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ABSTRACT 

Catecholamines, such as L-norepinephrine (L-NE), are naturally present in the human gut and 

are discharged into the sewage. The bioactivity of L-NE can significantly alter the speciation 

and function of the microbial community by stimulating bacterial growth and producing H2O2. 

The accompanying changes in intracellular metabolism could significantly impact biological 

wastewater treatment processes, but they have remained unexplored. We investigate the 

alterations by L-NE and two other Catecholamines (Dopamine, and L-Dopa) to microbial 

consortia sourced from a dairy farm settling pond (FS) and the activated sludge of a municipal 

wastewater treatment plant (MS). We contrast the effect of the catecholamines on these mixed 

microbial communities with dextrose, a readily degradable substrate, and elevated levels of 

intracellular H2O2 through high dissolved oxygen (HDO) perturbations and exogenous 

applications of paraquat (PQ) and hydrogen peroxide (H2O2). The microbial community 

composition in different catecholamines was similar to the Dextrose treatment. However, there 

were significant changes in the PQ and H2O2 supplemented systems. In addition, the functional 

potential of the microbial communities with catecholamines and Dextrose were similar and 

provided insight into metabolic shifts from the control systems.  While exogenous H2O2 

increased the abundance of Rhodocyclaceae, Flavobacteriaceae and Chitinophagaceae and 

others, L-NE paralleled dextrose by increasing Pseudomonadaceae, Moraxellaceae, and 

Sphingobacteriaceae in the microbial consortia. A number of protein functions related to 

oxidoreductase, peroxidase, and catalase activities, ATP and FAD/FADH2 binding, nitrate 

reductase, and glutamate-ammonia ligase activity were differentially expressed by L-NE over 

dextrose, but many of the ROS-scavenging functions were overexpressed in the exogenous 

H2O2 treatment over L-NE. A proteome-constrained flux balance analysis showed that in 

comparison to dextrose, L-NE increased the fluxes of gluconeogenesis, glycolysis, oxidative 

stress metabolism, and glutamate metabolism. L-NE increases stress tolerance and microbial 

growth by upregulating the activities of oxidative stress mitigating enzymes (catalase and 

thioredoxin) and nitrogen assimilation activities (glutamine formation). 
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Introduction 

Catecholamines are produced by the enzymatic oxidation of the amino acid tyrosine in the 

mammalian brain, nerve tissues, and adrenal glands (Saller et al. 2012). These chemicals 

regulate many vital physiological and metabolic responses in the gut and contribute to human 

gut-brain communication (Lyte 2013). Previous studies on catecholamines have primarily 

examined microbiota interactions in the human gut (Eisenhofer et al. 1997; Freestone et al. 

2008; Zhou, Hank Simms, and Wang 2004). Some studies have investigated pathogen 

colonization as norepinephrine and other catecholamines regulate several microbial functions 

relating to pathogenicity (Chen et al. 2003; Cogan et al. 2007; Nakano et al. 2007; Truccollo, 

Whyte, and Bolton 2020). L-norepinephrine (L-NE), a typical catecholamine, is a stress 

hormone that regulates crucial phenotypes for pathogen infections such as motility, growth, 

adhesion, biofilm formation, and virulence (Bansal et al. 2007; Gao et al. 2019; Sandrini et al. 

2014; Sarkodie et al. 2019). L-NE addition causes rapid growth of Gram-negative bacteria 

(Kinney et al. 2000); Gram-positive bacteria also respond to L-NE, but most do not exhibit 

rapid growth (Freestone et al. 1999). However, some studies have reported adverse effects on 

microbial growth (Belay et al. 2003; Burton et al. 2002).  The L-NE-associated stimulation of 

bacterial growth is not linear dose-dependent, occurring only when L-NE is above specific 

threshold concentrations (Gao et al. 2019). In addition to promoting growth, L-NE influences 

diverse cellular functions by upregulating gene expression for enzyme metabolism, DNA 

repair, metabolism, ribosomal protein biosynthesis, motility, and virulence (Gao et al. 2019; 

Xu et al. 2015). L-NE metabolism involves reactive oxygen species (ROS) such as superoxide 

ion radicals (O2
·-) and hydrogen peroxide (H2O2) (Maggiorani et al. 2017; Neri et al. 2007; 

Saller et al. 2012). These ROS can influence various cell fate decisions and signal transduction 

pathways, for example, through reversible oxidation and reduction of amino acids (Holmström 

and Finkel 2014). At the low physiological levels in the nanomolar range, these ROS are key 

signalling agents involved in metabolic regulation, activating numerous growth-supporting 

pathways (Bonavita and Laukkanen 2021; Sies 2017; Thannickal and Fanburg 2000). Applying 

sublethal levels of H2O2 to Pseudomonas putida reconfigures intracellular metabolism by 

redirecting periplasmic glucose processing to cytoplasmic oxidation and significantly 

increasing NADPH-forming fluxes to energize the glutathione system and decrease H2O2 

(Nikel et al., 2021). However, elevated levels of ROS can oxidize proteins and damage 

biomolecules, causing growth arrest and cell death (Imlay 2013; Sies and Jones 2020; Yang et 

al. 2019). Interestingly, despite the production of ROS by cellular metabolism, L-NE induces 
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rapid growth of the microbial population. This interplay of the overall effect of ROS production 

and rapid microbial growth has not been previously examined and demands an in-depth 

investigation. In particular, if these conditions lead to the survival and proliferation of 

pathogens or alter the carbon and nitrogen metabolism, it could have significant consequences 

on the performance of biological processes in wastewater treatment. Deciphering the microbial 

responses to L-NE is necessary to gain insight into unacknowledged threats from 

uncharacterized bioactive substances naturally present in wastewater.  

In this study, we explore the effects of catecholamines on the growth, speciation, and 

metabolism of the microbial communities. We assess the impact of three representative 

catecholamines (L-NE, Dopamine, and L-Dopa) on mixed microbial cultures from a dairy farm 

settling pond and the aerobic reactor of a municipal wastewater treatment plant in Auckland, 

New Zealand. Furthermore, we compare the shift in the microbial population under different 

catecholamine treatments with exogenous ROS application as well as under nutrient-rich 

conditions where dextrose was provided as an easily degradable substrate. Using these controls 

we interpret the impact of catecholamines on the compositional shift in the microbial 

communities via ROS formation and alteration in their metabolic functions. We adopt a top-

down approach by implementing 16s rRNA-based taxonomic profiling of the metagenomes 

from different treatments to decipher the change in the microbial population, followed by 

inferring the functional potential of the microbial communities, and metaproteome-based 

confirmatory functional analysis. Finally, we investigate the specific effects of L-NE by 

performing the proteome-constrained flux balance analysis (FBA) to link the shifts in 

metabolic pathways to the observed microbial growth. 

