation period associated with
each eigenmode of the inheritance matrix, but the pe-
riod is infinite for real eigenvalues, and thus only com-
plex eigenvalues generate correlation oscillations. This
inequality follows from (5) using |Arg(λ)| ≤ π. How-
ever, known biological oscillators that influence cell cycle
control often have periods less than twice the mean inter-
division time, such as stress response regulators [41, 42]
and gene expression oscillations [43–45]. How can rela-
tively slow observed correlation oscillations be compati-
ble with much faster biological oscillators underlying the
cell cycle?

The resolution to this issue is that the period of the cor-
relation oscillation does not always match the frequency
of the underlying oscillator. Instead there are a num-
ber of possible oscillator periods Tn compatible with the
correlation oscillation period T0 (SI Section D 3) given
by:

Tn =
τ̄T0

|τ̄ + nT0|
, (6)

for n in Z. This phenomenon, that the same correla-
tion oscillation can be explained by multiple underlying
oscillators, can be understood using the intuition in Fig-
ure 5a.

2. Circadian oscillations in cyanobacteria and fibroblasts
support coupling of the circadian clock and the cell cycle

Cyanobacteria and fibroblasts both exhibit correlation
patterns consistent with an oscillator underlying cell di-
visions (Figure 3e, bar chart). We observe that the poste-
rior distribution of the eigenvalues is confined to a region
with negative real parts for cyanobacteria and positive
real parts for fibroblasts (Figure 5c). Using these distri-
butions we estimate the median period of the correlation
oscillations (using Equation 5) to be 41.7h for cyanobac-
teria and 144.3h for fibroblasts (Figure 5d). We wondered
whether the stark difference in the periods of the correla-
tion oscillations indicates a different underlying rhythm.
Conversely, we found this was not the case, but both
correlation patterns were consistent with an approximate
circadian rhythm. The posterior of the oscillator period

T−1, which is closest to the period of correlation oscilla-
tion T0, suggests a median period of 24.6h for cyanobac-
teria and a median period of 23.8h for fibroblasts (Fig-
ure 5e). We also validated the inference result using
simulated data (SI Figure S8). This finding supports
a strong coupling of circadian rhythms to the cell cycle,
as reported previously for both cyanobacteria [13, 46]
and fibroblasts [47–49]. Notably, we see that clock-
deleted cyanobacteria displays 100% alternator pattern
(Figure 3b) and therefore has a lineage tree correlation
pattern that cannot be described by an approximate 24h
oscillator, in contrast to wild type cyanobacteria.

3. Bimodal posterior distribution of underlying oscillations
in human colon cancer

Finally, we turn to the analysis of cancer cell data.
The dominant correlation pattern was oscillatory (78%
posterior probability, Figure 3d, bar chart). The poste-
rior distribution of complex eigenvalues for the oscilla-
tor pattern has support in a large region of the param-
eter space. It has two distribution modes depending on
whether the eigenvalues have positive or negative real
parts (Figure 5f). Similarly, the posterior of the correla-
tion oscillation period is bimodal, too (Figure 5g), which
means that two competing oscillator patterns are com-
patible with the data.

To disentangle these alternative hypotheses, we cluster
the posterior samples by the real part of the eigenvalues.
We label cluster A for negative real parts and cluster B
for positive ones. The correlation periods of the indi-
vidual clusters do not provide us with immediate clues
about the underlying oscillators. Cluster A has a median
correlation oscillation period of 51.2h while cluster B has
a median period of 100.6h (Figure 5g). We therefore in-
spected the oscillator periods T−1 for each cluster, which
are closest to the observed correlation period (Figure 5h).
The median of the predicted oscillator period of cluster
A has an oscillator period T−1 of 24.1h, which hints at
a circadian oscillator underlying the cell cycle in agree-
ment with a previous model [23]. However, only about
33% of posterior samples with complex eigenvalues were
assigned to this cluster. The majority of posterior sam-
ples, cluster B, had a different predicted period with a
median of 19.6h (Figure 5h). A possible explanation is
that the circadian period is shortened in cancer cells.

A strength of the Bayesian framework is that it allows
us to express our confidence in this prediction. We find
that our analysis is not conclusive about the correlation
pattern as 78% of posterior samples showed an oscillator
pattern. As a result, about 52% of all the posterior sam-
ples favour a 19.6h oscillator and 26% for the 24.1h os-
cillator, matching approximately circadian rhythm. 16%
of the samples demonstrate alternator correlation pat-
terns, and the remaining 6% samples are aperiodic (com-
pare bar charts in Figures 3d and 5g). We therefore ask
whether these competing models make predictions that
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translate into testable hypotheses. We found that the
oscillator correlation pattern predicts a negative grand-
mother correlation while the alternator pattern predicts
a positive grandmother correlation (Figure 5i,j). Thus
measuring the grandmother correlation with higher pre-
cision, for example, via increasing sample size, would
tighten the confidence intervals of measured correlations
(Figure 5i), and improve our ability to narrow down the
true pattern. On the contrary, predicting the great-
grandmother correlation allows us to distinguish between
the 19.6h and 24.1h rhythms (Figure 5h). Posterior sam-
ples in cluster A predicted a positive interdivision time
correlation between a cell and its great-grandmother,
while cluster B predicted a negative correlation (Fig-
ure 5k,l). While the great-grandmother correlation could
not be estimated using the present data, deeper lineage
trees could be used to discriminate the period of the bi-
ological oscillator and help reveal whether the circadian
period is altered in cancer cells, or not. In summary, our
theory helps to predict the hidden periodicities of biolog-
ical oscillators from lineage tree interdivision time data.

III. DISCUSSION

We propose a Bayesian approach to predict hidden cell
cycle factor dynamics from interdivision time correlation
patterns. Our underlying model fits the lineage tree data
for a range of bacterial and mammalian cell types and al-
lows us to classify different correlation patterns. Our in-
ference demonstrates that these patterns are identifiable,
but the individual inheritance parameters are not. This
finding suggests that interdivision time correlations alone
are insufficient to gain mechanistic insights into cell cycle
control mechanisms. The identified correlation patterns,
however, reveal the dynamics of the underlying cell cycle
factors.

