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Abstract

Microbes affect the metabolism, immunity, digestion and other aspects of the human body incessantly, and dys-

biosis of the microbiome drives not only the occurrence but also the development of disease (i.e., multiple statuses

of disease). Recently, microbiome-based association tests have been widely developed to detect the association

between the microbiome and host phenotype. However, existing methods have not achieved satisfactory perfor-

mance in testing the association between the microbiome and ordinal/nominal multicategory phenotypes (e.g.,

disease severity and tumor subtype). In this paper, we propose an optimal microbiome-based association test for

multicategory phenotypes, namely, multiMiAT. Specifically, under the multinomial logit model framework, we

first introduce a microbiome regression-based kernel association test (multiMiRKAT). As a data-driven optimal

test, multiMiAT then integrates multiMiRKAT, score test and MiRKAT-MC to maintain excellent performance in

diverse association patterns. Massive simulation experiments prove the excellent performance of our method. mul-

tiMiAT is also applied to real microbiome data experiments to detect the association between the gut microbiome

and clinical statuses of colorectal cancer development and the association between the gut microbiome and diverse

development statuses of Clostridium difficile infections.
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Introduction

As a hot topic in the past decade, human microbiome studies have revealed the influence of the microbiome on phys-

iology, metabolism, disease, and cancer [1–5]. The human microbiome inhabits various organs of the human body,

including the respiratory tract, mouth, stomach, gut, skin and genitourinary tract [6]. The number of microbes is

estimated to be more than 10 times the number of human cells [7]. Microbes in different parts of the human body

show significant differences in microbiome composition, leading to unique microbial signatures [8]. For example,

gut microbiota can produce vitamins and secrete neurotransmitters to benefit human health [9,10]. Conversely, the

dysbiosis of microbial communities may be related to diseases or cancers, such as type 2 diabetes [11], obesity [12]

and colorectal cancers [4]. In addition, microbes not only influence the occurrence of disease but also may have

a significant impact on the development of disease. Recently, more studies have involved the role of microbiome

dysbiosis in disease development, for example, disease severity [13, 14] and tumor subtype [15]. The association

between disease development and the microbiome is a fundamental requirement for understanding disease mech-

anisms and microbes to better carry out microbial adjuvant treatment for diseases, such as targeting microbial

foods [16,17].

High-throughput sequencing (HTS) technology has made great progress in the identification and characteriza-

tion of the microbiome due to its advantage of low cost [18], where amplicon and metagenomic sequencing are

common HTS methods for microbiome studies [19]. Standard methods, such as QIIME [20], are usually utilized to

cluster sequencing data into operational taxonomic units (OTUs) according to sequence similarity [21], where each

OTU as a microbiota feature can be mapped to a species. A wide variety of OTUs are aggregated at the kingdom,

phylum, class, order, family, genus, and species levels according to evolutionary relationships [22]. Overall, the fea-

tures of microbiome data are a high-dimensional and phylogenetic relationship. Microbial studies usually perform

global hypothesis tests to explore the association between the microbiome and host phenotype, where the type of

phenotype is determined by the distribution it follows, for example, Gaussian (BMI), Bernoulli (health/disease) and

multinomial distribution (health/moderate disease/severe disease). Adonis [23] and ANOSIM [24, 25] are classic

distance-based statistical methods widely used to detect the association between the microbiome and host pheno-

types in most microbial studies [26–29]. However, the disadvantage of these methods is that they do not adequately

consider the effects of confounding factors, resulting in power loss. In addition, these distance-based methods can

only adopt a single distance, and the inappropriate distance setting is also underpowered. Therefore, the influence

of confounding factors and setting the distance are major challenges for these classic statistical methods [30].

Recently, microbiome-based association tests have been widely developed [31–34] to detect the association

between the microbiome and host phenotypes. These methods conduct a regression model to incorporate con-

founding factors and the microbiome in connection with host phenotypes. For example, the optimal microbiome

regression-based kernel association test (OMiRKAT) [31] incorporates the similarity metrics between samples into

the regression model. A series of OMiRKAT-based methods have been extended for diverse types of outcomes [35],

such as survival data [36, 37] and longitudinal data [38, 39]. These methods acquire great statistical power in

testing the association between the microbiome and outcome. In addition, a number of statistical methods for
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Table 1. The scopes of use for microbiome-based association tests. These methods are presented in chronological
order of publication. # represents multivariate outcomes and * denotes longitudinal data.

Method
Outcome type

Reference
Continuous Binary Count Survival Multicategory

Previous
Methods

OMiRKAT ✓ ✓ [31]
aMiSPU ✓ ✓ [32]

MMiRKAT ✓# [41]
MiRKAT-S ✓ [36]

KRV ✓# [42]
OMiAT ✓ ✓ [43]
OMiSA ✓ [37]
CSKAT ✓* [38]
aMiAD ✓ ✓ [33]

aGLMMMiRKAT ✓* ✓* ✓* [39]
MiHC ✓ ✓ ✓ [34]

MiATDS ✓ ✓ [40]
MiRKAT-IQ ✓ [44]

AMAT ✓ ✓ [45]
RFtest ✓ ✓ [46]

MiRKAT-MC ✓ ✓ [47]
aGEEMiHC ✓* ✓* ✓* [48]

Our Method multiMiAT ✓ ✓

microbiome-based association tests have been developed for different association patterns (i.e., sparsity level and

phylogenetic relevance of association signals) [32–34,40], such as sparse association signals [34,40]. However, most

existing microbiome-based association tests are conducted to deal with outcomes obeying Gaussian, Bernoulli, or

Poisson distribution (Table 1).

