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The human leukocyte antigen (HLA) system is a group of genes
coding for proteins that are central to the adaptive immune sys-
tem and identifying the specific HLA allele combination of a pa-
tient is relevant in organ donation, risk assessment of autoim-
mune and infectious diseases and cancer immunotherapy. How-
ever, due to the high genetic polymorphism in this region, HLA
typing requires specialized methods.
We investigated the performance of five next-generation-
sequencing (NGS) based HLA typing tools with a non-restricted
license namely HLA*LA, Optitype, HISAT-genotype, Kourami
and STC-Seq. This evaluation was done for the five HLA loci,
HLA-A, -B, -C, -DRB1 and -DQB1 using whole-exome sequenc-
ing (WES) samples from 829 individuals. The robustness of the
tools to lower coverage was evaluated by subsampling and HLA
typing 230 WES samples at coverages ranging from 1X to 100X.
The typing accuracy was measured across four typing resolu-
tions. Among these, we present two clinically-relevant typing
resolutions, which specifically focus on the peptide binding re-
gion.
On average, across the five HLA genes, HLA*LA was found
to have the highest typing accuracy. For the individual genes,
HLA-A, -B and -C, Optitype’s typing accuracy was highest and
HLA*LA had the highest typing accuracy for HLA-DRB1 and
-DQB1.
The tools’ robustness to lower coverage data varied widely and
further depended on the specific HLA locus. For all class I loci,
Optitype had a typing accuracy above 95% (according to the
modification of the amino acids in the functionally relevant por-
tion of the protein) at 50X, but increasing the depth of cover-
age beyond even 100X could still improve the typing accuracy
of HISAT-genotype, Kourami, and STC-seq across all five HLA
genes as well as HLA*LA’s typing accuracy for HLA-DQB1.
HLA typing is also used in studies of ancient DNA (aDNA),
which often is based on lower quality sequencing data. Inter-
estingly, we found that Optitype’s typing accuracy is not notably
impaired by short read length or by DNA damage, which is typi-
cal of aDNA, as long as the depth of coverage is sufficiently high.
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Introduction
The human leukocyte antigen (HLA) region is a gene cluster
of 45 genes located on chromosome 6, which encodes mem-

brane bound proteins involved with antigen recognition in the
human adaptive immune system. HLA genes can be divided
into subclasses based on their structure and function. Gener-
ally, HLA class I proteins are found on the surface of most
somatic cells and present peptides, originating from proteins
produced within the cell, to CD8+ cytotoxic T lymphocytes
(CTLs), while HLA class II proteins are found on antigen-
presenting cells (APCs) and present exogenous peptides to
CD4+ helper T-cells (see figure 1 (A)) (1, 2).
Cells can present peptides to T-cells both from pathogens
(non-self peptides), tumor mutations (neopeptides) and cells
native to the body (self-peptides). T-cells are however gener-
ally able to recognise the difference. This means that a cell
displaying a peptide, thereby indicating that it is infected by a
virus or developing into a tumor cell, can trigger an immune
response that a healthy cell would otherwise avoid (3, 4). The
binding of a peptide to HLA and subsequently to a T-cell re-
ceptor (TCR) is highly specific, and a given HLA molecule
will only bind and display a peptide if it matches the HLA
molecule’s binding cleft, which is also known as the anti-
gen recognition domain (ARD) (5, 6). The HLA region is
one of the most polymorphic regions in the human genome
with over 33000 known allele sequences as of writing (IPD-
IMGT/HLA Release 3.48.0). The most polymorphic HLA
genes are the classical class I genes, HLA-A, -B and -C as
well as the class II genes HLA-DRB1, -DQB1 and -DPB1
(1). Due to the large number of alleles, the naming of spe-
cific HLA alleles follows a special naming convention as il-
lustrated in figure 1(B) and (C) (7, 8). HLA nomenclature is
comprised of four fields, each made up of 2-3 digits and each
describes a specific allele with increasing precision.
The most important part of the HLA molecule is ARD, which
is encoded by exons 2 and 3 in class I molecules and by
exon 2 in HLA class II molecules. The most important dif-
ferences between alleles are therefore the ones affecting the
nucleotides in this region (7). Two official ARD based HLA
typing resolutions exist: G group resolution which clusters
alleles with identical nucleotide sequences in ARD coding
exons and P group resolution which groups alleles with iden-
tical peptide sequences in the ARD. An overview of these
can be found at1. A 2019 article (12) argued that mismatches

1http://hla.alleles.org/
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DRAFTFig. 1. (A) Peptide presentation on APCs to (I) a CD4+ helper T-cell via an HLA class II protein and (II) to a CTL (CD8+ T cell) via an HLA class I protein. Both class
I and class II molecules are heterodimers but for class II, the ARD is made up of one domain from each monomer and therefore encoded by two different genes. Figure
adapted from (9). (B) HLA nomenclature shown with full four field (8-digit) resolution. Adapted from http://hla.alleles.org/nomenclature/naming.html. (C)
The number of HLA alleles varies greatly with each typing resolution. In this figure, "pseudo-sequence" refers to the amino acid residues directly involved with the binding
of the peptide as shown in D). Each of the typing resolutions shown in this figure are subgroups of the higher typing resolutions, meaning that it is always possible to
convert unambiguously from e.g. 2-field resolution to P group resolution. Note, that null alleles are disregarded at P group and pseudo-sequence resolution, as these do not
correspond to an expressed peptide sequence. The data is acquired from the IPD-IMGT/HLA database (1) release 3.48.0. (D) A binding pocket of an HLA class II molecule
(HLA-DR). The residues directly involved in peptide binding (the pseudo-sequence) are highlighted in purple. DRA is shown in green and DRB1 in blue and a melanoma
antigen in the binding pocket is shown in red. Protein data was obtained from the Protein Data Bank (10, 11) and the figure was made using PyMOL (? ) Figures (A) to (D)
were crated using https://www.diagrams.net/.