We focused on a data-driven approach without any
prior assumptions of the division mechanism, allowing
the interdivision time data to speak for itself. Other
studies used a model similar to the inheritance matrix
model proposed here, and linked latent factors to the in-
terplay between cell cycle progression and growth [24].
Auto-regressive models have also been used in bacteria
to discriminate between different mechanisms of cell size
control [14]. Additionally, they have been used to com-
bine growth and cell cycle reporters to explain interdivi-
sion time dynamics in fibroblasts [25]. In principle, the
inheritance matrix model can be used to model the inher-
itance dynamics of any factor affecting the interdivision
time of a cell. In fact, it comprises many mechanistic
models as special cases, such as those based on DNA
replication, cell size control or cell cycle phases (SI Sec-
tion D 4). In future work, it will be useful to improve
the identifiability of the model parameters. This could
be accomplished either through including knowledge of
inheritance mechanisms through prior distributions, or
by including additional data on measured cell cycle fac-

tor dynamics – such as cell cycle phases, cell size, protein
expression etc. – in the inference.

One result of the present analysis is that lineage
tree correlation patterns of very different cell types –
cyanobacteria, mouse embryonic fibroblasts and human
colorectal cancer – can be explained through an under-
lying circadian oscillator coupled to cell division. While
the coupling between the cell cycle and circadian clock is
well established both in cyanobacteria and mouse embry-
onic fibroblasts, it is less well studied in cancer [50, 51].
Our method robustly reconstructs the circadian rhythms
from the interdivision time correlation patterns despite
the lack of the cousin-mother inequality for fibroblasts,
demonstrating the cousin-mother inequality is not re-
quired for complex correlation patterns (Section II C).
It is interesting to observe the differences in the oscilla-
tory correlation patterns in these organisms. They are
characterised by complex eigenvalues with negative real
parts in cyanobacteria, but positive real parts in fibrob-
lasts (Figure 5c), resulting in opposite mother-daughter
correlations for these datasets (Figure 3a,f).

It would be interesting to explore what mechanisms
underlie these different patterns. While the circadian
clock in fibroblasts relies on transcriptional mechanisms
[48, 52, 53], the origin of the clock is non-transcriptional
in cyanobacteria [54–56]. The negative mother-daughter
correlation in cyanobacteria likely stems from size control
mechanisms that are modulated by the circadian clock
[13]. However, the mechanisms that generate positive
mother-daughter correlations in fibroblasts are still to
be explored. Interestingly, in human colorectal cancer,
two oscillatory correlation patterns divide the posterior
distributions into two distinct clusters with positive and
negative mother-daughter correlations. If the circadian
clock was to generate a positive mother-daughter corre-
lation, as it does in fibroblasts which have a structurally
related clock, the period corresponds to a 20h rhythm.
This finding thus suggests that the circadian period is
altered in cancerous cells. Indeed, several studies report
similar periods of 18h and 20h for gene expressions in the
human colorectal cancer core-clock [57, 58].

Our theory predicts that an oscillator’s period does not
always match the period of the observed correlation os-
cillations. We describe a lower bound on the correlation
period that is reminiscent of the Nyquist-Shannon sam-
pling theorem. This theorem describes temporal aliasing
in digital audio processing, where a high frequency sig-
nal produces low frequency oscillations when sampled at
a frequency less than twice the sampling frequency. Simi-
larly, spatial aliasing is observed in digital image process-
ing as a moire pattern. In our analogy, the high frequency
signal is a biological oscillator that couples to cell division
and is sampled at the cell division frequency (Figure 5a).
Our result thus extends the Nyquist-Shannon sampling
theorem to lineage trees. Our finding has fundamental
implications for the reconstruction of oscillator periods
from interdivision time data, revealing that there exists
a number of oscillators that can all explain the same cor-
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relation pattern.

Here, we concentrated on the oscillator periods T−1

that are closest to the correlation oscillation periods
T0. In principle, we cannot exclude that oscillators with
shorter physiological periods are contributing to the ob-
served lineage tree correlation patterns. For example,
HES1 expression oscillates with a period of around 5h
in human colon cancer cells [43, 44]. The stress re-
sponse regulators NF-κB and p53, which are critical for
tumour development, oscillate with periods of approxi-
mately 100min and 5h respectively [41, 42]. The poste-
rior distributions for periods in this region are not well
separated (SI Figure S6c), which makes it challenging
to identify factors that oscillate significantly faster than
the cell cycle using interdivision time data. It is, how-
ever, unknown whether such hypothetical factors couple
to cell division specifically in a manner to induce oscilla-
tory interdivision time correlation patterns.

Going forward, there is a need to go beyond the
Nyquist-Shannon limit and develop methods that have
increased sensitivity to discriminate a broader range of
oscillator periods. One way to circumvent the limitation
would be to employ fluorescent reporters of the circadian
clock that could be correlated directly to cell division
timing. Another way, would be to provide parallel read-
outs of the underlying rhythm through events that sub-
sample the cell cycle, such as DNA replication, or the
timing of individual cell cycle phases. Not only would
we be able to look at the correlation in interdivision time
between cells on a lineage tree, but we would also be able
to analyse the correlations between individual phases and
family members, to reveal specific phase control mecha-
nisms. Our main findings result from the the inheritance
matrix model with two cell cycle factors, as this was suf-
ficient to explain the correlation patterns of the chosen
data. In principle, increasing the number of interacting
cell cycle factors can lead to more complex composite
patterns that involve combinations of the three patterns
discussed in this paper, such as the alternator-oscillator
(SI Figure S5i,j and u,v) or birhythmic correlation pat-
terns.

In summary, our findings highlight the predictive
power of Bayesian inference on single-cell data and how
it can be leveraged to draw testable hypotheses for the
design of future experiments. This was exemplified for
human colorectal cancer cells, where various patterns
were compatible with the data, something that non-
probabilistic approaches cannot accomplish as they fit
only a single correlation pattern. In the future, it will
be crucial to understand why different cell types have
evolved specific lineage correlation patterns and how
these patterns affect cell proliferation and disease. It
would be interesting to understand whether specific cor-
relation patterns give or reveal some fitness advantage
and whether we can use them to predict cell survival.
We anticipate that identifying hidden cell cycle factors
and their rhythmicity using non-invasive methods such
as interdivision time measurements will be instrumental

in answering these questions and may benefit other fields
where cell proliferation plays a pivotal role.