The multicategory phenotypes are classified into ordinal and nominal multicategory phenotypes according to

the relationship among the host phenotypes [49]. There is a progressive relationship between adjacent pairs of

ordinal multicategory phenotypes, such as disease severity [13, 14], but not in nominal multicategory phenotypes,

for example, tumor subtype [15] or dietary pattern [50]. Researchers often turn to binary problems to meet

the requirements of existing methods when dealing with multicategory phenotypes, and two common strategies

of transformation are widely used. One strategy is to choose a dividing line for classification [51]. Specifically,

two contiguous statuses of ordinal outcomes are usually divided into one category, for example, genome-wide

association study of COVID-19 severity [52]. The other strategy is all pairwise comparisons, for example, the study

of coronary artery disease severity [53] or gut microbiome transition of four Himalayan populations [54]. Recently, a

proportional odds logistic mixed model (POLMM) [51] and subtype analysis with somatic mutations (SASOM) [55]

have been conducted for multicategory phenotypes. However, these methods may lose power when analyzing

microbiome data because they do not consider the characteristics of microbiome data (i.e., high-dimensional and

phylogenetic relationships). The microbiome kernel association test with multi-categorical outcomes (MiRKAT-

MC) [47], another extension of OMiRKAT, has good performance for multicategory phenotypes, but this method

is not very satisfying in some scenarios, especially nominal multicategory phenotypes.

We propose an optimal microbiome-based association test for multicategory phenotypes, namely, multiMiAT.
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Figure 1. Schematic depiction of the framework for multiMiAT. Our method can be used for detecting the asso-
ciation between microbiome and multicategory phenotypes. Specifically, we first establish microbiome regression-
based kernel individual tests via multinomial logit models. Then, we conduct the omnibus test (multiMiRKAT)
through integrating these individual tests. To accommodate diverse association patterns, multiMiAT integrates
multiMiRKAT, bcl-based score test and MiRKAT-MC.
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Considering the excellent performance for OMiRKAT and its extensions, we first introduce the microbiome regression-

based kernel association test (multiMiRKAT). We take inspiration from the association test for multivariant phe-

notypes [56] to establish a kernel machine multinomial regression framework via multinomial logit models [57].

Specifically, we conducted the connection between random component (i.e., ordinal/nominal multicategory phe-

notypes) and systematic component (i.e., microbiome profiles and confounding factors) based on two multinomial

logit models (i.e., cumulative link model and baseline category logit model). To fully extract complex associations

between the microbiome and host phenotypes, we construct numerous similarity matrices between samples through

diverse distances and kernel functions. Then, we use the model fitting and similarity matrices to model the test

statistic of individual tests. multiMiRKAT integrates these individual tests. Unlike MiRKAT-MC, our method

focuses more on differences in host phenotypes. Because of the difference in modeling, multiMiRKAT is more advan-

tageous in nominal multicategory phenotypes. Compared with all extensions of OMiRKAT, multiMiRKAT contains

more nonlinear kernel functions (i.e., Gaussian kernel and Laplacian kernel [58]). To further capture the association

signals with diverse association patterns, multiMiAT integrates the bcl-based score test [55] and MiRKAT-MC on

the basis of multiMiRKAT. Extensive simulation experiments demonstrate that our method has excellent statistical

power with the correct type I error rates. We apply multiMiAT to two real microbiome datasets. An efficient and

user-friendly R package multiMiAT is available at https://github.com/xpjiang-ccnu/multiMiAT.

Materials and methods

In this section, we describe our methods in detail, including multinomial logit models, test statistics and p value

calculation (Figure 1). Specifically, we first adopt two multinomial logit models to connect the association between

the marginal mean of multicategory phenotypes and the systematic component, where the systematic component

contains microbiome profiles and confounding factors. We construct many similarity matrices between subjects

using seven distances and three kernel functions. Then, we perform the test statistic of the microbiome regression-

based kernel individual test via the model fitting and similarity matrices. We integrate these individual tests to

establish multiMiRKAT (i.e., multiMiRKAT-O and multiMiRKAT-N). Finally, we model multiMiAT by integrating

the multiMiRKAT, score test and MiRKAT-MC to ensure strong power in diverse scenarios.

Multinomial logit models

For the observation value of the ith subject, we record the multicategory outcomes yi ∈ {1, 2, . . . , J} (i.e., the

multicategory phenotypes of interest), where i = 1, 2, . . . , n and J ≥ 2. We suppose Yij = I (yi = j), where

I (·) is the indicator function and j = 1, . . . , J − 1, and define Yi = (Yi1, . . . , Yi(J−1))
T . We also observe s

covariates xi = (xi1, . . . , xis)
T and the abundance oi = (oi1, oi2, . . . , oim)T of m OTUs. We assume that the

marginal expectation of Yij given xi,oi is µij := E(Yij |xi,oi) = P (yi = j|xi,oi). We connect the marginal mean of

multicategory phenotypes and systematic component, including covariates and microbiome profiles, by specifying

that

g(µij) = α0j + xT
i α+ f(oi), (1)
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where α0j and α are the intercept and regression coefficients, respectively. g(·) is a link function. f(·) is a

function reflecting the microbiome profile. The popular approach is a positive definite kernel function K(·, ·), that

is f(oi) =
∑n

i′=1 βi′K(oi,oi′) [31, 36].

Multicategory outcomes are usually divided into ordinal or nominal multicategory outcomes according to the

relationship between categories [57]. The progressive relationship occurs between any adjacent statuses of ordinal

multicategory outcomes, such as the degree of disease severity (health/mild/moderate/severe), and this effect is

cumulative and always increased to the maximum at both extreme statuses. For ordinal multicategory outcomes,

we adopt the cumulative link model (clm, also called the proportional odds model) as the link function, whose form

is as follows:

log( P (yi ≤ j|xi,oi)
1− P (yi ≤ j|xi,oi)

) = α0j + xT
i α∗ + f(oi), (2)

where the regression coefficients α∗ are fixed for all j in Eq. 2. α0j is the category-specific intercept and needs to

satisfy a monotonicity constraint (i.e., α01 ≤ . . . ≤ α0(J−1)) only in the cumulative link model [59].

For the nominal multicategory outcomes, there is no progressive relationship between the statuses of nominal

outcome. We utilize the baseline category logit model (bcl) as the link function, whose form is as follows:

log( µij

µiJ
) = α0j + xT

i αj + f(oi), (3)

where αj is category-specific regression coefficient in Eq. 3. Our goal is to test the association between the

microbiome profiles and host phenotypes. We define the variance of microbiome profiles f(oi) is τ . We assume

that there is no association between OTUs and host phenotypes as the global null hypothesis, that is, H0: τ = 0.