outside the ARD are for the most part not important and fo-
cusing on them could delay or prevent organ transplantation.
The recommendation was therefore that "clinical decision-
making should focus only on the sequence of the antigen
recognition domain (ARD) with the exception of common
non-expressed alleles that are distinguished by variation out-
side of the ARD". This recommendation is followed by using
P group resolution and accounting for null alleles separately.
Alleles can be further grouped based on the residues that are
directly involved with the binding of the peptide to the HLA
molecule (see figure 1 D). This grouping method is used
in tools predicting peptide-HLA binding such as NetMHC-
pan4.1, but is not an official typing resolution (13).

HLA typing is the process of determining an individual’s
specific HLA alleles. HLA typing is used widely since
the peptide presentation is a crucial part of the adaptive
immune system and depends on the specific HLA allele.
Some examples include the study and prognosis of infectious
diseases, autoimmune diseases and cancer, as well as the
discovery of neoantigens in cancer treatment and for finding
compatible donors for organ transplants (5, 14, 15).
Allele typing in the HLA region is significantly more
difficult than allele typing in other regions. This is mainly

due to the high degree of polymorphisms but also the high
degree of sequence homology between both different alleles
and between alleles of different HLA genes. HLA genes
are further co-dominantly expressed, giving an enormous
amount of possible HLA profiles (16).
Traditional HLA typing uses lab-based methods which can
be slow and expensive and often generates data only for
the purpose of HLA typing. The rapid development of
next-generation-sequencing (NGS) has however resulted in
large amounts of easily available sequencing data which
can be used for HLA typing by using recently developed
computational tools (17).
NGS based HLA typing tools can roughly be divided into
two groups - those using de novo assembly-based methods
and those which directly align to a reference sequence.
The alignment-based methods either use a traditional linear
reference or a graph-based reference / graph-based alignment
algorithm (18, 19). The tools further differ on which HLA
genes they can type and on the sequencing data, which they
use for typing.
A 2019 review of NGS-based HLA typing noted the lack of
systematic benchmarking of the many available HLA typing
algorithms (18) and although several benchmarking studies
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have been published there does not seem to be one best
performing tool, instead the performance depends on the se-
quencing data and the HLA gene (20, 21). Some tools, such
as Optitype (17) and Polysolver (22) only offer typing of
class I genes, and the developers of the graph-based method
Kourami write, that the tool is developed for high-coverage
WGS data (23).
New alleles are registered and named by a World Health
Organisation committee and stored in the IPD-IMGT/HLA
database. The database is continuously updated and errors
are corrected but the database is not complete. New alleles
are still being discovered and the full genomic sequence is
not known for all registered alleles. Some entries are still
missing the non-ARD coding exons and/or the introns (1).
The application of NGS-based HLA typing is not limited to
presently living individuals but has also been used in studies
of ancient genomes for example to find specific HLA alleles
that increase susceptibility or protection to a specific disease.
Sequencing of ancient DNA (aDNA) is often limited by
a low depth of coverage, short DNA sequence length and
chemical damage to the DNA (24). However, studies of
aDNA have still used modern HLA typing tools such as
Optitype (25) and an adaptation of HLAssign (26) to perform
HLA typing on ancient individuals. HLAssign relies on
data generated using targeted HLA enrichment (27), while
Optitype is designed for general, non-enriched sequencing
data (17). (28) noted, that although these methods have been
used for HLA typing from aDNA, there is no structured
study of their expected performance on this type of data.

In this study, we present a comprehensive review of the per-
formance of freely available HLA typing methods based on
NGS. Specifically, the five HLA genes HLA-A, -B, -C, -
DRB1 and -DQB1 are typed using whole-exome sequencing
(WES) data, as this type of data and these loci are widely used
in clinical settings (29, 30). With this analysis, we demon-
strate the first use of P group resolution and pseudo-sequence
resolution in a benchmarking study of WES based HLA typ-
ing.
We find that HLA*LA had the highest typing accuracy across
the five HLA loci, and that the typing resolution does not have
an effect on which tool performed the best. We show that the
impact of the sequencing coverage on the HLA typing accu-
racy depends heavily on both the tool and the HLA locus. A
depth of coverage of at least 100X is advisable for accurate
typing of all five HLA genes - even for the best performing
tools.
Additionally, we estimate Optitype’s performance on aDNA
by running it on a simulated dataset that mimics aDNA sam-
ples in terms of coverage, read length and adding simulated
chemical damage. Interestingly, we find that read length does
not matter as much as the depth of coverage however, Opti-
type requires a coverage between 10X and 20X to achieve a
typing accuracy of above 90 % which is often prohibitively
high for ancient DNA samples.