CODE AVAILABILITY

Code available at https://github.com/fernhughes/
Lineage-tree-correlation-pattern-inference.
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METHODS

Materials and Methods A: Analytical solution of the
inheritance matrix model

From (3) and IE[zp] = 0, for all p in N, we see that
the vector of cell cycle factors has zero mean IE[xp] = 0.
Its N ×N covariance matrix Σ = Cov(xp,xp) satisfies a
discrete-time Lyapunov equation:

S1 = Σ− θΣθ>. (A1)

From the solution of (A1), we compute the variance of
the interdivision time sτ = α>Σα and the generalised
tree correlation function ρ(k, l) (see SI Section D 2 for a
detailed derivation) given by:

ρ(k, l) =
α>ω(k, l)α

α>Σα
, (A2)

where ω(k, l) = θkΣ
(
θl
)>

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)>
with

δi≥1 =

{
1 if i ≥ 1

0 otherwise
for i = k, l. (A3)

To ensure that the lineage tree correlation pat-
tern is stationary, we require SR(θ) < 1 where
SR(θ) = max(λ1, λ2, . . . , λN ) is the spectral radius of θ.
This also ensures that the solutions to (A1); Σ, S1 and
the function (A2) are unique and independent of the ini-
tial conditions.
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Materials and Methods B: Analysis of tree
correlation patterns

The patterns of the generalised tree correlation func-
tion can be characterised through its eigendecomposition.
The general decomposition proceeds through finding the
matrix of eigenvectors U of θ such that

UθU−1 = diag(λ1, λ2, . . . , λN ) (B1)

is the diagonal matrix of eigenvalues. Defining Ŝ1,2 =
US1,2U

> and α̂ = (U−1)>α, the solution to (A1) is
given by

Σij =
N∑

k,l=1

U−1
ik U

−1
jl

(Ŝ1)kl
(1− λkλl)

. (B2)

This result can then be used to find an explicit expression
for the generalised tree correlation function:

ρ(k, l) =
N∑

i,j=1

α̂iα̂j

α̂>Σ̂α̂
ω̂ij(k, l), (B3)

where

ω̂ij(k, l) = (Ŝ1)ij
λki λ

l
j

(1− λiλj)
+ (Ŝ2)ijλ

k−1
i λl−1

j . (B4)

Since (B3) is a weighted linear combination of terms,
the pattern of the lineage correlation function is thus
governed by the eigenvalues of the inheritance matrix θ:
(i) if one eigenvalue, say λ1, is positive then the factor
ω̂11(k, 0) = ω̂11(0, k) ∝ λk1 contributing to lineage corre-
lation decays monotonically. The factor ω̂11(k, k) ∝ λ2k

1

contributing to the cross-branch correlation decays twice
as fast; (ii) if there is a negative eigenvalue, the fac-
tor ω̂11(k, 0) = ω̂11(0, k) ∝ (−1)k|λ1|k alternates be-
tween negative and positive values with an envelope of
|λ1|k, while the corresponding contribution to the cross-
branch correlation decays monotonically with rate as
|λ1|2k. Finally, if we have a pair of complex eigenvalues
λ1 = λ∗2 = DeiΩ then the factors ω̂i,j(k, 0) = ω̂i,j(0, k)
contributing to the lineage correlation function display
damped oscillations with frequency Ω and envelope Dk,
while the factor ω̂12(k, k) = ω̂∗12(k, k) ∝ D2k and the
factor ω̂11(k, k) = ω̂∗22(k, k) ∝ D2kei2Ωk oscillate with
frequency 2Ω.

Materials and Methods C: Determining the period
of correlation oscillations from the eigenvalues

We consider the case where the inheritance ma-
trix θ has a pair of complex conjugate eigenvalues
λ± = De±i2π/P . The lineage correlation function then
oscillates whenever D 6= {0, 1} and P 6= 2

k , k in Z. The

period of correlation oscillations per generation is given
by

T0

τ̄
=

2π

| ln
(
ei2π/P

)
|

=
2

1−
∣∣2( 1

P mod 1)− 1
∣∣ , (C1)

where Arg(λ) in (−π, π] is the argument of the eigen-
value and ln(·) is the complex logarithm. The former is
the angle made between the line joining the origin and
the eigenvalue λ on the complex plane with the real axis.
This means that T0/τ̄ = P if and only if P > 2. Oth-
erwise, T0 is calculated in terms of P by equation (C1)
(SI Figure S7).

Materials and Methods D: Data analysis & Bayesian
inference of the inheritance matrix model

We determined all pairs of cells in a lineage tree, sorted
them by family relations (k, l) and calculated the sample
correlation coefficient of interdivision times (4). To max-
imise the number of samples used to calculate these cor-
relations, an individual cell can appear in more than one
pair. For example, if a cell had two cousins, it would be
counted in two separate cousin pairs in the cousin-cousin
correlation coefficient calculation. For training, we fo-
cus on the sample statistics X̂ = (ŝτ , {ρ̂(k,l)}(k,l) in C)
with C = {(1, 0), (2, 0), (1, 1), (2, 2)} comprised of the
interdivision time sample variance and four interdivision
time sample correlation coefficients given by the mother-
daughter, grandmother-granddaughter, sister-sister and
cousin-cousin relations (Figure 2a). Errors are estimated
using bootstrapping by re-sampling cell pairs with re-
placement 10,000 times. The resulting variances and cor-
relation coefficients are given in Table S1.

The vector of inferred model parameters is
Θ = (θ,S1), where we fix α = (1, 1)> and S2 = 0
for simplicity. A different choice of α did not affect
our results (SI Figure S4). Since S1 is symmetric, it
consists of the N variances and N(N − 1)/2 correlation
coefficients between the components of z. Thus for
N = 1, the inheritance matrix model has two free
parameters while for N = 2 it has seven free parameters
to be estimated. We assumed that the log-likelihood for
these statistics is the sum of square errors:

−lnL(Θ|X̂) =
(ŝτ − sτ (Θ))

2

σ̂ŝτ
+

∑
(k,l) in C

(
ρ̂(k,l) − ρ(k,l)(Θ)

)2
σ̂ρ̂(k,l)

,

(D1)
which is equivalent to assuming that the sample variance
and correlation coefficients are normally distributed for
large sample sizes. We calculate the interdivision time
covariance sτ and the generalised tree correlation func-
tion ρ(k, l) from (A2). For simplicity, we neglected pos-

sible correlations between the sample statistics in X̂ and
used bootstrapped estimates for the standard deviations
of the sample statistics σ̂ŝτ and σ̂ρ̂(k,l) (Table S1). Note
that the likelihood is independent of the mean since it
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is irrelevant for the correlation pattern. We assumed a
flat prior with support restricted to SR(θ) < 1 and S1

positive semi-definite to guarantee the existence of a sta-
tionary correlation pattern.

The numerical implementation uses the adap-

tive Gibbs-sampler implemented in the Julia library
Mamba.jl [59]. For each dataset, we sample 11 million
parameter sets which include a burn-in transient of 1 mil-
lion samples. These samples are removed before analysis
of the output.
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SUPPLEMENTARY INFORMATION

1. Small noise approximation

Here, we will derive the inheritance matrix model given by equations (3) in the main text. We assume that the
fluctuations in the hidden cell factor dynamics are small, which leads to a computationally efficient approximation.