Similarity matrix between subjects

The dissimilarity matrix between subjects is used to measure a between-group difference in microbiome data, such

as Adonis and ANOSIM [24,25]. The similarity matrix is usually obtained by transforming the dissimilarity matrix

between subjects through the kernel function. Due to weight assignments (unweighted or weighted) and covered

information (with or without phylogeny information), the forms of the dissimilarity vary. Different dissimilarities

take disparate weight assignments, for example, more weight assigned either to rare lineages or to most abundant

lineages, may lead to inconsistent results in the dissimilarity-based analysis. To ensure fairness in comparative

analysis, we adopt the same distance configuration as OMiRKAT. Specifically, Bray-Curtis dissimilarity [60] (DBC),

a non-phylogeny-based dissimilarity, and unweighted and weighted UniFrac [61, 62] (Du and Dw), the phylogeny-

based distances, are taken into account because they are also commonly used in microbial research. Considering

weight assignments, we also adopt the four generalized UniFrac [63] with α = 0, 0.25, 0.5, 0.75 (D0, D0.25, D0.5,

D0.75).

To measure the similarity between subjects from their microbiome profiles, we convert the distance matrix into

a kernel matrix via a kernel function. Most previous kernel-based regression microbiome association analyses only
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consider the linear kernel (KLK) function [31,39,41,43], whose form is as follows:

K = −1

2
(In − 1n1Tn

n
)D2(In − 1n1Tn

n
), (4)

where In is a n×n identity matrix and 1n is a n-dimensional vector of ones. D is the dissimilarity matrix. However,

the linear kernel may struggle with more complex associations. Thus, we consider taking more nonlinear kernel

functions into account in our model, such as the Gaussian kernel function and Laplacian kernel function [58]. The

models are as follows:

1) Gaussian kernel (KGK) function: K = exp(− D2

2σ2 ),

2) Laplacian kernel (KLaK) function: K = exp(−D
σ ),

where σ is the hyperparameter. Here, we adopt σ = 1 after a large amount of experimental verification (Sup-

plementary Figure S1). We also conduct the positive semidefiniteness correction procedure for K to ensure that

the eigenvalue of K is nonnegative [31]. We calculate the eigenvalues λi (i = 1, . . . , n) and eigenvectors of K via

eigenvalue decomposition K = FΛFT , where Λ is the diagonal matrix with the ith diagonal element λi. Then, we

obtain the reconstructed kernel matrix K∗ = FΛ∗FT , where Λ∗ is the diagonal matrix with the ith diagonal ele-

ment |λi|. Here, we assume that K∗
kd represents a similarity matrix obtained by using diverse kernel functions and

dissimilarity measures, where k ∈ ΓK = {KLK,KGK,KLaK} and d ∈ ΓD = {DBC,Du,D0,D0.25,D0.5,D0.75,Dw}.

Microbiome regression-based kernel individual tests

To detect the association signals between microbiome profiles and host phenotypes, we need to establish our test

statistics and calculate the p values. Compared with the test statistics for the binary phenotype, the residual in test

statistics for the multicategory phenotypes is not n-dimensional but n× (J−1)-dimensional. Thus, it is a challenge

to extend the original model to our model. Inspired by the association test for multivariant phenotypes [56], we

establish our test statistics of individual tests

T kd
l = (Y− µ̂l)

TV−1
l K̃kdV−1

l (Y− µ̂l), (5)

where Y = (YT
1 , . . . ,YT

n )
T and µ̂l = (µ̂11

l , . . . , µ̂
1(J−1)
l , . . . , µ̂n1

l , . . . , µ
n(J−1)
l )T . µ̂ij

l is the estimated expectation

via multinomial logit model l under the H0 condition, where l ∈ ΓL = {Mbcl,Mclm}. Vl = In ⊗ Vl0 and Vl0

is the estimated residual variance matrix under the null model. Here, ⊗ is the Kronecker product. K̃kd =

K∗
kd ⊗ 1(J−1)×(J−1), where 1(J−1)×(J−1) is a (J − 1)× (J − 1) matrix of ones. Obviously, the original test statistic

(i.e., OMiRKAT) for the binary phenotype is a special case (i.e., dealing with binary outcome) of our test statistics

T kd
l .
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Microbiome regression-based kernel omnibus tests

The setting of distance and kernel function can affect similarity between samples and further lead to performance

differences among individual tests because of the weight assignments or covered information for different dis-

tances. For the situation where the association signals have a phylogenetic relationship, the distance covering

phylogenetic tree information should be used. When the differences among different phenotypes are mainly in

the presence/absence or abundance of microbial communities with phylogenetic relationships, the unweighted or

weighted distances may be more appropriate, respectively. In addition, the association between microbiome profiles

and multicategory phenotypes may not be linear. Considering the complexity of association patterns, we take the

minimum p values of individual tests, namely, MinP, as the test statistics of global omnibus tests

TmultiMiRKAT = min
k∈ΓK

min
d∈ΓD

pkdl , (6)

where pkdl denotes the p value of T kd
l . MinP is widely used in microbiome-based association tests, such as OMiRKAT

[31], OMiAT [43] and MiHC [34]. For ease of comparison, we define the test statistic of the local omnibus test

T k
l = min

d∈ΓD
pkdl , which integrates individual tests with diverse distances. Obviously, the local omnibus test with a

linear kernel function is OMiRKAT based on a multinomial logit model. In addition, considering that the regression

coefficients fitted by the ordinal/nominal multinomial logit model may be inconsistent, we adopt two multinomial

logit models (i.e., bcl and clm) to model the global omnibus tests. We call the bcl-based and clm-based global

omnibus test multiMiRKAT-N and multiMiRKAT-O, respectively.

multiMiRKAT considers a variety of individual tests with diverse distances, kernels and models, which may put

considerable pressure on the calculation of the p value. Thus, we fully consider the configuration of the distance

and kernel function to ensure computational efficiency. For example, we discuss the performances of other distance

(i.e., Jaccard dissimilarity [64]), kernel function (i.e., exponential kernel function) and ordinal multinomial logit

model (i.e., continuation ratio model, crm). In addition, we also explore other p value combination methods, such

as the aggregated Cauchy association test (ACAT) [65] and the harmonic mean p-value (HMP) [66]. For specific

comparison results, please refer to the section ”Components affecting performance”.