Material and Methods 

Batch experiments  

Sludge samples were collected from the settling pond at a dairy farm (FS) and activated sludge 

from a municipal wastewater treatment plant (MS) in Auckland, New Zealand. The microbial 

cultures were acclimated by adding 10 mL of sludge to 20 mL of synthetic wastewater 

containing 400 mg/L-COD of acetate, 60 mg-N/L of ammonium (was it added as ammonium 

chloride) supplemented with 25 mM of HEPES buffer (DI water), and incubated overnight at 

37˚C on a rotating shaker. The acclimated cultures were centrifuged at 4,000 rpm for 10 min 

and washed twice with phosphate-buffered saline (PBS). We used a standard curve of A595 

versus colony forming units (CFU) to seed 1L bioreactors to 100 CFU mL-1 with the washed 
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dairy farm and the wastewater treatment plant cultures as a final microbial concentration in the 

bioreactors. The final concentrations of bacteria inoculated into bioreactors were determined 

on tryptic soy agar (TSA) plates using standard pour-plate technique. Batch experiments were 

conducted using 1×10-5 M, 5×10-5 M and 1×10-4 M L-NE in bioreactors to simulate 

physiologically relevant L-NE levels observed in vivo (Lyte, Frank, and Green 1996). Tests 

with other catecholamines, L-DOPA and Dopamine, were also performed using procedure 

similar to L-NE at only one optimised concentration of 5×10-5 M. Reactors with similar 

dextrose levels served as controls for easily degradable carbon course, although this approach 

added 10X carbon in the dextrose controls compared to the corresponding L-NE reactors. Two 

bioreactors seeded with 50 M paraquat (PQ) and 50 M H2O2 added to municipal sludge 

cultures served as ROS control. All bioreactors were continuously mixed at 100 rpm on 

magnetic stirrers and operated at room temperature 22-25˚C for 24 h. The experimental 

conditions for the cultures tested are summarised in Table 1. The microbial growth in 

bioreactors was measured using the standard pour plate technique on tryptic soy agar (TSA) 

plates. The samples were collected at 0, 8 and 24 h. The 24 h samples were analysed in 

duplicate for bacterial growth, total abundance of ROS genes oxyR and SoxRS, proteins and 

microbial composition (Table S1). Additional methodological details (specify which 

methodologies) are provided in the Supplementary Information S1.1.  

Table 1. Description of the experimental conditions tested in this study. 

Experimental Condition Description 

High Dissolved Oxygen 

(HDO) 

Base condition with the dairy farm and activated sludge cultures 

maintained in synthetic wastewater under constant aeration to 

maintain ~8 mg/L of dissolved oxygen. 

Dextrose 
The HDO cultures supplemented with 1x10-5 M, 5x10-5 M or 

1x10-4 M dextrose to serve as metabolic carbon source control. 

L-NE 
The HDO cultures supplemented with 1×10-5, 5×10-5 or 1×10-4 

M L-NE. 

Dopamine The HDO cultures supplemented with 5×10-5 M Dopamine. 

L-Dopa The HDO cultures supplemented with 5×10-5 M L-Dopa. 

PQ 
The activated sludge culture maintained in synthetic wastewater 

media containing 50 M paraquat to serve as ROS control. 

H2O2 
The activated sludge culture maintained in synthetic wastewater 

media containing 50 M hydrogen peroxide as ROS control. 
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Microbial DNA isolation and Taxonomic Profiling  

The composition of the bacterial community was characterised by amplifying and sequencing 

bacterial 16S ribosomal RNA (rRNA) gene fragments with the universal 16S PCR forward 

primer (5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3') 

and the 16S PCR reverse primer (5'-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAA

TCC-3') following a standard protocol (Quast et al. 2013); nucleotide bases in bold are Illumina 

overhang adapter sequences for high-throughput sequencing. Amplified PCR products were 

purified using an AMPure XP beads kit (Beckman Coulter Inc.) and DNA concentrations were 

recorded using a Qubit® dsDNA HS Assay Kit (Life Technologies) according to the 

manufacturer's instructions and then sequenced on an Illumina MiSeq machine (New Zealand 

Genomics Ltd., Auckland, New Zealand) using 2-by-300 bp chemistry. Before DNA 

sequencing, the sequencing provider attached a unique combination of Nextera XT dual indices 

(Illumina Inc., USA) to the DNA of each sample to allow multiplex sequencing. The resulting 

paired-end read DNA sequence data were merged and quality filtered using the USEARCH 

sequence analysis tool (Edgar 2013). Data was de-replicated so that only one copy of each 

sequence was retained. Sequence data were then checked for chimeric sequences and clustered 

into groups of operational taxonomic units based on a sequence identity threshold equal to or 

greater than 97% (thereafter referred to as 97% OTUs) using the clustering pipeline UPARSE 

(Edgar, 2013) in QIIME v.1.6.0, as described (Bates et al., 2014). Prokaryote phylotypes were 

classified according to their corresponding taxonomy by implementing the RDP classifier 

routine (Wang et al. 2007) in QIIME v. 1.6.0 (Caporaso et al. 2010) to interrogate the 

Greengenes 13.8 database (McDonald et al. 2012). All chloroplast and mitochondrial DNA 

sequences were removed. Finally, DNA sequence data were rarefied to a depth of 5,600 

randomly selected reads per sample and two samples per treatment to achieve a standard 

number of sequencing reads across all samples.  

Functional Potential of the microbiomes under different treatment conditions 

Initially, the 16S rRNA amplicon sequence-based family-level taxonomic data were 

normalized with respect to a reference database containing the 16S copy numbers of microbial 

species. Individual microbes are considered to have contributed independently to the overall 

function/metabolism of a sample with their own enzyme pool. The enzyme abundance profiles 

for each individual taxa in a sample are represented by: 
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𝐸 =  ∑ 𝐸𝑐i 𝑥 𝐴𝑏i

𝑛

𝑖=1

 

Wherein, 

E = Effective abundance value of an enzyme.  

Eci = Enzyme Copy Number value in ith taxon of a sample. 

Abi = 16S and Sample Size Normalized Abundance Value (if chosen) of ith taxon in the given 

sample. 

n = Number of taxa expressing the Enzyme in the sample. 

The enzyme abundance profile(s) are further used to compute the relative abundance of 

metabolic pathways at all three levels of the KEGG hierarchy. The following mathematical 

expression is used to calculate the pathway abundances for every taxon in a sample: 

𝑃𝑏 =  ∑ 𝐸i

𝑛

𝑖=1

 

Wherein, 

Pb = Effective Abundance Value of the KEGG Pathway in bth taxon of the sample 

Ei = Effective abundance of ith enzyme involved in the Pathway, as obtained in the Enzyme 

Abundance data for the bth taxon 

n = Number of enzymes (corresponding to the KEGG pathway) present in the taxon. 

The above steps are included in the iVikodak workflow (Nagpal et al. 2019) and has been 

utilised for inferring the functional profile of the microbial communities. 

An unit variance scaling method followed by Singular Value Decomposition (SVD) were 

applied before performing the principal component analysis (PCA) on the functional 

contribution data. Hierarchical clustering of the heatmap starts with calculating all pairwise 

distances. Here, clustering distances are the Pearson correlation with the average distance of 

all possible pairs used for linking as described in ClustVis (Metsalu and Vilo 2015). 

Real-time quantitative PCR 

The abundances of the ROS responsive genes, soxRS and oxyR, for superoxide ion and 

hydrogen peroxide were determined using qPCR (QuantStudio 5 Real-Time PCR System). The 

total bacterial gene DNA was extracted from 1 mL samples using a PowerSoil DNA isolation 

kit (MoBio, Carlsbad, USA) as per the manufacturer's protocol. In brief, the qPCRs were 

performed using 5 µl of the Power SYBR® Green PCR master mix, 0.5 µl of the 10 µM forward 

and 10 µM reverse primers, and 2 µl of extracted gene DNA, made up to 10 µl with Gene 
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amplification was analysed by measuring fluorescence. The complete methodology is 

presented under Supplementary Information S1.2. 