Firstly, in the limit of zero fluctuations, all cells must be identical. Hence, all cell cy-
cle factors are equal to their means µ = (µ1, µ2, · · · , µN )> = IE(yp) and similarly for the noise vectors
β = (β1, β2, · · · , βN )> = IE(e2m) = IE(e2m+1) in Eq. (2). From (1) and (2) we then find that

τ̄ = f(µ), µ = g(µ) + β, (D2)

which can be efficiently solved for τ̄ and µ using standard numerical methods.
Secondly, we can decompose the interdivision time and the cell cycle factor vector into their respective mean and

fluctuating components by

τp = τ̄ + τ ′p, yp = µ+ x̃p. (D3)

Denoting the index of the present cell by p and the one of its mother by m, we can expand f and g around the limit
of zero fluctuations and we obtain to leading order

f(yp) = f(µ) + α̃>(yp − µ) + · · · (D4)

g(ym) = g(µ) + θ̃ (ym − µ) + . . . , (D5)

where

α̃i =
∂f(y)

∂yi

∣∣∣
y=µ

, θ̃ij =
∂gi(y)

∂yj

∣∣∣
y=µ

. (D6)

Using this expansion and (D3) in (1) and (2) of the main text we arrive at

τ̄ + τ ′p = f(µ) + α̃>x̃p + · · · , (D7)

µ+ x̃p =
(
g(µ) + θ̃x̃m + . . .

)
+ β + z̃p, (D8)

where we have set ep = β + z̃p and z̃p = (z̃p,1, z̃p,2, · · · , z̃p,N )> giving the fluctuations around the mean for the noise
vectors. Comparing (D8) with (D2) and collecting terms to leading order, we obtain the linearised system:

τ ′p = α̃>x̃p (D9)

x̃p = θ̃x̃m + z̃p. (D10)

Next, we define the diagonal scaling matrix Γ with non-zero elements as

Γii =

{
1 if α̃i = 0,

α̃i otherwise,
, (D11)

for i = 1, 2, . . . , N . Using the rescaled noise sources z = Γz̃, we find the rescaled inheritance matrix θ and α-
coefficients

αi =

{
0 if α̃i = 0,

1 otherwise,
, i = 1, 2, . . . , N, (D12)

θ = Γθ̃Γ−1. (D13)

The rescaled cell cycle factor fluctuations xm = Γx̃m follow (3) of the main text and we reach rescaled variance-
covariance matrices S1 and S2 as follows

S1 = ΓS̃1Γ
>, S2 = ΓS̃2Γ

>. (D14)
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2. Derivation of the generalised tree correlation function

In this section we derive an analytical expression for the generalised tree correlation function. This gives the Pearson
correlation coefficient in interdivision time for any pair of related cells. We start with the equation for the Pearson
correlation coefficient, and from there derive a formula for the interdivision time covariance using the known properties
of the cell cycle factors x. From this, we can derive the general formula for the correlation coefficient between any
related cell pair.

We associate a cell pair with an index (k, l) which measures the distance to the nearest common ancestor as given
in Section II B (Figure 2a). From this, we denote their interdivision time fluctuations as τ ′k and τ ′l respectively. The
Pearson correlation coefficient between these fluctuations is given by

ρ(k, l) =
Cov(τ ′k, τ

′
l )

σ2
τ ′

, (D15)

where στ ′ is the standard deviation of the interdivision time fluctuations.
The interdivision time fluctuations τ ′k and τ ′l are calculated from the vector of rescaled cell cycle factor fluctuations

xk as given in Section II A, giving the equations

τ ′k = α>xk and τ ′l = α>xl. (D16)

Substituting (D16) into (D15), we obtain a formula for ρ(k, l) in terms of the cell cycle factor fluctuations x and the
α coefficients alone

ρ(k, l) =
Cov(α>xk,α

>xl)√
Var(α>xk)

√
Var(α>xl)

, (D17)

=
α>Cov(xk,xl)α√

α>Var(xk)α
√
α>Var(xl)α

. (D18)

Since xk and xl are identically distributed in steady state, we have that Var(xk) = Var(xl) = Cov(x,x) = Σ as
specified in Methods A. We can write ρ(k, l) now as

ρ(k, l) =
α>Cov(xk,xl)α

α>Σα
, (D19)

where α>Σα gives the variance of the interdivision time fluctuations τ ′.
Using the model equation (3) we can write the formula for the x vectors for the two cells in the cell pair (k, l) as

xk = θxk−1 + zk, (D20)

xl = θxl−1 + zl, (D21)

where cells k and l have mother cells k−1 and l−1 respectively. The two cells are sisters if and only if their subscripts
are both equal to 1, meaning they share a mother cell. Using recurrence of the model, we can write these equations
as

xk = θkx0 +
k∑
i=1

θk−izi,

xl = θlx0 +
l∑

j=1

θl−jzj ,

(D22)

where x0 is the vector of cell cycle factors for the most recent common ancestor for a cell pair given by (k, l).
All that remains is to derive a function for Cov(xk,xl) which we will denote ω(k, l). We calculate ω(k, l) as follows

using expectations:

ω(k, l) = Cov(xk,xl) = IE
[
(xk − µxk) (xl − µxl)

>
]
, (D23)

= IE
[
xkx

>
l

]
− µxkµ>xl , (D24)
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where µxk and µxl are the mean vectors of xk and xl respectively which are both equal to 0, giving

ω(k, l) = IE
[
xkx

>
l

]
. (D25)

To find IE
[
xkx

>
l

]
in terms of the model parameters, we substitute in equations (D22) for xk and xl and get

IE
[
xkx

>
l

]
= IE

(θkx0

) (
θlx0

)>
+

(
k∑
i=1

θk−izk

) l∑
j=1

θl−jzj

>
 . (D26)

The noise term fluctuations z are only correlated if the cells are sisters, which only occurs when the distance we have
(k, l) = (1, 1). So for the summations above, we exclude all terms except where i = j = 1. Doing this and expanding
we get

IE
[
xkx

>
l

]
= θkIE

[
x0x

>
0

] (
θl
)>

+ δk≥1δl≥1θ
k−1IE

[
z1z

>
1

] (
θl−1

)>
, (D27)

where δk≥1 and δl≥1 are given in Equation A3. We also have that

Cov(x0,x0) = IE
[
x0x

>
0

]
. (D28)

The matrix Cov(x0,x0) is equivalent to the covariance matrix for any x, giving Cov(x0,x0) = Σ. This gives

IE
[
x0x

>
0

]
= Cov(x0,x0), (D29)

= Σ. (D30)

Similarly we have,

Cov(z2m, z2m+1) = IE
[
z1z

>
1

]
. (D31)

As IE(z) = 0, and Cov(z2m, z2m+1) = S2 as stated in Methods A, we obtain,

IE
[
z1z

>
1

]
= S2. (D32)

Equation (D27) therefore becomes:

IE
[
xkx

>
l

]
= θkΣ

(
θl
)>

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)>
. (D33)

Substituting (D33) back into (D25) we get

ω(k, l) = θkΣ
(
θl
)>

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)>
, (D34)

giving us the final equation for ω(k, l). Using the above equation in (D19), we obtain Eq. (A2) of the Methods.