Score test

Schaid et al. [67] introduced the GLM-based score test, which is used for detecting the association between traits

and haplotypes. Then, the extended versions of the score test were widely developed, for example, the GEE-

based score test [68] and bcl-based score test [55,69]. Here, we consider integrating the bcl-based score test into our

method to improve the statistical power for detecting abundant association signals. We define Y = (YT

1 , . . . ,Y
T

m)T

and O = (o1, . . . ,on)T , where Yj = (Y1j , . . . , Ynj)
T . W represents a m-dimensional weight vector that represents

the weights of m OTUs. Here, we adopt W = 1m and 1m is a vector of ones. Let S = I(J−1) ⊗ (OWT ), where
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I(J−1) represents a (J − 1)× (J − 1) identity matrix. The covariance matrix of Y is

Σ =


Σ1,1 · · · Σ1,J−1

... . . . ...

ΣJ−1,1 · · · ΣJ−1,J−1

 ,

where

Σj,j′ =


diag(µ̂1j

l (1− µ̂1j
l ), . . . , µ̂nj

l (1− µ̂nj
l )) if j = j′

diag(−µ̂1j
l µ̂1j′

l , . . . ,−µ̂nj
l µ̂nj′

l ) if j ̸= j′
.

We defineU = ST (Y−µ) and X = I(J−1)⊗X, whereX = (x1, . . . ,xn)
T and µ = (µ̂11

l , . . . , µ̂n1
l , . . . , µ̂

1(J−1)
l , . . . , µ̂

n(J−1)
l )T .

Then, we establish the test statistic of the score test

Tscore = UT Σ̂−1U, (7)

where Σ̂ = ST (Σ − ΣX(XTΣX)−1XTΣ)S is the covariance matrix of U. Tscore can be shown to asymptotically

follow a χ2 distribution with degree of freedom (J − 1) [55].

MiRKAT-MC

MiRKAT-MC [47] is proposed for multicategory phenotypes. Similar to OMiRKAT and all its extensions, MiRKAT-

MC also utilizes the p value combination method (i.e., HMP) to integrate individual tests. Here, the test statistic

of the individual test is

Qkd
l = (Y− µl)

THT
l WlKkdWlHl(Y− µl), (8)

where Kkd = I(J−1) ⊗K∗
kd and Wl = (HlVlHl)

−1. Hl = ∂(Xβ̂)/∂µl and V is the variance-covariance matrix.

The p values of individual tests are calculated via a pseudo-permutation strategy [42]. MiRKAT-MC uses the

HMP to combine these p values of individual tests, where MiRKAT-MCN and MiRKAT-MCO are bcl-based and

clm-based MiRKAT-MC, respectively. Obviously, multiMiRKAT is different from MiRKAT-MC in the modeling

of test statistics. MiRKAT-MC focuses more on differences in the similarity matrices rather than host phenotypes,

resulting in good performance in the rare association signals. Remarkably, compared with the original MiRKAT-

MC, we consider more distances and kernel functions in our models to enhance the performance of MiRKAT-MC

in diverse association patterns.

Optimal test for multicategory outcomes

In fact, the true association patterns are usually unknown and difficult to predict. Due to differences in model-

ing, the above three methods (i.e., multiMiRKAT, score test and MiRKAT-MC) have their own advantages in

different scenarios. Specifically, multiMiRKAT and MiRKAT-MC perform well for detecting association signals

with phylogenetic relationships because a large number of distances covering phylogenetic information are used.
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multiMiRKAT takes the idea of dealing with multivariate phenotypes, and compared with MiRKAT-MC, mul-

tiMiRKAT may perform better for nominal multicategory phenotypes. The score test is sensitive to abundant

association signals because its test statistic is established based on the model fitting only. Overall, a single method

does not always perform best in all scenarios. Therefore, we further present multiMiAT by integrating these three

methods. Since the score test and MiRKAT-MC do not use the permutation method to calculate their p values,

we only adopt HMP to combine the p values and establish the test statistic of multiMiAT

TmultiMiAT =

∑
t∈ΓT

wt∑
t∈ΓT

wt/pt
, (9)

where ΓT = {TmultiMiRKAT-N, TmultiMiRKAT-O, Tscore, TMiRKAT-MCN, TMiRKAT-MCO} and
∑

t∈ΓT
wt = 1 . pt rep-

resents the p values of these combined tests. Considering the differences in modeling, these methods may be

complementary in some scenarios, which further enables the optimal test to maintain excellent performance in

diverse association patterns.

P values calculation

We consider the methods based on permutation and distribution to conduct the p value calculation, which are

common in p value analysis [31, 66]. Specifically, we perform the p value calculation of multiMiRKAT, including

individual tests and omnibus tests, via the permutation method. Because we utilize the HMP method to establish

the test statistic of multiMiAT , the method based on distribution is used for the p value of multiMiAT. The

detailed calculation process can be found in the supplementary material.

Comparison methods

In the comparative analysis section, we consider two types of methods: association tests for multicategory out-

comes and microbiome-based association tests for binary outcomes. Here, the association tests for multicategory

outcomes include Adonis [23], ANOSIM [24, 25], SASOM [55] and MiRKAT-MC [47]. Specifically, Adonis and

ANOSIM adopt Bray-Curtis dissimilarity. SASOM utilizes three methods to combine the p values of individ-

ual tests, namely, SASOM-F, SASOM-T and SASOM-D. MiRKAT-MCN and MiRKAT-MCO are bcl-based and

clm-based MiRKAT-MC, respectively. These methods can be utilized for comparing the differences in microbial

composition among multiple groups. The microbiome-based association tests for binary outcomes mainly include

OMiRKAT [31], adaptive microbiome-based sum of powered score (aMiSPU) [32], optimal microbiome-based as-

sociation test (OMiAT) [43] and microbiome higher criticism analysis (MiHC) [34], which are classic methods.