Protein extraction and identification 

The enzymes for oxidative stress and central carbon metabolism (TCA and nitrogen cycle) 

were extracted by lysing cells in the dairy farm and municipal sludge cultures. One ml of the 

culture was pelleted at 16,000 xg for 5 min at 4°C and washed twice with 50 mM ammonium 

bicarbonate. The washed pellets were resuspended in 150 µl of 7M urea-thiourea buffer and 

sonicated for 15 s in three rounds on ice. The extracted proteins were separated from residual 

cellular material by centrifuging at 16,000 xg for 5 min. The proteins in the supernatant were 

quantified using the EZQ fluorescence protein assay (EZQ protein quantification kit) as per the 

manufacturer's protocol. Briefly, Trypsinization was performed on samples, and the proteins 

were recovered using HLB solid phase extraction cartridges. Finally, 30 µL of the generated 

tryptic peptides of the microbial proteins were injected into a SCIEX 6600 triple TOF mass 

spectrometer (AB Sciex, Australia). The proteins were identified by comparing the peptide 

sequences against UniProt database (Uniprot.org). The complete methodology is presented 

under Supplementary Information S1.3.  

Metaproteome Data Analysis 

Two separate pipelines for matching peptides were pursued to identify functions related to 

specific peptides. In the first pipeline, all 40 detected peptides were searched against the 

Uniprot database using the Peptide Search tool (https://www.uniprot.org/peptidesearch/). The 

data from Peptide Search was filtered for the 127 taxonomical families that were detected in 

the metagenome analysis. That is, any function associated with proteins from non-detected 

families was excluded. Peptides (GATVMISPYVMHR, WSEQGAAPASHLR) that were 

detected in experimental data but were excluded in the above analysis were manually added 

for subsequent analysis. In the second pipeline, the peptides were assigned to gene ontology 

(GO) terms using Unipept (Gurdeep Singh et al., 2019; Mesuere et al., 2015; Mesuere et al., 

2018) through the proteomics Analysis tool (https://unipept.ugent.be/datasets). Default 

parameters were applied except the equating isoleucine and leucine option was unchecked. Any 

peptide sequence modified by the Unipept to search its database was reverted back to its 

original sequence in the final results to seamlessly intersect the results of both pipelines. Using 

the intersection table, the molecular functions (GO terms) of the microbial communities were 

analysed under different treatment conditions. First, the peptide intensities for the mapped GO 
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terms were summed and the average of the logs of the total intensities for biological replicates 

was calculated. After the data normalization with the HDO condition, a two-sided T-test was 

performed to identify the functions that changed significantly between different conditions. For 

the T-test, the null hypothesis that the averages of two independent samples are identical was 

assumed. To visualize the results of the analyses, scatterplots were utilized.  

M-model simulations of archetypes  

Archetypal analysis (AA) finds “archetypes” which are the points within the multivariate data 

set whose convex combination can well represent the data set (Cutler and Breiman 1994). It 

can be viewed as a dimension-reduction method such that each archetype refers to a distinct 

state of cell physiology. In this analysis, a dataset X can be approximated as 

X ≈ ZA, 

where Z is the matrix of archetypes and A is a matrix of coefficients such that Aij ≥ 0 and 

Σ𝑗=1
𝑝

Aij = 1 for p archetypes. 

Likewise, Z can be constrained as  

     Z = XB  

where B is the coefficient matrix such that Bij ≥ 0 and Σ𝑗=1
𝑝

Bij = 1 for p archetypes such that Z 

is also constrained to be a convex combinations of the data points in X. The archetypal analysis 

was performed using py_pcha tool which is a python implementation of principal convex hull 

analysis (https://github.com/ulfaslak/py_pcha). The matrix used for the analyses was derived 

by performing simulations on a model of Pseudomonas putida KT2440 (iJN1463) constrained 

using targeted proteome data (Nogales et al. 2020). This model was used to study L-NE 

utilization in Pseudomonas species, which were the most abundant members of the 

microbiome.  

We made two assumptions guided by the literature to modify this model. First, P. putida 

KT2440 is unable to catabolise several biogenic amines (Arcos et al. 2010), but L-NE 

degradation has been reported for several Pseudomonas species, so we added putative reactions 

for L-NE transport and metabolism for a related Pseudomonas strain, Pseudomonas putida U, 

to the model (Cuskey and Olsen 1988; Luengo and Olivera 2020). Second, as Pseudomonas 

putida cannot utilise methanol as the sole carbon source for growth (Hintermayer and Weuster-

Botz 2017), we treated the reaction catalysed by formaldehyde dismutase as irreversible to 
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prevent methanol use for growth, consistent with the MetaCyc database (Caspi et al. 2020). 

We performed model simulations to optimise the growth rate under the following fluxes 

(shown in mmol gDW-1 hr-1) for following substrates: 10 for acetate, 18 for oxygen, 100 for 

ammonium, and 1000 for methanol, sodium, phosphate, chloride, magnesium, calcium, 

potassium, iron, copper, sulphate, manganese, molybdenum, zinc, cobalt, nickel, water, and 

proton. Most fluxes were chosen based on the previous studies on M-models. Oxygen uptake 

rate constraint was approximated using another study (Gomez et al., 2005). The fluxes for 

acetate, ammonium, and methanol arbitrarily chosen based on their concentration in the 

experimental medium. The uptake fluxes for L-NE and dextrose for their respective medium 

were constrained at 6 mmol gDW-1 hr-1.  

Then, we performed parsimonious flux balance analysis (pFBA) (Lewis et al. 2010) using this 

medium for the HDO condition, i.e., without dextrose or L-NE in the medium. The proteins 

from the targeted proteome data were retrieved for Pseudomonas putida, and the reactions 

catalysed by those proteins were identified. Following this, the keffs for each reaction-gene pair 

(associated with these proteins) was computed using the formula: 

keff = (vpfba/i) * N          

where vpfba is the flux computed by pFBA for the HDO condition, i is the protein intensity, and 

N is the number of reactions catalysed by a particular gene. Computed values of zero for keff 

were replaced with the lowest computed non-zero value. Subsequently, a target flux analysis 

was performed using HDO with dextrose or L-NE added at 6 mmol gDW-1 hr-1 for the reaction-

gene pairs (specified above) using the formula: 

vt = keff * (i / N) 

To obtain the target flux (vt), which is influenced by proteome expression, for a specific 

reaction, the gene-reaction rules (e.g., linking gene a with gene b using AND or OR) were 

parsed such that for AND take the lower of the two genes and for OR take sum of the fluxes 

associated with these genes. Following the flux calculation, we performed a minimization of 

the sum of fluxes for these reactions (associated with proteins identified in proteomics) at fixed 

growth rates (μ) ranging from zero to the optimal growth rate (identified by FBA) using the 

following formula: 

z = ∑(v - vt)
2                 
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where z, the sum of the square of errors, is the objective function and v is the flux obtained by 

simulating a particular condition.  

We then performed another pFBA analysis at different growth rates (zero to FBA optimal 

growth rate) by bounding the fluxes of the reactions catalysed by the proteins identified in the 

proteome data using the fluxes predicted in the above minimisation procedure. These 

simulations provided the matrix containing rows (growth rates) and columns (reaction fluxes) 

that was then used in the subsequent archetypal analysis to identify representative archetypes 

of flux distribution (Cutler and Breiman 1994).  For this analysis, 100 simulations were 

performed. 