Materials and Methods
Selection of HLA typing tools.
There are numerous NGS based HLA typing tools avail-
able. This study focused on freely available tools which ran
on WES data and have shown promising results in previous
benchmarking or proof of concept studies. This means that
tools such as HLA-HD, Polysolver and OncoHLA, which re-
quire some form of license, were not included in this study
(22, 31, 32). The final selection of tools is listed in table
1. STC-Seq was included as a reference to illustrate how a
more simple algorithm, which is designed for HLA enriched
data, perform on lower coverage WES data. Optitype was
downloaded from2. CBC 2.9.5 was used as ILP solver as it
was found to be more stable than CPLEX 12.7 which often
did not converge to a solution. Kourami was downloaded
from3, HLA*LA was downloaded from4, HISAT-genotype
using its web-guide at5 and STC-Seq was downloaded from
the BioCode website6.
All tools in the analysis were given 10 threads and as much
memory as they needed.

Benchmarking dataset.
To evaluate the performance of the HLA typing tools, we
used a reference dataset consisting of WES samples from
829 individuals taken from the 1000 genomes phase 3 dataset
(37). The sequencing coverage of the samples ranged from
37X to 456X with the median being 86X. The true HLA
types of the samples was determined using laboratory based
methods. 819 of the 829 samples were typed in a 2014 study
(38) and further validated in a 2018 study (39). Some alleles
were in 2018 found to have been mistyped in 2014, and these
were updated in our dataset. The last 10 of the 829 samples
were typed by (40) and further validated by (39). We found
that this dataset contained some alleles, whose names have
changed since 2014. For both the 1000G dataset and for
the predictions made by the HLA typing tools, these alleles
were converted to their newest name. A full overview of all
deleted/renamed alleles can be found at 7. This constructed
dataset is referred to as the 1000G dataset in the remainder
of the paper.
For the majority of the individuals in the 1000G dataset, the
HLA typing was only available in 2-field resolution and the
tools could therefore only be evaluated at 2-field resolution
or lower. For some individuals, the HLA typing in the dataset
is ambiguous. One example is the individual NA12287 with
HLA-B typing: 15:01/15:03 and 15:01/15:26/15:12/15:19.
In these cases, predictions by the tools were counted as
correct if they matched any combination of correct alleles.
Some of the samples in this dataset were also used in the
development of the HLA typing tools or at least included in
the proof of concept study in the original articles introducing

2https://github.com/FRED-2/OptiType
3https://github.com/Kingsford-Group/kourami
4https://github.com/DiltheyLab/HLA-LA
5https://daehwankimlab.github.io/hisat-genotype/

manual/
6https://bigd.big.ac.cn/biocode/tools/BT007068
7http://hla.alleles.org/alleles/deleted.html
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Table 1. Details of the five HLA typing algorithms included in this project. Each of the original articles describing the tools contains some form of benchmarking study that
demonstrates the capabilities of the tool.

Tool Version Resolution Approach Reason for inclusion in this
study Known disadvantages

Kourami
(23) 0.9.6 G group

Weighted graph structure
from alignment of input reads
aligned to reference sequences.
Most probable graph path is the
inferred type.

High typing accuracy in previ-
ous studies (32). Can detect
and report new alleles, which
are not included in a database.

Build for WGS based and is
negatively affected by gaps in
the sequencing data.

HLA*LA
(33) 1.0.1 G group

Linear alignments projected on
a population reference graph.
Likelihood functions to infer
the HLA type.

High typing accuracy in previ-
ous studies (32)

HISAT-genotype
(19) 1.3.2 4-field

Graph-based alignment
(HISAT2) and an expecta-
tion maximisation algorithm.

High typing accuracy in previ-
ous studies (34). Able to detect
novel alleles. Unique, as it does
not include some form of linear
alignment, but an extension of
BWT for graphs

STC-Seq
(35) 1.0 3-field

Dense chip-based probes that
capture the coding regions of
HLA. Linear alignment algo-
rithm.

Offers a perspective by showing
the performance of a simpler
bioinformatics approach, as it
is designed for HLA enriched
data.

Not designed for general se-
quencing data.

Optitype
(17) 1.3.3 2-field

Integer linear programming to
find the allele combination that
explains the highest number of
reads.

High typing accuracy in previ-
ous studies (20, 21, 36)

Only offers typing of class I
alleles and only considers the
most frequent alleles, leading to
certain typing errors when en-
countering rare alleles.

the tools. Out of the 829 individuals, 31 were included in the
paper introducing Kourami, 28 for HLA*LA and 95 in the
paper introducing Optitype.

Performance evaluation and typing resolution.
The five HLA typing tools were evaluated on several
different metrics with the most important being the typing
accuracy, which is the number of correct predictions out
of the total amount of HLA alleles. The typing accuracy
was found for the resolutions: 1-field, pseudo-sequence, P
group and 2-field (see figure 1). Some tools did not return
a prediction for all alleles, and the individual tools’ call rate
(number of predictions a tool returned as a fraction of total
number of alleles) was therefore also noted. The time (CPU
and real), as well as the memory use of each HLA typing
tool, was registered and the full pipeline for running the tools
is illustrated in figure S1 in the supplementary material.