Limited by being mainly designed for binary outcomes, these methods cannot directly handle multicategory out-

comes. One popular strategy is taking the minimal of J(J − 1)/2 p values and conducting the product of the

minimal p values and the number of comparisons as the results, where J(J − 1)/2 p values are obtained from all

the pairwise comparisons among the J subtypes [55]. This strategy is Bonferroni correction for multiple hypothesis

testing. For simplicity, we refer to this strategy as a pairwise analysis. However, we believe that it is not suitable

for all multicategory outcomes (i.e., ordinal and nominal). We consider other strategies for ordinal and nominal
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multicategory outcomes, that is, adjacent and baseline pairwise analysis take the minimal of J − 1 p values and

conduct the product of the minimal p values and J − 1, respectively. We perform a detailed analysis of these

correction strategies in the section ”Correction of microbiome-based association tests”.

Results

Simulation design

Our simulation experiments are designed based on previous studies [32, 36, 51, 70]. We adopt a real throat micro-

biome dataset [71]. For a more convenient calculation, we use the processed data, including 273 OTUs with mean

relative abundance ≥ 10−4, which can be found in the R package MiHC [34]. Then, we estimate proportions and

dispersion parameter of real data and use a Dirichlet-multinomial model to generate the OTU count table with

1000 total counts per sample. Let oij denote the jth generated OTU of the ith sample. Considering the effect of

sample size n, we adopt n = 100 and 200. We also consider two covariates xi1 and xi2 that obey the Bernoulli

distribution B(1, 0.5) and standard normal distribution N(0, 1), respectively.

We focus on testing microbial signals associated with the phenotype. As far as we know, the association pattern

has a significant effect on the statistical power of association tests, where the association pattern mainly refers to

the sparsity levels and phylogenetic relevance of microbiome association signals [40]. To verify the performance of

our method under different association patterns, we calculate the cophenetic distances for all OTU pairs using the

function, cophenetic, available in the R package, stats. We use the partitioning-around-medioids algorithm [72] to

divide 273 OTUs into 15 clusters based on cophenetic distances. We design the following scenarios for the choice

of microbial signals:

1) The most abundant cluster from 15 clusters consists of 49 OTUs (17.95%). The average proportion of this

cluster’s reads relative to the total reads is 21.34%.

2) The mean abundant cluster from 15 clusters consists of 14 OTUs (5.13%). The average proportion of this

cluster’s reads relative to the total reads is 1.43%.

3) The most rare cluster from 15 clusters consists of 5 OTUs (1.83%). The average proportion of this cluster’s

reads relative to the total reads is 0.90%.

4) The 30 most abundant OTUs (10.99%) according to the total/mean reads of each OTU. The average propor-

tion of these OTUs’ reads relative to the total reads is 60.27%.

We simulate the ordinal multicategory outcomes by using the following model:

log( P (yi ≤ j|xi,oi)
1− P (yi ≤ j|xi,oi)

) = α0j + 0.5 ·
2∑

l=1

scale(xis) + β ·
∑
h∈Λ

scale(oih), (10)

where β is the effect size and Λ is a set of selected OTUs. scale(·) is a zero-mean normalization function with mean

0 and standard deviation 1. Here, we only consider the number of categories J = 4. When generating ordinal
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outcomes, we also discuss the impact of balanced/unbalanced data on the results, where balanced/unbalanced

data refer to the proportions of different phenotypes [51]. In particular, we cleverly perform a dynamic intercept

α0j to construct designed balanced and unbalanced data for ordinal phenotypes, where the dynamic intercept is

obtained according to the ranking of GLM’s systematic component. Assuming the sample size of ordinal categorical

phenotype including J = 4 levels n1, n2, n3, n4, we set n1 : n2 : n3 : n4 = 1 : 1 : 1 : 1 for balanced design and

n1 : n2 : n3 : n4 = 1 : 4 : 4 : 1 for unbalanced design.

We simulate the nominal multicategory outcomes by using the following model:

log( µij

µiJ
) = 1 + 0.5 ·

2∑
s=1

scale(xis) + β ·
∑
h∈Λ

scale(oih). (11)

Because it is a huge challenge to obtain balanced data by setting the regression coefficients of Eq. 11, we do not

design related experiments. For simplicity, we call balanced design, unbalanced design and nominal multicategory

outcomes scenarios a, b, and c, respectively. To evaluate the type I error rate and power, we set β to control the

association between host phenotypes and the microbiome. We set β = 0 for the type I error rate and generate 5000

simulation data repeatedly. We set β ̸= 0 for the power and generate 2000 simulation data repeatedly.

Components affecting performance

In this section, we discuss the components affecting the performance of our method, that is, the hyperparameter σ

of nonlinear kernel functions and the choice of distances, kernel functions and logit models.

For the hyperparameter σ, we consider σ ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, M}, where “M” denotes the mean of

distance matrix D [42]. We compare the results of their local test in scenario 1a. We find that the power is stable

with σ = 1, but the performance of σ = M is poor, especially KGK (Supplementary Figure S1). Therefore, we set

the hyperparameter σ = 1.

Considering the inconsistent similarity matrices between subjects through different distances, the power of

individual tests is different. For the choice of distances, we accept the distance configuration of OMiRKAT [31]

because the individual tests with these distances have their own advantages in different situations (Figure 2). The

performances of individual tests with phylogeny-based dissimilarity (e.g., UniFrac distance) are better for cases

in which association signals with phylogenetic relationships are selected (scenarios 1-3). As the abundance of

association signals decreases, the individual tests that perform better also change from individual tests based on

larger weight UniFrac (Dw, D0.75, D0.5) to individual tests based on smaller weight UniFrac (Du, D0, D0.25). The

performance of individual tests with non-phylogeny-based dissimilarity (i.e., Bray-Curtis dissimilarity) is better

for cases in which association signals without phylogenetic relationships are selected (scenario 4). As the sample

size n increases, the performance improves (Figure 2, S2). In addition, similar conclusions can also be drawn

from individual tests based on different kernel functions or logit models (Supplementary Figure S3–S5). We also

consider Jaccard similarity (DJa) to conduct comparative analysis with our used distances ΓD, where DJa is used in

an extension method of OMiRKAT [39]. However, it is poor in statistical power for all scenarios (Figure 2, S2–S5).