We chose two archetypes for the AA using the elbow method on the scree plot. These 

archetypes could explain >96% of the variance in both conditions (Figure S4). There were two 

other criteria for choosing the number of archetypes: 1) The growth rate in L-NE is higher than 

that in dextrose, and 2) the sum of squared error should be minimum as indicated by the elbow 

of the scree plot (Figure S5).  In AA restricted by these points, we chose one archetype each at 

highest growth rates ~0.060 hr-1 and ~0.083 hr-1 for dextrose and L-NE growth conditions, 

respectively. These two archetypes (one for each condition) reflect the best approximation of 

the growth and proteomic assays. We next compare these two archetypes in the subsequent 

analyses and visualisation. 

Simulated data analysis and visualisation 

We used the Escher package (v. 1.7.3) in Python (v. 3.7.7) to visualise the maps of reaction 

fluxes normalised with the corresponding biomass flux (King et al., 2015). The normalization 

was performed to make the comparison between the proteome-constrained fluxes independent 

of the differences in growth rates between different conditions. For visualising pathways, we 

modified the maps created by the Escher online tool using Affinity Designer (v. 1.9.3). 

Genome-scale models typically contain information about subsystems, and we can use this 

knowledge to predict which subsystems are altered between two conditions. For the added 

pathways of L-NE transport and degradation, we assigned them the subsystem 'L-NE 

_Degradation' within the modified model (see ‘M-model simulations of archetypes’ method). 

We also made two modifications to the subsystems. 1) We removed LNE_Degradation 

subsystem as the pathway was assumed to be active in only for LNE utilization, and 2) 

Glycolysis and Gluconeogenesis were assigned to a new subsystem 

Glycolysis/Gluconeogenesis to avoid any confusion on the direction of the fluxes. Following 
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these changes, we identified five subsystems showing the most change by dividing the sum of 

the absolute difference in the normalised fluxes for two conditions by the number of reactions 

in the subsystem. 

Results 

Bacterial Growth and Shifts in microbial consortium 

Preliminary experiments showed significant microbial growth in 5x10-5 M of L-NE, Dopamine 

and L-Dopa (Figure S1). Subsequent experiments were performed with different L-NE 

concentrations (1x10-5 M, 5x10-5 M and 1x10-4 M) with the mixed farm (FS) and municipal 

(MS) cultures. Both cultures rapidly grew several-fold over 24 hours, increasing from 102 CFU 

mL-1 to 108 CFU mL-1 for 5x10-5 M L-NE but to a lower extent with 1x10-5 M (106 CFU mL-1) 

and 1x10-4 M (107 CFU ml-1) L-NE (Table S2). Although the dextrose samples contained ~10x 

carbon over the corresponding L-NE treatments, all L-NE concentrations showed higher cell 

growth over 8 and 24 h (Figure S1). The correlation graphs (Figure 1) show the bacterial 

abundances at the family level in municipal (MS) and dairy farm sludge (FS) treated with 

different concentrations (1x10-5 M, 5x10-5 M, and 1x10-4 M) of L-NE, Dopamine (5x10-5 M), 

L-Dopa (5x10-5 M) and dextrose, where has been normalized by municipal sludge cultures 

treated at constant aeration (HDO) at 8 mg/L for 24 hours. As a control set, the ROS generating 

agents, 50 mM paraquat (PQ) and 50 mM hydrogen peroxide (H2O2) treated municipal sludge 

cultures were also normalized by HDO cultures and compared against 5x10-5 M dextrose. The 

reason behind choosing 5x10-5 M of Dopamine, L-Dopa, and dextrose is that maximum growth 

was observed in this concentration among all the studied samples.   

 

Figure 1: Correlation graphs comparing the effect of L-NE and ROS with dextrose on microbial abundances in 

the municipal (MS) and dairy farm (FS) sludge cultures. The top 10 abundant families in 5x10 -5 M L-NE are 

labeled. Effects on microbial abundances in (a) and (b) respectively are shown for L-NE vs dextrose in municipal 

and dairy farm sludges, and in (c) for two ROS generating agents, 50 mM paraquat (PQ) and 50 mM hydrogen 
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peroxide (H2O2), vs dextrose. (Note: * represents scaling by dividing the abundances for the treatment with the 

corresponding values for HDO(MS)). 

Figure 1a showed the abundances of municipal sludge cultures treated with L-NE (1x10-5 M, 

5x10-5 M, and 1x10-4 M), Dopamine (5x10-5 M), and L-Dopa (5x10-5 M) against 5x10-5 M 

dextrose. The MS cultures treated with different concentrations of catecholamines showed a 

linear correlation pattern with the 5x10-5 M dextrose treated cultures indicating that the 

catecholamines have a similar effect on the microbial abundance as the 5x10-5 M dextrose 

cultures. Pseudomonadaceae is the most abundant family in all the conditions. However, other 

dominant families were present in a significantly much lower amount (0.004 to 0.113) than that 

of the Pseudomonadaceae (0.569 to 0.815).  Out of the top 10, abundant families such as 

Moraxellaceae, Sphingobacteriaceae, Weeksellaceae, Comamonadaceae, Flavobacteriaceae, 

Rhodocyclaceae, Sphingomonadaceae, and Verrucomicrobiaceae were observed to preferably 

abundant in L-NE and other catecholamines than that of the Dextrose supplemented system.  

Figure 1b, demonstrated that the dairy farm sludge (FS) cultures treated with catecholamine 

concentrations were similar to MS treatments against 5x10-5 M dextrose. However, the spread 

of the microbial families in the correlation plot showed significant diversification in the 

bacterial abundances as compared to the MS treatments, especially in 5x10-5 M and 1x10-4 M 

L-NE. Pseudomonadaceae remained the most dominant (0.548 to 0.692) microbial family in 

all the treatments involving FS samples. Other microbes lying within the top 10 abundant 

families exhibited low abundance ranging from 0.0007 to 0.147. The Weeksellaceae, 

Comamonadaceae, Sphingomonadaceae, and Microbacteriaceae had slightly preferential 

abundance in catecholamines whereas Moraxellaceae, Flavobacteriaceae, and 

Verrucomicrobiaceae appreciated being more abundant in dextrose treatment. Few families 

such as Enterobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, Rikenellaceae, and 

Microbacteriaceae emerged within the top 10 families in the FS treatment. The speciation data 

indicates that the MS and FS samples are quite different in their source and influence altered 

microbial communities under similar perturbed conditions.  

Furthermore, the 5x10-5 M Dextrose and the 50 uM paraquat (PQ) and 50 uM hydrogen 

peroxide (H2O2) treated municipal sludge cultures revealed significantly uncorrelated 

behaviour in the family level abundance profile (Figure 1c). The spread of the microbial 

population was more towards the ROS-treated samples than that of the dextrose treatment. The 

microbial abundances in the 50 μ M PQ and H2O2 treated municipal sludge cultures 

significantly deviated with respect to the 5x10-5 Dextrose cultures (Figure 1c). The effect of 

ROS was prominent as the families had a preferential growth in both H2O2 and PQ treatments 
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compared to the Dextrose supplemented system. Bacterial families such as Rhodocyclaceae, 

Flavobacteriaceae, Chitinophagaceae, Comamonadaceae, Cytophagaceae, and 

Xanthomonadaceae were the top five families in the ROS treated cultures. However, the 

abundance was very low (≤0.120) as a result of the stressed conditions.  