Typing resolution.
The reference HLA alleles in the 1000G dataset are in 2-field
resolution which cannot be unambiguously converted to G
group resolution. This is because 2-field resolution separates
alleles based on differences in the full amino acid sequence
while G group resolution separate alleles based on genomic
differences in the ARD coding exons. In this study, predic-
tions in G group resolution were converted to "2-field" res-
olution by trimming the third field, but this is not a perfect
approach, as is discussed in section .
The pseudosequence resolution, which for HLA-DRB and -
DRA is shown in figure 1, was presented by (41) and we

use the same approach to constructing the pseudo-sequences
as was described in the original article. That is, a pseudo-
sequence consists of the 34 amino acids, which are within 4 Å
of a peptide bound to the HLA molecule. Alleles which share
these 34 amino acids belong to the same pseudo-sequence
group.

Downsampling.
The 1000G dataset described in section has 230 samples
with a coverage of at least 100X. These samples were
included in a downsampling study to investigate how the
performance of each tool depended on the coverage of the
input sample. The performance of the tools was examined
for each of the the 230 samples at depths of coverage of 1X,
2X, 5X, 10X, 20X, 50X, 75X and 100X. Downsampling was
performed by first finding the full sequencing depth of the
CRAM files used in the 1000G dataset. This was done using
mosdepth (version 0.2.6) (42). Hereafter, alignment files
containing potential HLA reads were downsampled using
samtools view -s to achieve the range of needed coverages
(43). The resulting files were then HLA-typed in the same
way, as in the main study (see supplementary material figure
S1)

Optitype’s performance on simulated ancient DNA.
The 50 WES samples with the highest depth of coverage
from the 1000G dataset were used to simulate an aDNA
dataset and evaluate Optitype’s performance on this type of
data. The downsampling procedure to specific sequencing
depths was the same as the one described in the down-
sampling analysis. Gargammel (v. 1.1.2) (44) was used
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for trimming reads to specific read lengths and for the
addition of simulated chemical damage. The added chemical
damage was done in a way so as to simulate the chemical
damage in the samples from a 2021 study of medieval plague
victims(45). Specifically, the added damage was 20 base of
C to T substitutions after the 5’ end, the substitution rate for
the base immediately after the 5’ end was 7% and fell below
1% 3 bases after the 5’ end. There were also 20 bases before
the 3’ end of G to A substitutions, the base right before the
3’ end has a substitution rate of 6% and then fell below 1%
3 bases before the 3’ end. Reads were downsampled to the
coverages 1X, 2X, 5X, 10X, 20X and 50X and read lengths
were varied over 10, 13, 15, 20, 25, 30, 35, 45, 55 and 65
base pairs. The WES samples did not have enough reads
to achieve a coverage of 50X for the lower read lengths,
so some read length/coverage combinations could not be
performed.

Results
The typing accuracy for the HLA typing tools was measured
in four different typing resolutions, 1-field, pseudo-sequence,
P group and 2-field and the results presented in this section
is available in all four typing resolutions as supplementary
data. The focus will however primarily be on the clinically
relevant P group resolution.

Overall performance of the tools.
Figure 2 outlines the performance of the five HLA typing
tools on the full 1000G dataset across four different typ-
ing resolutions. HLA*LA, Optitype and HISAT-genotype
all have a call rate of 100% across the genes, that they of-
fer predictions for. Kourami fails to return a prediction for
almost 9% of alleles and STC-Seq for more than 30%. In
Kourami’s case, a failure to return a prediction often happens
when there is not enough data to sufficiently cover impor-
tant regions leading to Kourami’s graph structure being dis-
connected (23). Optitype is the best performing of the tools
for class I genes and has a typing accuracy close to 100%
across all typing resolutions. These results match the results
of previous studies evaluating the performance of Optitype
(20, 21). HLA*LA is the best performing tool for the two
HLA class II genes as well as across all five HLA genes.
HLA*LA performs almost as well as Optitype at 1-field res-
olution, while the difference in performance between the two
tools is larger at higher typing resolutions. In 2-field reso-
lution, HLA*LA on average mistypes one out of 24 class I
alleles (one mistyping per 4 individuals with 6 alleles each),
which is thrice as many as Optitype.
For both HLA class I and class II genes, the typing resolu-
tion does not change which tools perform the best. Across all
typing resolutions and class I genes, Optitype has the highest
typing accuracy, HLA*LA has the second-highest followed
by HISAT-genotype, Kourami and STC-Seq in that order.
The order is, save for Optitype, the same across the class II
genes. Using P group resolution instead of 2-field does how-