For the choice of kernel functions, we consider the LK function, GK function, LaK function and exponential
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kernel (EK) function, where the form of EK is K = exp(− D
2σ2 ). The choice of kernel function may have an impact

on the power. For example, the performance of EK is slightly poorer than that of the others. In addition, for the

choice of ordinal multinomial logit models, we discuss clm and crm, where the form of crm is as follows

log( µij

µi(j+1) + · · ·+ µiJ
) = α0j + xT

i α∗ + f(oi).

We find that the difference between clm and crm is not significant (Supplementary Figure S6). Therefore, we do

not consider the EK function and crm. The local omnibus test integrating individual tests with diverse distances

may not be the best in terms of statistical power, but it is always close to the best one and robust for different

situations. For simulation data generated via a linear systematic component (Eq. 10, 11), nonlinear kernels can

maintain performance similar to linear kernels in most cases and, in some cases, even slightly better than linear

kernels (Supplementary Figure S7, S8).

In addition, we use MinP and HMP to construct the test statistics of multiMiRKAT and multiMiAT, respectively.

However, the choice of p value combination methods may also affect the performance. We explore the performance

of three different p value combination methods (MinP, HMP and ACAT). From the result of the empirical type

I error rate and power (Supplementary Table S1–S4 and Figure S7–S10), HMP is the most conservative one, and

ACAT is the most sensitive one among these methods. Specifically, the type I error rate and power of HMP are

generally low. ACAT is so sensitive that it may obtain an inflated Type I error rate. Therefore, MinP may be a

more suitable p value combination method to integrate these individual tests, and our strategy (i.e., ”MinP+HMP”)

has better performance compared with only using HMP.

Correction of microbiome-based association tests

For the choice of pairwise, adjacent pairwise and baseline pairwise analysis of microbiome-based association tests,

we adopt adjacent pairwise analysis for ordinal multicategory outcomes and baseline pairwise analysis for nominal

multicategory outcomes in simulation experiments.

For ordinal multicategory outcomes, there is a progressive relationship between any adjacent two groups. Ob-

viously, a cumulative effect of this progressive relationship appears among nonadjacent pairwise groups when we

generate ordinal multicategory outcomes. Thus, the difference among nonadjacent pairwise groups, especially two

extremely pairwise groups, is undoubtedly further amplified. In simulation experiments, we analyze the distribu-

tion of the minimum p values. We find that the minimum p values are not evenly scattered in each pairwise group

but mostly in nonadjacent pairwise groups, especially in two extremely pairwise groups for the balanced design ex-

periment (Supplementary Figure S11–S14). For unbalanced designs, the differences in nonadjacent pairwise groups

are still the most significant. Although the large differences among nonadjacent groups may cause the extremely

excellent performance of pairwise groups in statistical power (Supplementary Figure S15), the corrected p values

of pairwise groups are difficult to convince anyone of the association between microbiome and all ordinal multicat-

egory outcomes. Therefore, we consider using adjacent pairwise analysis to correct microbiome-based association

tests for ordinal multicategory outcomes.
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Figure 2. Comparison of the type I error rates and powers among microbiome regression-based kernel individual
tests and local omnibus test with diverse distances under diverse scenarios (n = 200). Here, we adopt linear kernel
and baseline category logit model.

For nominal multicategory outcomes, each group is generated independently. No pairwise groups have a pro-

gressive relationship, and pairwise analysis can be utilized to correct p values. In the analysis of the distribution

of the minimum p values, we find that the p values of pairwise groups containing the Jth group are relatively low

in most cases (Supplementary Figure S11–S14). This is probably because we use the Jth group as the baseline

group to generate the nominal multicategory outcomes. To make the strategy used more convincing, we consider

baseline pairwise analysis, which always contains baseline group and one group other than baseline group and can

eliminate the influence of the baseline group. In fact, the difference between baseline pairwise analysis and pair-

wise analysis is not significant in performance (Supplementary Figure S15). Therefore, we consider using baseline

pairwise analysis to correct microbiome-based association tests for nominal multicategory outcomes.

Type I error

The empirical type I error rates of all the methods used in the simulation experiment are reported in Table 2,

S4–S6. We set the significance level α = 0.05, and our methods, including individual tests and omnibus tests, can

be controlled approximately 5% accurately. For scenario b (i.e., unbalanced data), OMiAT obtains an inflated

type I error rate because the difference among adjacent groups is more significant compared with scenario a (i.e.,

balanced data). As the sample size increases, this effect is alleviated.
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Table 2. Empirical type I error rates of all methods. * represents inflated type I error rates.

Method
n = 100 n = 200

Ordinal
Nominal

Ordinal
Nominal

Balance Unbalance Balance Unbalance

Previous
Methods

Adonis 4.92% 5.24% 4.48% 5.24% 4.66% 4.70%
ANOSIM 4.82% 4.78% 5.08% 5.22% 4.94% 4.34%
aMiSPU 5.22% 5.16% 4.38% 4.74% 5.58% 4.80%
MiHC 2.92% 5.90% 2.56% 3.52% 5.32% 3.96%

MiRKAT-MCN 4.38% 5.02% 4.10% 4.94% 4.92% 4.62%
MiRKAT-MCO 4.62% 5.44% 4.44% 4.24% 5.02% 4.50%

OMiAT 5.02% 7.08%* 2.66% 5.18% 5.76% 3.90%
OMiRKAT 5.32% 5.36% 3.88% 4.24% 5.10% 4.00%
SASOM-F 5.40% 5.50% 4.94% 5.12% 4.62% 4.66%
SASOM-T 4.60% 4.50% 4.46% 4.42% 4.30% 4.36%
SASOM-D 5.12% 4.98% 4.72% 5.06% 4.54% 4.52%