3. Derivation of the formula for the oscillator periods, Tn

The period of correlation oscillation as observed in the lineage correlation functions is given by (5). We can reveal
the underlying oscillator periods by shifting the inferred period T0 to obtain a smaller period Tn. This means that
shorter periods would produce the same inferred period in the lineage correlation function when sampled at the
original frequency of once per cell cycle (Figure 5a).

The oscillator periods are obtained by adding or subtracting multiples of 2π to the argument of the eigenvalue
which results in the new argument being in the same position in the complex plane. The oscillator period Tn with
shift n in Z is therefore given by

Tn = τ̄
2π

|Arg(λ) + 2πn|
. (D35)

Taking (D35) and substituting in (5), we obtain Tn in terms of T0 as (6).
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4. Mapping mechanistic models to the inheritance matrix model

To further investigate the output of the inheritance matrix model, we propose multiple models of known cell cycle
control mechanisms, and map them to our inheritance matrix model framework. All cell size models assume symmetric
division.

a. Cell size control model with correlated growth

Considering the influence of cell size control on interdivision time [11, 14, 30], here we propose a cell size con-
trol model where we have some mother to daughter inheritance of both the added size ∆ and the growth rate κ
(SI Figure S5g). The model equations are given by:

sb,2m =
1

2
(asb,m + ∆m) , ∆2m = b∆m + ξ2m, κ2m = cκm + φ2m,

sb,2m+1 =
1

2
(asb,m + ∆m) , ∆2m+1 = b∆m + ξ2m+1, κ2m+1 = cκm + φ2m+1.

(D36)

The noise terms ξ and φ are independent between sisters such that Cov(ξ2m, ξ2m+1) = Cov(φ2m, φ2m+1) = 0. Assum-
ing exponential growth the formula for the interdivision time is given by

τp =
ln
∣∣∣a+

∆p

sb,p

∣∣∣
κp

, (D37)

where p represents the index of a given cell. Taking the vector of cell cycle factors for the mother cell to be
ym = (ym,1, ym,2, ym,3)> = (∆m, sb,m, κm)> and comparing (1, 2) with (D36) and (D37), we obtain

f(y) =
ln
∣∣∣a+ y1

y2

∣∣∣
y3

, g(y) = (by1,
1

2
(ay2 + y1), cy3)

>
, β = (IE[ξ], 0, IE[φ])>. (D38)

Then we can calculate the means from (D2),

µ1 =
IE[ξ]

b− 1
, µ2 =

IE[ξ]

(a− 2)(b− 1)
, µ3 = − IE[φ]

c− 1
. (D39)

Then using (D38) in (D6) and (D13), we find

α =

1
1
1

 , θ =

 b 0 0
1
2 (a− 2) a

2 0
0 0 c

 . (D40)

Assuming S̃2 = 0 and using (D14), we find

S1 =


(a− 2)2(b− 1)2(c− 1)2Var[ξ2m]

4IE[ξ]2IE[φ]2
0

(a− 2)(b− 1)(c− 1)3 ln |2|Var[φ2m]Var[ξ2m]

2IE[ξ]IE[φ]3

0 0 0
(a− 2)(b− 1)(c− 1)3 ln |2| Var[φ2m]Var[ξ2m]

2IE[ξ]IE[φ]3
0

(c− 1)4 ln |2|2 Var[φ2
2m]

IE[φ]4

 . (D41)

The θ matrix has eigenvalues λ = (a2 , b, c) which give an aperiodic pattern for a, b, c > 0 and an alternator pattern
otherwise (SI Figure S5i,j). These same patterns arise for all real eigenvalues in the 3D model in the same was as in
the two-dimensional system. Only a single negative eigenvalue is needed for the lineage correlation function to display
an alternator pattern. We are restricted to a in (−2, 2) and b, c in (−1, 1) to ensure SR(θ) < 1. The cousin-mother
inequality for this system is too complex to be looked at analytically, so we use numerical methods to visualise the
parameter region in which the cousin-mother inequality can be satisfied (SI Figure S5h).

For this model with parameters chosen for an aperiodic pattern, we observe positive same factor mother-daughter
correlation and negative alternate factor mother-daughter correlation (SI Figure S5k). In contrast, for an alternator
pattern, the mother daughter same factor correlation is negative, but the alternate factor correlations vary between
positive and negative values (SI Figure S5l).
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For the special case of b = Var[φ] = 0 and c = 1, the model reduces to a simple cell size control model with
fluctuating added size (SI Figure S5a). The inheritance matrix θ then has eigenvalues λ = (0, a2 ). Thus depending
on the choice of a, this model can produce both an alternator and aperiodic pattern (SI Figure S5c,d). In this case,
we can also find the cousin-mother inequality using (A2), which becomes

a2(a− 2) + 4|a− 2| < 0. (D42)

This is only true for |a| > 2 which is not possible under the restriction SR(θ) = a
2 < 1, meaning the cousin-mother

inequality cannot be satisfied for any choice of a by this simple model (SI Figure S5b).
For an aperiodic pattern, this simplified model exhibits positive same factor mother-daughter correlation and

negative alternate factor mother-daughter correlation (SI Figure S5e). In the alternator case, this model exhibits
negative same factor mother-daughter correlation and also negative alternate factor mother-daughter correlation
(SI Figure S5f).

b. Abstract cell cycle phase model

We propose a model of two abstract cell cycle phases that have no integrated dependence on cell size (SI Figure S5m).
The model equations are given by

y2m,1 = aym,1 + bym,2 + ξ2m,

y2m+1,1 = aym,1 + bym,2 + ξ2m+1,

and

and

y2m,2 = cym,2 + φ2m,

y2m+1,2 = cym,2 + φ2m+1.
(D43)

The noise terms ξ and φ are independent between sister cells such that Cov(ξ2m, ξ2m+1) = Cov(φ2m, φ2m+1) = 0. In
this case we have that the two factors make up the length of the cell cycle, so we simply have τp = yp,1 + yp,2.