Functional Profile and Bacterial Contribution Profile 

The functional abundance profiles based on different pathways were inferred at the Pathway 

Exclusion Cut-off (PEC) of 80. The principal component analysis (PCA) was performed on the 

functional profiles of different treatment conditions in both MS and FS samples. Based on the 

contribution of different principal components the PC1 (72.4%) and PC2 (15.3%) were 

analysed further. The PCA indicated that the functional profiles in the Dextrose treatments had 

widespread distribution space in the scatterplot, indicating comparatively more variability than 

the catecholamines supplemented cultures (Figure 2).  The catecholamines had less spread and 

overlapped with the Dextrose treated samples, signifying that the functional behaviour of the 

catecholamines is similar to the dextrose. On the other hand, the HDO (8 mg/L) and ROS 

(50μM H2O2 and 50μM PQ) treated systems exhibited similar behaviour which is quite 

different from both the catecholamines and dextrose treatments.  

 

Figure 2. Principal component analysis (PCA) is based on the functional potential across different treatments 

showing that catecholamines exhibit a similar profile as the dextrose-treated samples. On the other hand, the 

distribution space of HDO and ROS behaviours are similar and quite different from both dextrose and 

catecholamines.    

Furthermore, the 5x10-5 M Dextrose, L-NE, L-Dopa, and Dopamine treatments were clustered 

with the HDO and ROS systems, based on KEGG (L3) pathways and higher level (L2) 
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metabolism (Figure 3). As seen in the PCA plot, the HDO and ROS lie in a branch whereas the 

other treatments are clustered together in the other. Few pathways under carbohydrate 

metabolism such as Fructose and mannose metabolism, Galactose metabolism, Amino sugar 

and nucleotide sugar metabolism, Pentose and glucuronate interconversions were 

comparatively active in HDO and ROS treated systems than that of the Catecholamines and 

Dextrose treated samples.  Other pathways involved in carbohydrate metabolism, such as the 

Citrate cycle TCA cycle, Glyoxylate and dicarboxylate metabolism, Propanoate metabolism, 

C5, Branched dibasic acid metabolism, Pyruvate metabolism, Glycolysis Gluconeogenesis and 

Pentose phosphate pathway were observed to be upregulated in both the dextrose and 

catecholamines, especially 5x10-5 L-NE (FS), Dextrose (MS). The energy metabolism 

involving the Oxidative phosphorylation, Nitrogen metabolism, and Sulfur metabolism also 

had a right metabolic shift from HDO base control and upregulated in different catecholamines 

and dextrose supplemented systems. Similar upregulation was also observed in the case of 

amino-acid metabolism under catecholamine treatments, except for the D-alanine, D-Arginine, 

and D-ornithine metabolism, Selenocompound metabolism, which were upregulated in the 

ROS treatments. Interestingly, the glutathione metabolism, which is generally activated during 

ROS stress conditions, was found to be active in catecholamines and dextrose samples only.  

Also, along with the fatty acid metabolism, the Lipopolysaccharide biosynthesis and 

Peptidoglycan biosynthesis were upregulated supporting the growth under different 

catecholamine treatments. The Glycosaminoglycan and other glycan degradation were 

significant in the ROS stress conditions.  

In terms of genetic information processing, the purine metabolism was upregulated in L-NE 

and Dextrose treatment whereas the pyrimidine expressions were higher in ROS and HDO 

conditions. The DNA replication and mismatch repair were also found to be significantly high 

in these conditions. Furthermore, the quorum sensing capability under the dextrose and 

catecholamines were higher than the ROS treatments as well.  

The functional contribution of the microbes revealed a major shift in the population in different 

treatment conditions compared to the controls. In the case of the MS samples, the top five 

contributors to the overall functions were Chitinophagaceae, Saprospiraceae, 

Rhodobacteraceae, Cytophagaceae, and Comamonadaceae in HDO treatment, which was 

shifted to Pseudomonadaceae, Sphingobacteriaceae, Moraxellaceae, Comamonadaceae, and 

Rhodocyclaceae in the 5x10-5 M L-NE, whereas Chitinophagaceae came up instead of 

Rhodocyclaceae in the 5x10-5 M Dextrose (Figure S2). Interestingly, in all the L-NE, Dextrose, 
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Dopamine, and L-Dopa treatments the metabolic capabilities were dominated by 

Pseudomonadaceae (Figure S2). A similar trend was observed in the FS also. 

 

Figure 3. The functional potential of the microbial communities is shown under different treatments. The samples 

are clustered using correlation distance and average linkage. Based on the KEGG database, the pathways (L2) are 

groups based on their higher-level metabolic functions (L3).  

Abundance of ROS genes 

The abundances of the soxRS and oxyR oxidative stress genes, using the 16S house-keeping 

gene as a reference, are shown in Figure S3 for the different treatments. The higher soxRS and 

oxyR genes abundances show that 1×10-5 M, 5×10-5 M and 1×10-4 M L-NE caused ROS 

formation within microbial cells (Figure S3). The HDO and dextrose treatments show a low 

abundance of the stress genes. The 50 M PQ increased the soxRS gene abundance, and both 
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50 M PQ and 50 M H2O2 increased the oxyR abundance. However, 50 M PQ caused a 

lesser change than 50 M H2O2. The soxRS gene abundance was low in all L-NE treatments. 

The oxyR abundance varied greatly for different L-NE concentrations, with 5x10-5 M inducing 

the highest response, indicating that most ROS formation in the dairy farm and municipal 

cultures occurred for this condition. The similarity in oxyR abundances for 50 M H2O2 and 

5x10-5 M L-NE suggests that these treatments caused similar levels of oxidative stress in dairy 

farm and municipal sludge cultures. 

Functional analysis of targeted proteins 

Figure 4 presents the gene ontology (GO) categories using peptides from the target proteomics 

analysis of the 50 M PQ and 50 M H2O2 from  municipal sludge cultures and 5×10-5 M 

dextrose, and 5×10-5 M L-NE from dairy farm sludge treatments. The L-NE treatment generates 

response that is considerably different to the dextrose and H2O2 or PQ treatments. Compared 

to dextrose, L-NE upregulated most of the oxidative stress associated functions except for 

monooxygenase activity (GO:0004497, 6 peptides) and ammonia monooxygenase activity 

(GO:0018597, 2 peptides) (Figure 4a). Proteins with ammonia monooxygenase activity 

catalyse the conversion of ammonia to hydroxylamine. However, L-NE upregulates glutamate-

ammonia ligase activity (GO:0004356, 3 peptides), indicating a shift in the nitrogen flux in the 

community towards glutamine production. In terms of nitrogen metabolism, L-NE upregulated 

the functions related to anaerobic respiration (nitrous oxide reductase (GO:0050304, 1 peptide) 

and nitrate reductase (GO:0008940, 8 peptides)). Additionally, L-NE induces ROS 

detoxification by upregulating thioredoxin-disulfide reductase activity, thioredoxin peroxidase 

activity, catalase activity, peroxidase activity, and oxidoreductase activity. 

 

Figure 4. Alterations to protein functions caused by different organic carbon substrate and oxidative stress 

conditions. Plots show: (a) 5×10-5 M Dextrose vs 5×10-5 M L-NE, (b) 50 mM H2O2 vs 5×10-5 M L-NE, and (c) 

50 mM PQ vs 50 mM H2O2. Different colour fonts identify rescaled GO terms with fold change ≥ 1 at p < 0.05, 

determined by t-test: red, significantly expressed in L-NE; blue, significantly expressed in dextrose; green, 
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significantly expressed in dextrose and L-NE; and black, no significant expression. (Note: * represents scaling by 

dividing the abundances for the treatment with the corresponding values for HDO(MS)).   