Our Method multiMiAT 4.68% 5.34% 4.72% 4.80% 4.96% 4.88%

Power

The performances of statistical power for all the methods used in the simulation experiment are reported in Figure

3, 4, 5 and Supplementary Figure S9, S10, S16–18.

multiMiAT integrates three methods (i.e., multiMiRKAT, bcl-based score test and MiRKAT-MC), all of which

have their own advantages in detecting different associated signals (Supplementary Figure S9, S10). Specifically,

multiMiRKAT robustly provides competitive performance for nominal multicategory outcomes, while MiRKAT-MC

is more advantageous in ordinal multicategory outcomes. In fact, also based on bcl, our method (i.e., multiMiRKAT-

N) performs better than MiRKAT-MCN in some scenarios with ordinal outcomes (i.e., scenarios 1 and 4). In

addition, the bcl-based score test has excellent performance in detecting abundant association signals. Overall, the

optimal test multiMiAT is more powerful than these three methods, especially scenario 1, which further reflects

their complementarity.

Compared with association tests for multicategory outcomes, our method robustly provides competitive perfor-

mance for diverse scenarios (Figure 3, S16), especially abundant association signals (i.e., scenarios 1 and 4) and

nominal multicategory outcomes (i.e., scenario c). Specifically, distance-based tests (i.e., Adonis and ANOSIM)

do not take into account the influence of confounding factors, resulting in poor performance. In addition, the

multicategory test SASOM is more sensitive to the situation where the association signals are relatively abundant

(scenarios 1 and 4). Because of the lack of phylogenetic tree information, the effect is poor when the microbial

association signal has a phylogenetic relationship (scenarios 1–3). MiRKAT-MCN and MiRKAT-MCO have ad-

vantages in detecting nonabundant association signals, especially rare association signals (scenario 3), but they are

not powerful in detecting abundant association signals and nominal multicategory outcomes.

Compared with microbiome-based association tests for binary outcomes, we find that our methods are the best

in all scenarios except scenario 3c (Figure 4, S17). Specifically, unbalanced outcomes have a certain negative impact

on our method but a positive impact on microbiome-based association tests. Unbalanced outcomes increase the

difference among adjacent groups, which makes the results of microbiome-based association tests more significant
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Figure 3. Under diverse scenarios, the comparison of the powers between our method (i.e., multiMiAT) and
previous association tests for multicategory outcomes (n = 100).

in adjacent pairwise analysis. aMiSPU has excellent performance in rare association signals (scenario 3) because

aMiSPU contains unweighted individual tests that fully take the species presence/absence information into account.

To obtain a more convincing conclusion, we carried out a comprehensive analysis for all scenarios. We take the

mean and standard deviation of all methods for these 12 scenarios. Although most methods varied significantly
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Figure 4. Under diverse scenarios, the comparison of the powers between our method (i.e., multiMiAT) and
previous microbiome-based methods (n = 100).

across different scenarios (large standard deviation), compared to all state-of-the-art methods, our methods consis-

tently maintain the best performance (large mean, relatively stable variance) under diverse effect β sizes (Figure

5, S18). Specifically, when the effect size β = 0, all methods except OMiAT can control the type I error rate to

approximately 5%. For β ̸= 0, multiMiAT has the best performance. With the increase in β, the advantage of our
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     β = 0      β = 0.25      β = 0.5

     β = 0.75

     β = 2     β = 1.75     β = 1.5

     β = 1      β = 1.25

Figure 5. Comparison of empirical type I error rates and powers for synthesizing all scenarios under diverse effect
sizes β (n = 100).

method compared with the other methods first decreases and then increases. In addition, when the sample size is

small (i.e., n = 100), the advantage of our method is even more significant.
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Table 3. P values of our methods and previous methods in diverse datasets. Here, we conduct pairwise analysis
of microbiome-based association test. ∗ represents a significant association (i.e., p value is below the significance
level of 5%)

Methods Dataset A Dataset B

Previous
Methods

Adonis 0.075 0.001*
ANOSIM 0.060 0.001*

MiRKAT-MCN 0.035* <0.001*
MiRKAT-MCO 0.014* <0.001*

SASOM-F 0.096 <0.001*
SASOM-T 0.160 <0.001*
SASOM-D 0.108 <0.001*
aMiSPU 0.117 0.003*
MiHC 0.020* <0.001*
OMiAT 0.060 <0.001*

OMiRKAT 0.056 0.003*
Our Methods multiMiAT 0.020* <0.001*

Real data applications

In simulation experiments, we can control the association status between the microbiome and host phenotype

through effect size; however, the true associations in real data experiments are unknown. Fortunately, a large

number of studies have been developed to explore the association between the gut microbiome and disease, for

example, colorectal cancer (CRC) [4, 15, 73–75] and Clostridium difficile infections (CDI) [76–78], which provides

a reliable basis for our real data experiments. To fully verify the validity of our method, we adopt a small-scale

dataset with balance outcomes (dataset A) and a large-scale real dataset with unbalance outcomes (dataset B).

Association between the gut microbiome and colorectal cancer

To explore the characterization of the gut microbiome among three clinical statuses of CRC development (i.e.,

health, adenoma and carcinoma), Zackular et al. [73] collected stool samples from 90 subjects, where the number

of healthy people, patients with colonic adenoma and patients with colonic adenocarcinoma were all 30. Age and

race, the known clinical influencing factors of CRC, were considered for inclusion in our experiments. Here, race

contains non-Hispanic whites and others. To filter out less abundant OTUs, we selected OTUs with the mean

relative abundance ⩾ 10−4, which is a common preprocessing method [34,43]. Through this preprocessing process,

we obtained microbiome data containing 528 OTUs. We constructed a corresponding phylogenetic tree by using

MEGA7 [79].

We find a relatively large difference among individual tests based on different dissimilarity measures. Specifically,

all individual tests based on UniFrac distance can detect a significant association (i.e., p values less than 0.05);

however, most individual tests based on other distances fail to reach the same conclusion (Supplementary Table

S7), which is similar to the results of Adonis and ANOSIM analysis (Supplementary Figure S19). These results

show that the gut microbiome associated with different statuses of CRC may vary widely in presence or absence.