Therefore using (1), and (2) we obtain

f(y) = y1 + y2, g(y) = (ay1 + by2, cy2)>, β = (IE[ξ], IE[φ])>. (D44)

We calculate the means from (D2),

µ1 =
bIE[φ] + (1− c)IE[ξ]

(1− a)(1− c)
, and µ2 =

IE[φ]

1− c
. (D45)

Then using (D44) in (D6) and (D13), we find

α =

(
1
1

)
, θ =

(
a b
0 c

)
. (D46)

As the noise terms are independent between sisters we have S̃2 = 0 and using (D14) we obtain

S1 =

(
Var[ξ2

2m] Var[ξ2m]Var[φ2m]
Var[ξ2m]Var[φ2m] Var[φ2

2m]

)
. (D47)

The inheritance matrix θ has eigenvalues λ = (a, c) which gives an aperiodic pattern for a and c > 0 and an alternator
pattern otherwise (SI Figure S5o,p).

The analytical form of the cousin-mother inequality is complex so we use numerical methods to visualise the
parameter region in which the cousin-mother inequality can be satisfied (SI Figure S5n).

We calculate individual factor mother-daughter correlations and find that for an aperiodic pattern, the model
exhibits a range of correlation patterns (SI Figure S5q). However, for an alternator pattern, we obtain positive same
factor mother-daughter correlation and negative alternate factor mother-daughter correlation (SI Figure S5r)

c. Generational kicked cell cycle model

Here we propose a kicked cell cycle oscillator model using our existing framework. This combines inheritance of
interdivision time from mother to daughter with a cell cycle ‘kick’ that is generation dependent (SI Figure S5s). We
demonstrate how this is comparable to the kicked cell cycle control model based on birth time proposed in [35]. In
this model we see a combination of oscillator and both aperiodic and an alternator patterns explored in Section II B,
which gives interesting and higher complexity patterns in the generalised tree correlation function (SI Figure S5u,v).
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Consider the 3× 3 inheritance matrix θ and noise vector z2m given by

θ =


a D cos

2π

P
−D sin

2π

P
D cos

2π

P
+D sin

2π

P

0 D cos
2π

P
D sin

2π

P

0 −D sin
2π

P
D cos

2π

P

 and z2m =

ξ2m,1 + ξ2m,2 + ξ2m,τ
ξ2m,1
ξ2m,2

 , (D48)

where ξs are drawn from some distribution and the noise terms are independent such that S2 = Cov(z2m, z2m+1) = 0.
This results in a noise covariance matrix S1 given by

S1 =

 IE[ξ̃2] IE[ξ̃ξ2m,1] IE[ξ̃ξ2m,2]

IE[ξ̃ξ2m,1] IE[ξ2
2m,1] IE[ξ2m,1ξ2m,2]

IE[ξ̃ξ2m,2] IE[ξ2m,1ξ2m,2] IE[ξ2
2m,2],

 , (D49)

where ξ̃ = ξ2m,1 + ξ2m,2 + ξ2m,τ . The inheritance matrix θ has eigenvalues λ = (a,De+i 2πP , De−i
2π
P ) which for a in R

give a combination of real and complex eigenvalues, combining an oscillator pattern with aperiodic and alternator
systems. For each of a = 0.5 and a = −0.5 we choose a coordinate (D,P ) that satisfies the cousin-mother inequality
for both regions and plot the generalised tree correlation function (SI Figure S5u,v). In particular the combination
of oscillator and an alternator pattern can be seen visually in the plot for a = −0.5 (SI Figure S5v).

We numerically analyse the region of parameters D and P in which the cousin-mother inequality can be satisfied
for a = 0.5 (SI Figure S5t, blue) and a = −0.5 (SI Figure S5t, orange); observing that the regions oppose each-other
for these opposite values of a.

We compute same factor and alternate factor mother-daughter correlations for these chosen parameter sets, and
observe that for an aperiodic pattern the same factor mother to daughter correlation is generally negative. In contract,
the alternate factor mother-daughter correlation spans a range of both positive and negative values (SI Figure S5w).
For an alternator pattern, both same and alternate mother-daughter correlations span both positive and negative
values, however most points lie in the positive same and positive alternate factor mother-daughter correlation (SI Fig-
ure S5x).

Returning to our inheritance matrix model system determined by θ and S1, if we assume α = (1, 0, 0)>, the
interdivision times of a daughter cell in generation n is governed by

τn = aτn−1 + x̂n,1 + x̂n,2 + zn, (D50)

where τn is the interdivison time that is driven by a process

x̂n = θ̂x̂n−1 + ẑn, (D51)

with inheritance matrix

θ̂ =

 D cos
2π

P
D sin

2π

P

−D sin
2π

P
D cos

2π

P

 . (D52)

(D51) can be solved analytically to get

x̂n = θ̂nx̂0 +
n∑
i=1

θ̂n−iẑi. (D53)

Substituting (D53) into (D50) we get

τn = aτn−1 +
2∑
j=1

(
θ̂nx̂0 +

n∑
i=1

θ̂n−iẑi

)
j

+ zn. (D54)

Assuming that the cell cycle factors x̂ have deterministic dynamics, i.e., ẑi = 0, the eigenvalue decomposition of θ̂
means we can write (D54) as

τn = aτn−1 +Dn

(
x̂+

0 cos
2πn

P
+ x̂−0 sin

2πn

P

)
+ zn, (D55)
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where x̂+
0 = (x̂0,1 + x̂0,2) and x̂−0 = (x̂0,1 − x̂0,2) which represent initial conditions.

In conclusion, comparing (D55) to Eq. (1) and (2) in [35], we see that the inheritance matrix model is compatible
with the kicked cell cycle model if D = 1, x̂+

0 = 0 and tn =
∑n
i=1 τn ≈ nτ̄ . Thus we expect the two models to be

equivalent for large n. Here, our model kick depends on the point the cell is at throughout it’s cycle as opposed to
the point in relative time.

5. Inference validation using simulated data

To validate the inference results discussed in the main text we simulate interdivision time data using the maximum
posterior parameters from the inference on two of the original live imaging datasets, and compare the output and
model fit to our original inference.

We take the maximum posterior parameter sets from the original inference on two datasets (Table S2), cyanobacteria
and mouse embryonic fibroblasts, and produce simulated interdivision time lineage data in MATLAB using custom
scripts and Random Trees [60]. We chose to look at these two datasets in order to analyse the posterior distribution
of the inferred underlying period T−1 to compare to the approximately 24h results seen in the main text.