Compared to 50 M H2O2 (Figure 4b), L-NE upregulates GO categories such as ATP binding, 

oxidoreductase, peroxidase, lyase, isomerase, glutamate-ammonia ligase and N2O reductase 

activities. In particular, the thioredoxin-disulfide reductase activity (GO:0004791, 1 peptide) 

and thioredoxin peroxidase activity (GO:0008379, 1 peptide), involved in the redox balancing 

of thioredoxins and H2O2 detoxification, are significantly upregulated. The downregulated 

functions include copper ion, nickel cation and iron ion binding, electron transfer, 4Fe-4S 

cluster and FAD/FADH2 binding, and oxidoreductase, ammonia monooxygenase, heme 

binding activities. L-NE and H2O2 showed similar levels of superoxide dismutase and catalase 

activities. 

PQ and H2O2 treatments showed a strong correlation (Figure 4c) with few deviations, such as 

the ammonia monooxygenase (GO:0018597, 2 peptides) and nitrous oxide reductase 

(GO:0050304, 1 peptide) activity. Compared to PQ, H2O2 upregulated the electron transfer 

protein (FAD binding activity). Additionally, the PQ and H2O2 responses were concentrated 

around (0,0) origin, indicating a similarity in function under these conditions to the HDO 

treatment. 

M-model prediction of metabolic activities   

Pseudomonadaceae was the dominant family under both catecholamines and dextrose 

conditions (Figure 1) and Pseudomonas was among the most dominant genera. A flux balance 

analysis performed using the proteome-constrained genome-scale model of Pseudomonas 

putida KT2440, a model Pseudomonas species showed a variation in the regulation of different 

metabolic mechanisms such as oxidative phosphorylation, gluconeogenesis, glycolysis and 

glutamate metabolism between L-NE and dextrose treated cultures. The flux map in Figure 5 

shows a significant shift in the oxygen consumption in L-NE cultures compared to dextrose 

possibly due to higher terminal oxidase activity leading to more ATP production. The addition 

of lower TCA cycle intermediates to stationary phase cells leads to higher oxygen consumption 

and proton motive force (Meylan et al., 2017). Additionally, Pseudomonas growth rate is 

higher in media supplemented with TCA intermediates such as succinate compared to dextrose 

(Tiwari and Campbell, 1969; Nikel et al., 2014; Nikel et al., 2015). Although L-NE may not 

be an energetically favourable carbon source, by providing TCA cycle intermediates it can 

enhance microbial growth on other substrates in the complex media (Meylan et al., 2017). 
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Other factors such as autoinducers could also contribute to increasing the growth rate by L-NE, 

but metabolic models are unable to capture such aspects. Compared to dextrose, L-NE induces 

a stronger oxidative stress mitigation response in the community. For instance, the glutathione-

based peroxidase activity is considerably higher in L-NE cultures than in dextrose cultures. 

Furthermore, thioredoxin-based oxidative stress mitigation was also elevated in L-NE cultures. 

The model predicted changes to sulphur metabolism by L-NE, which are consistent with 

alterations to proteins of the sulphur metabolism by H2O2 and PQ induced oxidative stress in 

Pseudomonas strains (Palma et al., 2004; Hare et al., 2011; Yeom et al., 2012; Bojanovicˇ et 

al., 2017). The use of sulfur-containing redox metabolites (e.g., thioredoxin and glutathione) 

correlates with the enhancement of the sulphur metabolism in Pseudomonas in L-NE condition. 

Simulations also show that L-NE affects nitrogen metabolism through the glutamate pathway, 

consistent with the targeted proteomics data. 

 

Figure 5. Pathway maps showing normalised fluxes for (a) L-NE and (b) dextrose treatments. Darker shades of 

different colours indicate higher values: lower fluxes are coloured red, mid-range fluxes are coloured blue, and 

the highest fluxes are coloured purple. The higher growth rate in the L-NE treatment compared to dextrose result 

from increased O2 consumption, which shifts the fluxes towards greater terminal oxidase and ATP synthase 

activity. L-NE additionally reprograms the cofactor metabolism, sulphur metabolism, and thioredoxin-based and 

glutathione-based oxidative stress mitigation strategies. In the model, reaction GLNS and FMN reductase 

reactions are split into two, and the map shows only one of these fluxes. 

Discussion 

Microbial speciation diversification and growth 

The bacterial community structure and composition within or between activated sludge systems 

have been widely investigated. Bacterial community dynamics are thought to be influenced by 
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changing environmental or operational variables. However, understanding the temporal 

dynamics of microbial community is one of the ways to correlate environmental or operational 

variable with bacterial community and functions to improve the treatment performances and 

predicting responses to unexpected environmental shifts.  L-norepinephrine is a well-known 

stimulant to enhance the low biomass growth in vivo (Freestone et al. 1999). Our results show 

that L-NE enhances the bacterial growth in farm (FS) and municipal sludge (MS). The 

enhancement of growth may be tied in part to an individual bacterium’s ability to utilise 

neurochemical present in the vicinity. Moreover, Pseudomonadaceae was the most dominant 

family in both the FS and MS cultures for the Dextrose or L-NE treatments. Also, the family 

abundances for these treatments show strong correlation, indicating that the catecholamine and 

Dextrose treatments affect the FS and MS communities in a similar manner. In contrast, the 

application of ROS dramatically alters the microbial community composition with the family 

abundances showing no correlation with the Dextrose treatment. Though the MS cultures 

treated with different concentrations of catecholamines exhibited a linear correlation pattern 

with the 5x10-5 M dextrose treated cultures, some differences in the 5x10-5 M and 1x10-4 M L-

NE were observed in the FS cultures. It indicted that the source environment could also 

influence the microbial community composition. The L-NE and dextrose treatments showed a 

shift in the bacterial community composition compared to original farm and municipal sludge 

cultures. The bacterial community composition might be similar between control (dextrose) 

and L-NE treated groups, but they vary in their abundances. Likewise, microbes that have a 

better ability to adapt to ROS stress are more likely to survive. The microbes surviving ROS 

stress are Pseudomonadaceae, Moraxellaceae, Rhodocyclaceae, Xanthomonadaceae, 

Halomonadaceae and Methylophilaceae which is in accord with the previous studies 

(Svenningsen et al., 2015; Barra Caracciolo, Topp and Grenni, 2015). Despite the formation 

of H2O2 in L-NE treatments, the microbial abundances differed for L-NE and exogenous ROS 

(H2O2 and PQ) applications (Figure 1). In contrast, while the dextrose treatments showed a 

slight or no increase in the oxyR gene abundance, indicative of minimal H2O2 formation, the 

microbial abundances for L-NE and dextrose were similar. The similarity with dextrose 

suggests that the ROS stress induced by L-NE, even at the elevated ~50 M H2O2 level, was 

dominated by changes associated with growth substrates like dextrose.  