ever make some difference to the typing accuracy. HLA*LA
miscalls 141 out of 3316 class II alleles in 2-field resolution,
but 36 of the 141 are correct calls in P group resolution and
59 of the 141 are correct calls in pseudo-sequence resolution.
Figure 3 shows the distribution of the peak memory usage
and real-time usage across the 829 samples in the 1000G
dataset for each of the five tools included in this study.
Generally, STC-seq and Optitype and Kourami use the least
memory per sample, with median usages of 0.38 GB, 1.1
GB and 1.7 GB respectively. For a few of the samples,
STC-Seq and Optitype use more than 8GB of memory,
while the most memory demanding sample takes 6.4 GB for
Kourami. HISAT-genotype uses 8GB of memory for almost
all samples, indicating that this is a built-in restriction.
Allowing HISAT-genotype to use more than 8GB of memory
could perhaps reduce the runtime of the tool. HLA*LA
uses by far the most memory with a median of 31 GB per
sample and the most memory demanding sample (NA18504)
requiring over 600 GB of memory. The high memory usage
is due to HLA*LA’s expensive alignment step that uses
dynamic programming (23) and is also noted in an HLA*LA
blogpost8.
HLA*LA and HISAT-genotype spend the most time per
typed sample. HISAT-genotype’s median time (23 minutes)
is higher than HLA*LA’s median time usage (15 minutes)
but HLA*LA spends more than a day for a few samples,
whereas HISAT-genotype at most spends 172 minutes.
STC-seq spends more than an hour for some samples, but
types most samples in under 10 minutes. Kourami and
Optitype type most samples in less than 2 minutes. The CPU
time usage of the tools can be found in figure S3.
Kourami, Optitype, HISAT-genotype and STC-seq can, all
be run on a system with less than 16GB of memory and
run most samples in less than an hour with Optitype and
Kourami generally requiring far less time. HLA*LA requires
much more memory than the other tools and spends more
than an hour for 129 samples and more than 24 hours for 2
samples. These high resource requirements should be kept
in mind when choosing this tool.

Downsampling analysis.
The typing accuracies presented in this section are, unless
specified, all in P group resolution and therefore match
the results shown in figure 4. This figure shows that the
typing accuracies of Kourami, HLA*LA, Optitype, HISAT-
genotype and STC-Seq depend highly on the coverage of the
samples when the coverage varies between 1X and 100X.
A higher coverage correlates with a higher typing accuracy
but this correlation is not linear and differs between the
HLA typing tools. Some HLA typing tools maintain a high
typing accuracy when the depth of coverage decreases, while
others require a high coverage for accurate typing. Optitype
performs the best for low coverage samples and its typing
accuracy only drops below 90% when coverage is below
20X. HLA*LA, which performs almost as well as Optitype

8https://genomeinformatics.github.io/HLA-PRG-LA/
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Fig. 2. The five HLA typing tools’ typing accuracy (number of correctly called alleles out of the total amount of alleles) and call rate (number of called alleles out of all alleles)
in 1-field, pseudo-sequence, P group and 2-field resolution for the three HLA class I genes HLA-A, -B and -C (A) and the two HLA class II genes HLA-DRB1 and -DQB1 (B).
Optitype does not offer class II typing and is therefore not listed in (B). The full results, stratified on the individual HLA genes, can be found in supplementary figure S2
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Fig. 3. (A) The peak memory usage and (B) real-time usage of HLA typing for each sample in the full 1000G dataset. Note, that this is only for the tool-specific HLA typing
step and therefore does not include the previous steps such as the extraction of HLA reads.
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at 100X, has a typing accuracy of 72.7% at 20X for the class
I genes. STC-Seq and Kourami are both reported to have
a typing accuracy very close to 100% when typing from
each tool’s preferred sequencing data (HLA enriched data
for STC-Seq and high coverage WGS data for Kourami)
(23, 35), but as is shown in this study, the tools do not
perform well on low coverage WES data.
Figure 4 (C) to (F) show that the HLA typing accuracy not
only varies between tools and with the depth of coverage but
also between HLA genes. HLA typing tools in this study
achieve a higher typing accuracy for HLA-DRB1 than they
do for HLA-DQB1. At 100X HLA*LA has a higher typing
accuracy than Optitype for HLA-B and HISAT-genotype
is much better at typing HLA-B and -C than HLA-A.
The difference in performance between HLA-DRB1 and
HLA-DQB1 is especially prevalent for Kourami. At 100X
coverage Kourami has a call rate of 100% and a typing
accuracy of 97.8% for for HLA-DRB1 while for DQB1 the
tool only has a call rate of 78.2% and a typing accuracy of
68.0%.
The gain in typing accuracy from increasing the depth of
coverage is, as expected, generally larger when the coverage
is low, and there are diminishing returns from an increase
in coverage, when the coverage is already high. This trend,
however, depends on the HLA typing tool and the HLA
gene. For the HLA class I genes, Optitype and HLA*LA
do not benefit much from an increase in coverage from
75X to 100X, while the remaining three tools might even
benefit from increasing the coverage beyond 100X. For
HLA-DRB1, HLA*LA and HISAT-genotype’s perform
almost equally well at 75X and at 100X, but for HLA-DQB1,
the tools perform notably better at 100X than at 75X.
HISAT-genotypes typing accuracy even increases more from
75X to 100X than it does from 50X to 75X.
The findings from the downsampling dataset generally agree
with those from the full dataset, but there are some notable
differences. For the full dataset, Optitype has the highest
typing accuracy for all three class I genes (see figure S2), but
for the downsampling, HLA*LA outperforms Optitype for
HLA-B and is as good as Optitype for HLA-C for coverages
of 75X and above. Kourami has a higher typing accuracy
than HISAT-genotype for HLA-A on the full dataset, but
the downsampling shows that HISAT-genotype has a higher
typing accuracy when the coverage is below 50X. Kourami
also shows a large improvement with an increase in coverage
for HLA-DRB1 and at 100X it performs almost as well as
HLA*LA.