From this simulated data, the correlation coefficients are calculated using the methods outlined in Methods D, and
then we look at the model inference on these new, simulated correlations, to compare to the original. These simulations
produce correlation patterns that reproduce the experimentally measured correlations (comparing SI Figure S8a-b
with Figure 3a,f).

The posterior distribution of the simulated patterns are the same for the cyanobacteria, exhibiting an 100% oscillator
pattern (SI Figure S8a), matching the fitting to the original dataset (Figure 3a). Mouse embryonic fibroblasts
(SI Figure S8b) loses some of it’s original 100% oscillator pattern (Figure 3f) in favour of an alternator pattern.
However, an oscillator pattern is still dominant.

We see that for cyanobacteria (SI Figure S8c) and mouse embryonic fibroblasts (SI Figure S8d), the posterior dis-
tribution for the inference on the simulated data for the correlation function oscillatory period, T−1 (SI Figure S8c,d),
exhibits a large overlap with the original posterior distribution discussed in Section II G 2 (Figure 5e). The difference
in the median for these posterior distributions is 0.42h for mouse embryonic fibroblasts (SI Figure S8d) and just 0.11h
for cyanobacteria (SI Figure S8c). This result validates our analysis of these posterior distributions showing that the
period that we reconstruct from the simulated correlation patterns is consistent with the original data.
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SUPPLEMENTARY TABLES

Cell type Mean τ (h) Variance sτ CV ρmd ρgg ρss ρcc 1D AIC 2D AIC ref.
Cyanobacteria (S. elongatus) 15.47 ± 3.27 10.67 ± 0.36 0.211 ± 0.004 −0.25 ± 0.024 −0.16 ± 0.028 0.63 ± 0.028 0.40 ± 0.019 406.12 14.01 [13]

Clock deleted cyanobacteria (S. elongatus ∆KaiBC) 14.43 ± 1.89 3.57 ± 0.15 0.13 ± 0.003 −0.02 ± 0.027 0.12 ± 0.032 0.48 ± 0.025 0.26 ± 0.021 170.47 14.00 [13]
Mycobacteria (M. smegmatis) 2.52 ± 0.65 0.42 ± 0.03 0.26 ± 0.010 −0.16 ± 0.041 −0.05 ± 0.051 0.55 ± 0.033 0.05 ± 0.040 6.70 14.01 [22]

Human colorectal cancer (HCT116) 16.39 ± 2.55 6.49 ± 1.10 0.15 ± 0.012 0.07 ± 0.141 −0.08 ± 0.227 0.73 ± 0.047 0.34 ± 0.070 20.20 14.23 [23]
Neuroblastoma (TET21N) 17.12 ± 3.13 9.79 ± 0.68 0.18 ± 0.006 0.35 ± 0.027 0.15 ± 0.022 0.69 ± 0.021 0.40 ± 0.018 194.79 14.00 [24]

Mouse embryonic fibroblasts (NIH3T3) 20.40 ± 6.09 37.03 ± 4.31 0.30 ± 0.015 0.39 ± 0.040 −0.01 ± 0.057 0.59 ± 0.029 0.22 ± 0.047 19.64 14.01 [25]

TABLE S1. Computed measures from each of the publicly available datasets used in this work. Mean interdivision time τ and
all correlations (± standard deviation of the bootstrap distributions from 10,000 re-samplings with replacement) were calculated
on all available cells that could be put in the required family pair (Methods D). Shaded datasets exhibit the cousin-mother
inequality.

Matrix
Cyanobacteria
(S. elongatus)

Mouse embryonic
fibroblasts (NIH3T3)

θ

(
−0.561848009 −0.144058395
1.534655933 −0.255834609

) (
−0.417019954 −1.401854729
0.544365633 1.127838871

)
S1

(
2.373007424 0.097863327
0.097863327 1.410419383

) (
103.123125667 −83.980021238
−83.980021238 80.112064942

)
S2

(
0 0
0 0

) (
0 0
0 0

)
α

(
1
1

) (
1
1

)
TABLE S2. Maximum posterior matrices from the original inference, used to simulate interdivision time trees used for analysis
in SI Section D 5 SI Figure S8
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SUPPLEMENTARY FIGURES

FIG. S1. One-dimensional model with simple inheritance rules results in a poor fit for datasets displaying
the cousin-mother inequality. (a-f) Plots showing data (open markers) against model predictions (solid black) for the
one-dimensional model [27] for (a) cyanobacteria, (b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human colorectal
cancer, (e) neuroblastoma and (f) mouse embryonic fibroblasts. We fit the model using the same likelihood function (D1) and
methods (Methods D) as in the main text. Points (black) give the median model output for each correlation and error bars
give the 95% bootstrapped confidence intervals from 10,000 re-samplings with replacement. Circular points show the model
fitted correlations (mother-daughter, grandmother-granddaughter, sister-sister and cousin-cousin) whereas triangular points
demonstrate model predictions.
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FIG. S2. Bayesian inference demonstrates that multiple correlation patterns can explain the experimental data
(a-f.i) Plots of model fits and predictions (solid markers) against the data (open markers) for the family pair correlation
coefficients for (a) cyanobacteria, (b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human colorectal cancer, (e) neu-
roblastoma and (f) mouse embryonic fibroblasts. Colours of the solid markers represent the fits and predictions for parameter
samples clustered by correlation pattern. Inset for each panel is a bar chart giving the distribution of the three patterns for
each dataset. (a-f.ii) Plots of model output against the data for the interdivision time covariance. In this figure, the error
bars for the data (unfilled black points) are calculated via bootstrapping of 10,000 samples with replacement to give the 95%
confidence interval. For the model, error bars represent the 95% credible interval, computed by taking the 2.5th and 97.5th
percentile of the sampled values. For all plots, circles indicate fitted correlations and triangles show predicted correlations. We
can see that the model fit is good for all datasets as the error bars overlap with that of the data, and this is reflected in the
low AIC given in Table S1.