Functional Potential of the Microbial communities  

The PCA analysis shows that the H2O2 and PQ treatments affect the microbial community 

functions similarly, while the effect of HDO is closer to H2O2 and PQ compared to the Dextrose 
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and catecholamine treatments. The addition of Dextrose or catecholamines causes a major shift 

in the community behaviour; the addition of catecholamines to FS and MS microbial 

communities causes a similar effect as the provision of Dextrose. The microbial families 

selected by the HDO condition showed the largest function potentials for sugar metabolism 

(fructose and mannose metabolism, galactose metabolism, amino sugar and nucleotide sugar 

metabolism and pentose and glutamate interconversions). This reflects low sugar availability 

and that microbes that are able to sequester sugars thrive under this condition. The HOD 

treatment also shows higher potential for fatty acid biosynthesis, indicating a combination of 

processes supporting growth but also coping with stress. The families selected by HDO, H2O2 

and PQ show high function potential for pyrimidine as well. Nucleotide metabolism is a critical 

pathway that generates purine and pyrimidine molecules for DNA replication, RNA synthesis, 

and cellular bioenergetics. Cells with phenotypes showing resistance to DNA damage and cell 

death exhibit increased expressions of PyM genes (Siddiqui and Ceppi 2020). Thus, the 

selected families were better able to resist the DNA damage by ROS created by these 

conditions. The absence of higher pyrimidine metabolism for L-NE indicates that DNA damage 

by ROS formed under this condition was not a dominant selection criteria for the dominant 

species. 

Adding dextrose shifts the selection criteria towards growth over stress mitigation seen in the 

H2O2 and PQ. The HDO condition shows microbial attempts to grow under stress. So we see a 

combination of stress mitigation and growth by sequestering organic carbon and fatty acid 

biosynthesis. As enough carbon source are present in both L-NE and dextrose, the core 

carbohydrate metabolic pathways such as the Citrate cycle TCA cycle, Pyruvate metabolism, 

Glycolysis Gluconeogenesis and Pentose phosphate pathway were observed to be upregulated. 

The increased energy metabolism (Oxidative phosphorylation, Nitrogen metabolism, and 

Sulfur metabolism), lipid metabolism (fatty acid biosynthesis), amino-acid metabolism and 

glycan biosynthesis and metabolism (Lipopolysaccharide biosynthesis and Peptidoglycan 

biosynthesis) were indicative of enhanced growth in these systems compared to the HDO and 

ROS treatments. Interestingly, the glutathione pathway which is associated with the ROS stress 

mitigation, was upregulated under Dextrose and catecholamines instead of the ROS 

supplemented systems. The lack of carbon source in the ROS treated systems didn’t 

significantly upregulate the Citrate cycle TCA cycle enzymes, thereby leading to less 

expression of the glutathione pathway. Some of the dextrose and catecholamine treatments 

show increased capacity for purine metabolism in the abundant families. Purines are key 
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components of cellular energy systems (e.g., ATP, NAD), and, along with pyrimidines, RNA 

and DNA production and the increase in purine metabolism reflects the ability of these families 

to generate more ATP and NAD. These dextrose and catecholamine treatments showed higher 

function potential for a range of biosynthesis pathways to enable the high growth observed 

under these conditions. 

While the most abundant families make the highest contribution to various metabolisms, the 

absolute contribution by the individual families varies under different conditions. For 

conditions stimulating growth, Pseudomonadaceae dominates. However, in comparison to 

dextrose, L-NE treatments promote contributions by more families to the various metabolisms. 

The application of stress in the H2O2 and HDO treatments decreases the absolute contributions 

to metabolism and increased the number of families that make relatively significant 

contributions to the various metabolisms. Thus stress appears to increase interdependence 

between the different families while growth decreases this interdependence and allows a 

smaller number of families to thrive in the population. 

Oxidative stress response 

The overproduction of intracellular ROS in the L-NE cultures can be elucidated by different 

ways: constant aeration, and the oxidative deamination of L-NE by oxidase in the presence of 

oxygen to form hydrogen peroxide (Buhlman, 2016; Lyte & Freestone, 2010; Neri et al., 2007). 

The L-NE treatments led to the generation of ROS under aerobic conditions and might 

contribute to the species selection due to the toxic effects of ROS along with their role as 

messaging molecules (Dickinson & Chang, 2011). Microbes control the O2
-. and H2O2 levels 

by the activation of soxRS and oxyR genes, which regulates the expression of ROS scavenging 

enzymes such as superoxide dismutase (SODs), catalase and thioredoxin reductase (Imlay, 

2013). The higher expression of superoxide dismutase and catalase-peroxidase activities in L-

NE cultures compared to dextrose suggests the activation of soxRS and oxyR genes due to the 

formation of larger amounts of O2
-. & H2O2. The production of ammonia monooxygenase, 

laccase, cytochrome c, cytochrome P450 and oxidoreductases were also higher in L-NE 

treatments. 

Functional changes by proteome analysis 

The proteomics analysis of the mixed culture pool from farm sludge revealed proteins related 

to several cellular functions such as metabolism (nitrogen metabolism, oxidative 

phosphorylation), genetic information processing, and environmental information processing. 
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Additionally, a functional analysis of targeted proteins showed significant upregulation of 

oxidative stress related activities such as catalase-peroxidase activity, thioredoxin disulphide 

reductase activity by 5x10-5 M L-NE cultures compared to 5x10-5 M dextrose (Figure 4). A 

significant upregulation of glutamine-ammonia ligase activity in the L-NE cultures 

demonstrates alteration of cellular nitrogen metabolism via flux redirection towards 

glutamate/glutamine synthesis. Compared to exogenous 50 M PQ and 50 M H2O2, 5x10-5 

M L-NE significantly upregulated thioredoxin-based oxidative stress detoxification. 

Thioredoxin reductases are involved in the redox balancing of thioredoxins that repair disulfide 

bonds (formed due to oxidative stress) to maintain the catalytic activity of enzymes (Arts et al., 

2016). Thioredoxin peroxidase is also associated with enzymes that detoxify H2O2 using 

thioredoxin as a reducing agent (Somprasong et al., 2012). Compared to 5x10-5 M L-NE, 50 

M PQ and 50 M H2O2 led to higher expression of superoxide dismutase, which catalyses 

superoxide (O2
·-) dismutation into O2 and H2O2. Microbes control the O2

·- and H2O2 levels by 

the activation of soxRS and oxyR genes, which regulate the expression of ROS scavenging 

enzymes such as superoxide dismutase (SODs), catalase and thioredoxin reductase (Imlay, 

2013). The higher expression of catalase-peroxidase and thioredoxin reductase activities in L-

NE cultures compared to H2O2 suggests the activation of oxyR genes due to the formation of 

larger amounts of H2O2. However, the microbial proteomic activities differ when treated with 

L-NE and dextrose. The significant upregulation of anti-oxidative stress activities such as 

catalase activity, thioredoxin and superoxide dismutase activity in L-NE treated farm sludge 

cultures at 5x10-5 M compared to dextrose treatments shows the fact that L-NE generates 

enough intracellular ROS stress to activate the soxRS and oxyR genes and regulate their 

proteomic expressions (Figure S3). L-NE treatment also leads to higher expression of nitrogen 

reductase and glutamate-ammonia ligase activity. Hence, this knowledge can provide 

opportunities for the manipulation of community nitrogen metabolism for resource recovery 

process. Furthermore, the higher expression of the oxidoreductases, monooxygenases, copper 

ion binding laccases and heme binding cytochromes in L-NE treated cultures compared to 

dextrose cultures indicates the potential of bacterial families such as Rhodocyclaceae, 

Xanthomonadacea and Pseudomonadaceae in the removal of organic micropollutants. 

Thus, this study indicates the regulation of ROS mitigation activities in L-NE cultures were 

different from those in dextrose, PQ and H2O2 treatments. However, the comparison of ROS 

treated (PQ and H2O2) control cultures showed different activities with regulation of nitrogen 

metabolic activities. It demonstrated that the ROS treated cultures might show the mixotrophic 
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effect. It can also be postulated that the in situ metabolic activities of many biogeochemically 

critical microbial populations (involved in the cycling of C and N and other elements) may be 

regulated by adjacent species that produce enzymes able to detoxify toxic reactive oxygen 

species, particularly H2O2 (Kim et al., 2016). 