The impact of short fragments and DNA damage.
Figure 5 shows Optitype’s expected performance across vary-
ing coverages, read lengths and with damage added to the
reads. The figure only shows a subset of the results from the
combinations between coverage/read length and added DNA
damage, but the full results are available as supplementary
material. We found that Optitype was unable to return any
results when the read length was 10, regardless of the cover-
age. As also shown in figure 4, Optitype’s typing accuracy

depends largely on the coverage, when this varies between
1X and 20X. At lower coverages, the read length seems to
have some influence on typing accuracy, but this effect van-
ishes when the coverage increases. Between 1X and 10X,
Optitype performs the best when the read length is at 45 and
both lower and higher read length result in a drop in typing
accuracy. There is still a slight performance gain by increas-
ing the coverage from 20X to 50X, as shown in supplemen-
tary figure S5, but at this stage, an increase in read length
does (as long as it is above a minimum of around 25) not re-
sult in a higher typing accuracy.
The addition of simulated DNA damage did not notably im-
pact the typing accuracy at any coverage or read length. The
typing accuracy in figure 5 and supplementary figure S5 is
shown in 2-field resolution, as this resolution was used in
(25).

Discussion
This study investigated the performance of five NGS based
HLA typing tools: Kourami, HLA*LA, HISAT-genotype,
Optitype and STC-Seq for the five HLA genes: HLA-A, -B,
-C, -DRB1 and DQB1. The tools were evaluated on 829
WES samples from the 1000 genomes dataset as well as
on a downsampled, subset of these to evaluate the impact
of coverage on typing accuracy. The typing accuracy was
evaluated at four different typing resolutions, 1-field, 2-field,
P group and pseudo-sequence, with the two latter not having
been explored in previous studies of the performance of
HLA typing algorithms.
HLA*LA was found to have the highest overall typing
accuracy (96.3% in P group resolution for the full dataset)
and the highest typing resolution for the two HLA class II
genes (96.8% in P group resolution) while Optitype was
found to have the highest typing accuracy for the three
HLA class I genes (98.7% in P group resolution). The tools
varied greatly in computational resource consumption with
HLA*LA requiring 30 GB of memory and often more than
an hour per typed sample whereas Optitype only required 1
GB of memory and rarely more than a couple of minutes.
Evaluating the HLA typing on samples across varying
coverages showed, that the typing accuracy of all the tools
depended greatly on the depth of coverage, although this
dependency differed between both the HLA typing tools
and across the five HLA genes. A sequencing depth of 50X
was enough for class I typing using Optitype, while accurate
typing of HLA-DQB1 required at least a sequencing depth
100X even for the best performing tool, HLA*LA.

Ambiguous typing results.
In this study, we converted predictions from HLA*LA
and Kourami in G group resolution to 2-field resolution
by simply removing the third field. However, converting
predictions both from G group to 2-field and vice versa is
ambiguous, as G group resolution focuses on the genomic
sequence of the ARD region, while 2-field resolution focuses
on the peptide sequence of the full protein.
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Fig. 4. The typing accuracy of Kourami, HLA*LA, Optitype, HISAT-genotype and STC-Seq in P group resolution for 230 WES samples across coverages ranging from 1X to
100X. The top two panels ((A) and (B) show the overall typing accuracy for HLA class I and II, while figures (C) to (F) show the performance for each individual HLA gene.
The performances of the tools are also available in 1-field, 2-field and pseudo-sequence resolution in as supplementary data

There are examples of proteins (alleles in 2-field resolution),
which are part of two G groups that differ at the second
field. An example is HLA-C*02:02, as this could both
be C*02:02:02:01 (which belongs to the C*02:02:02G),
C*02:02:01 (which is not part of a G group) or even
C*02:02:37 (which is part of the C02:10:01G group that
differs from C*02:02 at the second field).
Conversely, there are examples of G groups containing
alleles, that differ in 2-field resolution. The G group
HLA-A*01:01:01G contains A*01:01, but also A*01:32

and 78 other alleles that differ in 2-field resolution. This
ambiguity poses a problem when using typing methods such
as HLA*LA and Kourami, which return the results in G
group resolution, but also when evaluating their performance
on the 1000G dataset in 2-field resolution. If the correct
allele was HLA-A*01:32, the correct prediction in G group
resolution would be A*01:01:01G, but should this prediction
be counted as correct in 2-field resolution even though the
prediction could refer to more than 70 individual alleles in
2-field resolution? One approach to this ambiguity is to con-
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HLA reads. This figure therefore represents a best case scenario, where assigning reads to the HLA region is as accurate for short reads as it is for the full length reads.

vert both the reference alleles and all predictions to G group
(e.g. HLA-A*01:01:01G) and then trim to 2-field resolution
(HLA-A*01:01), but this can not be done unambiguously for
alleles such as C*02:02, as described previously. A similar
approach, that partly solves the ambiguity issue is to convert
predictions to P group resolution. 2-field and G group
resolution can, save for null alleles, both unambiguously be
converted to P group resolution.
The approach used in this study to convert G group pre-
dictions to 2-field resolution allowed for a somewhat fair
tool comparison in 2-field resolution, but it is not as good a
comparison as in P group resolution.
A whole other factor, which impacts the accuracy of the
results in 2-field resolution is that the experimental method
for discovering the true HLA types of the 1000G dataset
often only focus on the ARD coding regions and does not
sequence non ARD coding exons (38). This ambiguity is
found in the 1000G truth set. There are some cases, where
e.g. a true allele is noted solely as C*17:01, but the true
allele might be any allele in the C*17:01P group. An HLA
typing tool calling the allele as C*17:02 (which is part of
the C*17:01P group) will then unfairly be noted as having
mistyped the allele. Like the problem with G group/2-field
conversion, this problem can also be solved by converting
both the 1000G dataset and the predictions to P group
resolution.