We summarized OTUs that were not present in all statuses, and we conducted species annotation using the

function, assignTaxonomy, in the R package, dada2 [80]. After filtering out OTUs that were not identified to the
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genus level, 17 OTUs are present in only one status, and 24 OTUs were present in two statuses (Supplementary

Figure 20). Interestingly, many of these OTUs have been reported to be associated with CRC, for example,

Fusobacterium [74,75], Bacteroides [75]. Although the p values of Adonis and ANOSIM analysis based on UniFrac

distance are less than 0.05, they are still higher than the p values of individual tests based on UniFrac distance.

These methods ignore the influence of confounding factors, especially the impact of race on CRC. In fact, the

proportion of whites was 84.4% in dataset A. However, the proportions of whites with different CRC statuses were

70.0% (health), 90.0% (adenoma) and 93.3% (carcinoma). In addition, most clm-based individual tests have better

results than bcl-based individual tests with the same distance and kernel function control, which shows that there

may be a progressive relationship among diverse statuses of CRC development.

Fortunately, our omnibus tests (i.e., multiMiRKAT-N and multiMiRKAT-O) and optimal test (multiMiAT)

can also find a significant association (Supplementary Table S8). SASOM cannot find a significant association.

Although MiRKAT-MC can find an association, the results of MiRKAT-MCN and MiRKAT-MCO are not more

significant than those of multiMiRKAT-N and multiMiRKAT-O, respectively (Table 3, S8). Remarkably, any pair

of statuses from the three statuses can be detected to be associated with the microbiome by at least one method

of microbiome-based association tests (Table 3, S9). For pairwise, adjacent pairwise and baseline pairwise analyses

of microbiome-based association tests, only some tests can detect significant associations (Table 3, S10), such as

pairwise analysis of MiHC.

Association between the gut microbiome and Clostridium difficile infections

To better understand the characterization of the gut microbiome among the diverse development statuses of CDI

(i.e., nondiarrheal control, diarrheal control and case), Schubert et al. [76] collected fecal samples from 338 subjects.

We selected age and gender as confounding factors. Age and gender were included in our real data analysis as

potential confounding factors for CDI. We removed 3 samples with missing information on confounding factors

from the dataset, where the preprocessed data contained 153 nondiarrheal controls, 89 diarrheal controls and 93

CDI patients. We also selected 439 OTUs with a mean relative abundance ⩾ 10−4 and constructed a corresponding

phylogenetic tree by using MEGA7 [79].

Due to the large-scale real dataset, all our methods, including individual tests, omnibus tests and optimal tests,

yield consistent conclusions: the extremely significant association between the gut microbiome and Clostridium

difficile infections (Supplementary Table S7, S8). Unsurprisingly, all previous methods also detect this association

(Table 3). In pairwise analysis of microbiome-based association tests, all tests have p values less than 0.05 (Supple-

mentary Table S9, S10). In addition, the principal coordinate analyses (PCoA) based on diverse dissimilarities also

reveal the differences in microbial composition among the diverse development statuses of CDI (Supplementary

Figure S21).
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Discussion

In this paper, we propose a novel microbiome-based association test named multiMiAT to test the association

between the microbiome and multicategory phenotypes. Most existing microbiome-based association tests are

committed to detecting the association between the microbiome and continuous/binary phenotypes (i.e., BMI

and disease), but fewer tests are designed for multicategory phenotypes. In addition, our simulation experiments

demonstrate that our method can control the type I error rate correctly and conduct better performance in statistical

power compared with state-of-the-art methods. Obviously, multiMiRKAT can be regarded as a tool to provide

researchers with more complementary insights into multicategory phenotype studies.

In fact, the choices of multinomial logit model, dissimilarity measure and kernel function may have an important

impact on the performance of individual tests in statistical power. We adopt multiple configurations simultaneously,

such as constructing similarity metrics between subjects via different dissimilarity measures and kernel functions, to

establish the corresponding individual tests. To maintain great statistical power in diverse scenarios, multiMiRKAT

integrates these individual tests via p value combination methods. Here, the p value combination method does

not simply take the best p value but further establishes the test statistic of the optimal test from these p values.

Then, the final p value (i.e., p value of the optimal test) needs to be calculated according to the distribution of test

statistics or the permutation method. Notably, the improper use of p value combination methods may not control

type I error correctly or lose power. We verify the performance of three common combination methods and find

that MinP is the most suitable compared with HMP and ACAT because the p values of individual tests based on

diverse dissimilarity measures are greatly different in distribution. ACAT is sensitive, while HMP is conservative.

Therefore, ACAT may obtain an inflated Type I error rate, and HMP may lose power.

Although the p value combination method is a popular strategy to maintain power for diverse scenarios, we find

it difficult to guarantee that its results are always the best compared to all individual tests. The omnibus test usually

produces noise accumulation during the combination process. Specifically, when most of the combined individual

tests do not work well, it is difficult for the omnibus test to yield a satisfactory result unless other individual

tests are sufficiently superior. Therefore, if the appropriate configuration is accurately obtained by learning some

prior information, we can make the correct setting or optimize the configuration of the optimal test to greatly

improve computational efficiency while ensuring higher power. In addition, unlike integrating individual tests with

different configurations (i.e., dissimilarity measure, kernel function), an optimal test that combines different tests

not only guarantees close to the best combined test but, in some cases, even outperforms the best combined test

(Supplementary Figure S9, S10).

Our method still has much room for development. We find that our method does not work very well for

detecting association signals with rare clusters (scenario 3) because these association signals may have difficulty

reflecting the differences among different phenotypes in the similarity matrix. Other microbiome-based association

tests for multicategory phenotypes can be considered for association signals with rare clusters, such as aMiSPU [32].

In addition, the microbiome-based association test for detecting the association between sparse association signals

and multicategory phenotypes is also worth exploring, for example, the association between Staphylococcus aureus
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and disease severity of atopic dermatitis [81]. The optimal microbiome-based association test for multicategory

phenotypes can also be extended to longitudinal data [47].
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