Proteome-constrained flux balance analysis suggests ATP production is upregulated in 

L-NE because of shift in cofactor recycling 

A flux balance analysis (FBA) by applying protein constraints on the genome-scale model of 

Pseudomonas putida KT2440 (Nogales et al., 2020) was performed in this study to investigate 

the metabolic reprogramming in L-NE treatment when compared to dextrose treatment. A 

custom metaproteome-based flux scaling pipeline was developed to apply the protein 

constraints followed by archetypal analyses to identify the archetypes to best explain the 

differences between the two treatments. The custom method for integrating targeted proteome 

data expanded the findings of the targeted proteomics to global metabolic pathways, and 

provided deeper insights into the metabolic state of Pseudomonas in media supplemented with 

L-NE. The analysis revealed that the addition of L-NE alters various biochemical systems, such 

as oxidative phosphorylation, gluconeogenesis, glycolysis and glutamate metabolism (Figure 

5). Figure 5 shows Escher maps to visualise the flux redistribution in key pathways of the 

dextrose and L-NE treatments. L-NE upregulates the TCA cycle and the associated oxidative 

phosphorylation pathways. Higher fluxes through the TCA cycle and cofactor pathways, 

including terminal oxidase reactions, likely lead to more oxygen consumption and drive up the 

ATP synthase reaction. Likewise, the L-NE degradation pathway links to the regeneration of 

NADH cofactor, which influences the recycling of FMN, ubiquinone and NADP cofactors. In 

agreement with the proteomic data, compared to dextrose, the simulations predict that L-NE 

alters the nitrogen (glutamate/glutamine synthesis) and carbon-associated (TCA cycle) 

pathways. The model expands on the proteomic results by indicating that Pseudomonas 

primarily uses glutathione-based elimination of oxidative stress in the simulated conditions. 

This process most likely is associated with the reprogramming of sulphur metabolism (Figure 

6). Using the metabolic model, the knowledge of metabolic reprogramming by L-NE might be 

applied on the microbial community to increase the rate of resource recovery. 
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Figure 6. A scatterplot of the predicted normalized fluxes. To determine the subsystems that were differentially 

changed between dextrose and L-NE conditions, the absolute flux values were normalized and the difference was 

computed between L-NE and dextrose. Following this, the absolute difference was summed up for each 

subsystem. The top five subsystems that were altered between the two conditions are shown in the figure.  

This study demonstrated that L-NE treatment showed the diversification of the mixed microbial 

cultures by significant formation of ROS by enzymatic oxidation as well as alteration of 

nitrogen assimilation and sulphur metabolic activities in L-NE cultures compared to dextrose 

and PQ/H2O2 treated cultures. The generation of more energy producing molecules and 

increased catalase flux in L-NE cultures cause enhanced bacterial growth. The comparison of 

different levels of L-NE and with ROS ions and dextrose showed the variability in the microbial 

species abundance. The abundance of pathogenic bacteria at lower concentrations of L-NE 

indicated that L-NE at less than 1×10-5 M concentration can lead to the proliferation of the 

antibiotic resistant species. The cultures treated with concentration more than 5×10-5 M shifts 

the survival of the species that assimilate more carbon and nitrogen to enhance the biological 

activities in wastewater treatment systems such as nitrification and denitrification processes. 

M-model predicting the expression of different metabolic activities 

A flux balance analysis performed on Pseudomonas putida KT2440 showed a variation in the 

regulation of different molecular metabolic mechanisms such as oxidative phosphorylation, 

gluconeogenesis, glycolysis and glutamate metabolism in L-NE and dextrose treated cultures. 

P. putida KT2440 naturally does not possess the machinery to catabolize several biogenic 

amines (Arcos et al., 2010). The core Pseudomonas putida model has been demonstrated to 

contain the same gene content as in at least 95% of other Pseudomonas putida reconstructions 
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(Nogales et al., 2020). Since the computational analyses were performed assuming the genome-

scale model is representative of the community Pseudomonas strains, the L-NE degradation 

pathway of the related Pseudomonas strain, Pseudomonas putida U was added to the model in 

order to study the effect of L-NE on the Pseudomonas strains of the microbial community. 

Another consideration while constraining the model was that the proteomic data were available 

for 24-hour cultures at which point the growth rates were very low (~0.01-0.04). To make sure 

the proteome-constrained fluxes were comparable between L-NE and dextrose cultures, the 

fluxes were normalized by the respective growth rates. Further, to remove the effect of 

methanol utilization and to focus on the effect of L-NE and dextrose, reaction catalyzed by 

formaldehyde dehydrogenase was made irreversible. 

Through the flux map, it can be predicted that a significant shift in the oxygen consumption 

occurs in L-NE cultures compared to dextrose due to higher terminal oxidase activity leading 

to more ATP production. It has been demonstrated that for stationary phase cells, the addition 

of lower TCA cycle intermediates leads to higher oxygen consumption and proton motive force 

(Meylan et al., 2017). Additionally, studies have revealed that Pseudomonas grows at a higher 

rate on media supplemented with TCA intermediates such as succinate than on glucose media 

(Tiwari and Campbell, 1969; Nikel et al., 2014; Nikel et al., 2015). The process of higher 

oxygen consumption, according to the model, is associated with higher fluxes through multiple 

cofactor regeneration pathways. It should be noted that L-NE might not be an energetically 

favourable carbon source, but because it provides TCA cycle intermediates, it could enhance 

the ability of organisms to grow on other substrates within the complex media provided. 

Likewise, other factors including autoinducers could also partly contribute to the higher growth 

rate in L-NE, but such insights cannot be gathered using metabolic models.  

The mitigation strategies for oxidative stress caused by hydrogen peroxide or paraquat are also 

different to those of L-NE which are primarily through glutathione- and thioredoxin-based 

reactions (Palma et al., 2004; Hare et al., 2011; Yeom et al., 2012; Bojanovicˇ et al., 2017). 

The catalase flux is higher in L-NE compared to that in dextrose but compared to the fluxes of 

other oxidative stress-related reactions, catalase flux is negligible. The use of these redox 

metabolites (thioredoxin and glutathione) correlates with the changes to the sulfur metabolism 

in Pseudomonas. Alterations to the genes/proteins related to sulfur metabolism during 

oxidative stress has also been observed in the case of supplementation of media with hydrogen 

peroxide and paraquat in Pseudomonas strains (Palma et al., 2004; Hare et al., 2011; Yeom et 

al., 2012; Bojanovicˇ et al., 2017). Therefore, sulfur metabolism likely is closely associated 
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with oxidative stress response caused by L-NE and other ROS agents in addition to nitrogen 

metabolism. The effects of L-NE on nitrogen metabolism through the glutamine pathway was 

also predicted by the simulations, and these results are also supported by the targeted proteomic 

data.  

Our custom method for integrating targeted proteome data has expanded the findings of 

targeted proteomics to global metabolic pathways, and provided deeper insights into the 

metabolic state of Pseudomonas in media supplemented with L-NE. By using proteome-

constrained M-model, we can predict that L-NE not only acts as an oxidative stress inducer, 

but also a carbon source which directly feeds into the TCA cycle; characterization of the 

strengths of both responses is beyond the scope of this study. Nonetheless, this result likely 

explains the targeted experimental data which show that L-NE response is intermediate 

between dextrose and PQ/H2O2 responses.  
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