The impact of depth of coverage.
A 2013 study (46) stated that the depth of coverage of
many of the samples in the 1000 genomes dataset, was too
low for HLA typing. Another article from 2018 disputed
this statement and stated that they found no correlation
between typing accuracy and depth of coverage although
noting that a minimal coverage was required (20). The
results outlined in figures 2 and 4 clearly show, that even the
samples with the lowest coverage in the dataset (between
35X and 40X) can be typed accurately, if a tool suited
for low coverage samples is used, effectively disproving
the statement from (46). The results also show that the
typing accuracy depends strongly on the coverage of the
sample, in contrast to what is stated in the 2018 article, and
further that a "required minimal coverage for optimal typ-
ing" depends on both the HLA typing tool and the HLA gene.

Optitype and HLA*LA’s overall performances do not
improve much when the coverage is increased from 75X to
100X, but the other three tools do and they might even see
an improvement if the coverage is increased beyond 100X.
Achieving a typing accuracy above 90% for HLA-DQB1
also requires WES coverage of at least 100X, even for the
best performing tool, HLA*LA. These results align roughly
with minimal coverage recommendations for clinical WES
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of 120X (47) and WES based HLA typing of 100X (34). The
results from this study are however more detailed and clearly
indicate that for some genes e.g. HLA-DQB1 or tools e.g.
Kourami, it is even beneficial with coverage above 100X.
The coverage of the samples in the 1000G dataset varies
between 37X and 456X, with many samples having a lower
coverage, than what is required for optimal typing. The
tools’ performance on this dataset might therefore not be
an accurate estimate of the performances on clinical WES
with coverage above 100X. A better estimate of this could
be the downsampling results, specifically the performance
of the samples at 100X. This is a redeeming factor for e.g.
Kourami, which had a mediocre performance on the full
dataset, but where the results of the downsampling study
show, that the lower coverage of the full dataset likely
impaired Kourami’s performance much more than it did
Optitype’s.

HLA*LA is the best performing tool on average, across
the five HLA alleles but the tool does require an extensive
amount of memory and is relatively slow. Mistyp-
ings/mismatches at HLA-DQB1 is preferred compared to
other HLA genes (48), and a lighter and faster alternative
to HLA*LA is, therefore, Optitype for class I typing and,
assuming coverage of at least 100X, Kourami for class II
typing. For the 230 high coverage samples at 100X, Optitype
had a P group typing accuracy of 98.3% across the three
class I genes (HLA*LA had 96.4%) and Kourami had a P
group typing accuracy of 97.8% for HLA-DRB1 (HLA*LA
had 98.0%).

Allele diversity of HLA-DQB1.
All four tools, which offers class II typing, perform worse for
HLA-DQB1 than for HLA-DRB1. This could indicate, that
HLA-DQB1 typing is more difficult, but there could also be
other explanations of this. (49) found that HLA calls of the
1000 genomes dataset were biased towards reference alleles,
meaning that the 1000G dataset contains an unexpectedly
high allele frequency of HLA alleles similar to the reference
genome used in the 1000 genomes project and conversely
an unexpectedly low frequency of alleles which differed to
the reference. This effect was found for HLA-A, -B, and
DQB1, to some degree for HLA-C but not for HLA-DRB1.
Another explanation to the HLA typing tools’ performance
difference between DRB1 and DQB1 could therefore be, that
the 1000G dataset contains more miscalls for DQB1 than for
DRB1 and that some of the "miscalls" by the HLA typing
tools are actually correct.
Figure S7 shows the number of unique allele calls made
by each tool as well as the number of unique alleles in the
1000G dataset across the five HLA loci. The 230 individuals
included in the downsampling study only share 16 unique
HLA-DQB1 alleles according to the 1000G dataset while
the three best performing HLA typing tools, that provide
typing for HLA-DQB1 (Kourami, HISAT-genotype and
HLA*LA), on average call more than twice as many. For
DRB1, this difference is much smaller. The 230 individuals

share 42 unique alleles according to the 1000G dataset,
while the three HLA typing tools on average call 51 unique
alleles. The comparatively few unique calls for HLA-DQB1
could support the previous indication, that the HLA-DQB1
sequencing was biased towards the reference sequences,
although it could also be due to other factors, such as
the higher overall diversity of HLA-DRB1 compared to
HLA-DQB1 (1)
Figure 4 (G) shows one trend, which could indicate, that
the HLA-DQB1 typing in the 1000G dataset is correct.
The HLA typing tools, which provide HLA-DQB1 typing,
do not seem to hit a performance ceiling, but continue to
improve, when the coverage is increased. If a large amount
of the reference HLA-DQB1 alleles were wrong, an increase
in coverage would likely not lead to an increase in typing
accuracy.