FIG. S3. The log-likelihood converges during the parameter inference (a) Trace of the log-likelihood from four
initialisations of the inference on the clock-deleted cyanobacteria dataset (different colours.) (b) Histogram of the posterior
distribution of the log-likelihood for the inference samples on the clock-deleted cyanobacteria dataset. The histogram for each
average aligns demonstrating convergence of the log-likelihood.
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FIG. S4. Two-dimensional inheritance matrix model gives a good fit for α = (1, 0)>. Same panels as in Figure 3 but
with α = (1, 0)> and showing only one sample. We show the calculated family correlations with 95% bootstrapped confidence
intervals (open markers) and a single sample of the model fit for (a) cyanobacteria, (b) clock-deleted cyanobacteria, (c)
mycobacteria, (d) human colorectal cancer, (e) neuroblastoma and (f). Posterior parameter sets are clustered by correlation
patterns (bar charts.) For this fitting we used 100,000 samples (in contrast to 10million used in the main text). We see a similar
fit and pattern distributions for all cell types except for mycobacteria (c), which here displays a dominant oscillator pattern
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FIG. S5. Mapping mechanistic models to the inheritance matrix model framework. (a-f) Simple cell size control
model. (a) Model schematic. (b) The cousin-mother inequality cannot be satisfied for any choice of parameter a. (c-d)
Generalised tree correlation function plots (c) for a = 1 and (d) a = −1.5 resulting in aperiodic and an alternator pattern
respectively. (e-f) Same vs alternate factor mother-daughter correlation plots for (e) a = 1 and (f) a = −1.5 . In panels
(b-f) we fix IE[ξ] = 1,Var(ξ) = 0.1, κ = 1. (g-l) Cell size control model with correlated growth rate. (g) Model schematic.
(h) Region plot with fixed parameter a = 1 showing the parameter space b, c in (−1, 1) that satisfies the cousin-mother
inequality (blue). Example parameter choices are also plotted for an aperiodic (yellow) and an alternator (red) pattern. (i-j)
Generalised tree correlation function plots for (i) (b, c) = (0.2, 0.7) and (j) (b, c) = (−0.81, 0.88) resulting in aperiodic and an
alternator pattern respectively. (k,l) Same vs alternate factor mother-daughter correlation plots for (k) (b, c) = (0.2, 0.7) and
(l) (b, c) = (−0.81, 0.88). In panels (h-l) we fix IE[ξ] = IE[φ] = 1,Var(ξ) = Var(φ) = 1, κ = 1. (m-r) Two cell cycle phase
model (m) Model schematic. (n) Region plot with fixed parameter b = −0.75 showing the parameter space a, c in (−1, 1)
that satisfies the cousin-mother inequality (blue). Example parameter choices are also plotted for an aperiodic (yellow) and an
alternator (red) pattern. (o-p) Generalised tree correlation function plots (o) for (a, c) = (0.3, 0.4) and (p) (a, c) = (−0.25, 0.9)
resulting in aperiodic and an alternator pattern respectively. (q-r) Same vs alternate factor mother-daughter correlation plots
for (q) (a, c) = (0.3, 0.4) and (r) (a, c) = (−0.25, 0.9). In panels (n-r) we fix Var(ξ) = Var(φ) = 1. (s-x) Kicked cell cycle
model. (s) Model schematic. (t) Region plot with for a = 0.5 (blue) and a = −0.5 (orange) showing the parameter space
P in (0, 8], D in (0, 1) that satisfies the cousin-mother inequality. Example parameter choices are also plotted for a mixed
oscillatory-aperiodic (yellow) and a mixed oscillatory-alternator (red) pattern. (u-v) Generalised tree correlation function
plots (u) for (D,P ) = (0.85, 3) and (v) (D,P ) = (0.85, 5) resulting in mixed oscillator-aperiodic and oscillator-alternator
patterns respectively. (w-x) Same vs alternate factor mother-daughter correlation plots for (u) (D,P ) = (0.85, 3) and (v)
(D,P ) = (0.85, 5). In panels (t-x) we fix IE[ξ1] = IE[ξ2] = IE[ξτ ] = 0.1. For all region plots (b, h, n, t), the condition SR(θ) < 1
is satisfied for the whole region shown. For all same against alternate factor mother-daughter correlation plots (far right), the
darker shaded region indicates the region in which the average of all the plotted points lies.
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FIG. S6. A range of oscillator periods can explain oscillatory interdivision time patterns. Histogram of the posteriors
of the possible periods underlying the lineage correlation function for (a) cyanobacteria, (b) mouse embryonic fibroblasts and
(c) human colorectal cancer, calculated using Equation 6. Numerical values give medians of the posterior distributions for each
Tn. For (c) human colorectal cancer, we take the median period of each cluster where the clusters are allocated through the
sign of the real part of the eigenvalue (see Figure 5). For all panels the correlation oscillation period T0 is given in green and
the oscillator periods in different colours. The period analysed in Section II F corresponds to the histograms of T−1 (blue).
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FIG. S7. Observed period T0 against chosen period parameter P for a forced oscillator pattern. Plot of the
function for P against the observed lineage correlation function period T0 given in Equation (C1) (blue line), for an oscillator
pattern given in Section II B. We see that T0 = P for P > 2. For chosen T0 = 3 with τ = 1 and various n we see how the
parameters P that produce the corresponding T0s are directly equal to the possible Tn we can derive from the chosen T0 (black
points), using Equation (6).
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FIG. S8. Validation of the Bayesian inference method using simulated data. Model fits and distribution of
patterns for data simulated using the maximum posterior parameter set (Table S2) for (a) cyanobacteria, and (b) mouse
embryonic fibroblasts. To simulate interdivision time lineage trees, we take the maximum posterior parameter sets from the
original inference on the two datasets. These trees are simulated using Eqs. (3) in MATLAB using custom scripts which utilise
‘Random trees’ branching process [60]. For each dataset, we first simulate a complete tree of 11 generations (2047 cells) and
take the last 1000 cells to sample stationary initial conditions. For the final simulated data, we simulated a number of smaller
trees of 6 generations (63 cells each) to better represent live imaging experiments. We divide the number of cells in the original
dataset by 63 and simulate this number of trees, with each tree having initial condition sampled from the last 1000 cells of
the original large tree. We then randomly sample 85% of the simulated cells without replacement to imitate loss of cells from
imaging mid experiment. The calculation of the family interdivision time correlation coefficients and the parameter inference
was done in the same way as with the original datasets as outlined in Methods D. Pearson correlation coefficients (white dots)
and 95% bootstrapped confidence intervals (error bars) were obtained through re-sampling with replacement (10,000 samples)
of the simulated data. Posterior samples were clustered into aperiodic, alternator, and oscillator patterns (bar charts). We
show several representative samples (solid and shaded lines) of the model fit drawn from the posterior distribution. We assume
α = (1, 1)>. (c-d) Histograms of the inferred oscillator period T−1 for the original inference (blue) and inference on the
simulated data (orange) for cyanobacteria (c) and mouse embryonic fibroblasts (d), demonstrating significant overlap of the
oscillator period of the simulated parameter set (black dashed line) and the posterior distribution from Bayesian inference.
Note that the posterior distributions of the real (red) and simulated datasets (blue) also overlap. Dashed lines give the median
period of these posterior distributions for original inference (blue) and inference on simulated data (orange). Maximum posterior
parameters used in the simulations are given in Table S2.
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