Optitype’s performance on ancient DNA.
With figure 5, we present the first benchmarking of HLA
typing tools on aDNA. The figure shows, that the coverage
is the most determining factor for a high typing accuracy,
but that at low coverages, both a too high and a too low
read length can impair typing accuracy. It is expected, that a
low read length negatively affects allele typing - especially
for a highly polymorphic region, such as the HLA region.
However, it is surprising that the typing accuracy for the
samples with a read length of 65 is lower than when the read
length is 45. One reason for this might be, that Optitype’s
typing algorithm consists of creating a binary hit matrix
where the predicted HLA alleles are the ones explaining the
highest number of reads. When the read length is increased,
but coverage is kept constant, the number of reads decreases.
The sample with reads of length 45, therefore, contains
more reads than the one with a read length of 65 at the
same coverage as is illustrated in supplementary figure S6.
The difference in performance, which can be attributed to
read length, decreases at higher coverages and the typing
accuracy is almost the same at a depth of coverage of 10X.
The addition of DNA damage did not impair the performance
notably. However, the DNA damage applied in this study
corresponded to that on specific samples from the 16th
century and e.g. older samples or samples from individuals
stored in different conditions can have a larger degree of
DNA damage, which could have a bigger effect on the
accuracy of the HLA typing.
Studies of aDNA often use methods designed for contem-
porary data for variant calling, which can lead to inaccurate
results (50). (25) performed a genomic analysis of indi-
viduals who lived around 3200BCE and part of this was
an HLA analysis of 23 individuals where they observed
some "striking shifts in allele frequencies". The study
used Optitype for HLA typing in combination with another
method but did so without investigating Optitype’s expected
performance at the coverages found in their aDNA dataset.
The median coverage of the samples, which were HLA typed
in the study ranged from 0.07X to 18.2X with the median
being 4.3X. The average read length spanned from 51.8 to
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67.6 with the median being 58.2. Our results outlined in
figure 5 show, that most of the samples included in (25)
had such low coverage, that Optitype likely only returned a
correct prediction for little over half of the alleles. The study
did not rely solely upon Optitype for HLA typing, but our
findings show, that having a high coverage is crucial and that
Optitype’s typing results are not reliable for low coverage
aDNA samples.
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Fig. S1. An overview of the benchmarking study. The input CRAM file from the IGSR database (gold standard WES samples) and files
deriving from it are shown in blue. These are specific to the individual samples. Reference files which are identical for each sample
are shown in red, the HLA typing tools in yellow, the correct HLA alleles for each sample is purple and the output files are all shown
in green. For each sample (CRAM file), the sequencing depth is found (used in the downsampling analysis) and the HLA typing tools
predict the HLA alleles. Predictions are compared to the correct alleles in the 1000G dataset and the computational resources used
are noted for each tool. In the downsampling analysis, the found sequencing depth for each CRAM file is used, but it is not the raw
CRAM file that is downsampled. Instead, the reduced BAM file (with read pairs potentially relevant in HLA typing) is downsampled,
thereby avoiding the unnecessary extraction of HLA reads in the downsampling analysis. When calculating the use of memory and
time, only the step specific to each tool is evaluated. This means that the performance analysis did not include the initial preprocessing
measures, the extraction of HLA reads and the conversion of CRAM files to BAM files and further to FASTQ files. Figure created using
https://www.diagrams.net/
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Fig. S2. The five HLA typing tools’ typing accuracy and call rate in 1-field, pseudo-sequence, P group and 2-field resolution for HLA-A,
-B, -C, -DRB1 and -DQB1.
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Fig. S3. Distribution of CPU time usage for HLA typing for the 829 samples in the 1000G dataset at full coverage. HLA*LA and HISAT-
genotype have the highest median CPU time usage (between 20 and 30 CPU minutes), while the rest of the tools have a median less
than 10 CPU minutes. For HLA*LA, the CPU time varies a lot between samples. Some samples are typed using a similar amount of
resources as is used by Kourami and Optitype, while others require over 100 times more CPU time.
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Fig. S4. (A): An increased coverage generally increases the peak memory usage of the HLA typing tools, but not greatly. For HLA*LA
there is almost no difference in peak memory usage for 1X and 100X. HISAT-genotype uses more memory when the coverage is
increased, but only up until 8 GB. (B) and (C): An increase in coverage also means that it takes more time for the tools to perform
HLA typing. By extrapolating the trend for HISAT-genotype, the tool would need more than an hour in real time to type samples with a
coverage of above 200X (using a setup identical to the one in this benchmarking study). Keep in mind, that these times are solely for
the typing step and not the extraction of HLA reads, as illustrated in figure S1.
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Fig. S5. Optitype’s call rate was not 100% for all combinations of read length, coverage and with/without read damage. This is either
due to the fact that Optitype did not return a call or a sample did not have enough data to e.g. achieve a coverage of 50X, when the
read length of each read was 13. This figure shows the amount of correct calls not out of the total calls but out of the calls that Optitype
did make. The trend is very similar to the one shown in figure 5, but this figure shows how confident Optitype is on a call, when it is
made.
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Fig. S6. Optitype outputs the number of reads explained by its HLA allele prediction. The number of explained reads naturally depends
on the coverage of the input sample. For a specific depth of coverage, there are more reads, if the read length is lower. This means,
that there only are a few relevant HLA reads for samples samples with a read length of 65 and a coverage of 1X.
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Fig. S7. Unique HLA allele calls (in P group resolution) by the five HLA typing tools for the 230 individuals in the downsampling study,
when the coverage of the samples was 100X. The true HLA alleles for these samples, as found in the 1000G dataset, is shown as well.
Results are split across loci, which means that there are 460 allele calls per tool per locus.
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