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Abstract 

Mutations in LRRK2 are the most common genetic cause of Parkinson’s disease. Despite 

substantial research efforts, the physiological and pathological role of this multidomain 

protein remains poorly defined. In this study, we used a systematic approach to construct the 

general protein-protein interactome around LRRK2, which was then differentiated into 15 

tissue-specific interactomes taking into consideration the differential expression patterns and 

the co-expression behaviours of the LRRK2 interactors in different healthy tissues. The LRRK2 

interactors exhibited distinct expression features in the brain as compared to the peripheral 

tissues analysed. Moreover, a high degree of similarity was found for the LRRK2 interactors 

in putamen, caudate and nucleus accumbens, thus defining a potential LRRK2 functional 

cluster within the striatum. We also explored the functions highlighted by the “core LRRK2  

interactors” within each tissue and illustrated how the LRRK2 interactomes can be used as a 

tool to trace the relationship between LRRK2 and specific interactors of interest, here 

exemplified with a study focused on the LRRK2 interactors belonging to the Rab protein family. 

 

Introduction 

Leucine-rich repeat kinase 2 (LRRK2) is a large (285kDa), multidomain protein. As a member 

of the ROCO superfamily, LRRK2 contains a Ras-of complex (ROC) GTPase domain, as well as 
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a serine-threonine kinase domain, linked to the ROC domain by a C-terminal-of-ROC (COR) 

domain of unclear function. This enzymatic core is flanked by 4 protein-protein interaction 

domains (Guaitoli et al, 2016). This complex domain structure makes LRRK2 an interesting 

enzyme from a biochemical perspective, suggesting it may act as a signalling hub able to 

orchestrate different cellular functions. Mutations in the LRRK2 gene are the most common 

genetic causes of familial Parkinson’s disease (PD), accounting for 2-40% of cases depending 

on the population under analysis (Drolet et al, 2011), with the most common (and most 

intensively studied) mutation being a pathogenic G2019S amino acid change located in the 

kinase domain (Healy et al, 2008). This mutation has been associated with increased LRRK2 

kinase activity, and has been implicated in pathophysiological changes including lysosomal 

dysfunction, -synuclein and tau aggregations and dysregulation of neuroinflammation 

(Tolosa et al, 2020). However, although many years of studies have generated a vast array of 

results, the role(s) of LRRK2 in health and disease still remain elusive.  

 

Apart from PD, multiple lines of evidence have associated LRRK2 with a number of peripheral 

diseases induced by excessive inflammatory response. LRRK2 has been identified as a major 

susceptibility gene for Crohn’s disease (CD) (Michail et al, 2013; Umeno et al, 2011; Franke et 

al, 2010; Hugot et al, 2001; Barrett et al, 2008). A newly identified LRRK2-N2081D mutation, 

which is located in the kinase domain, is associated with increased risk for both PD and CD 

(Hui et al, 2018). Additionally, LRRK2 mutations were reported to aggravate the type-1 

reaction in leprosy, and the innate immune response against mycobacterium tuberculosis 

(Fava et al, 2016; Weindel et al, 2019). These findings indicate a potentially important role of 

the LRRK2 protein at the interface between the peripheral and the central nervous system 

(CNS) immunity. Mutations in LRRK2 have also been linked to an increased risk of cancer 

(Berwick et al, 2019). Clinical studies found that PD patients carrying LRRK2-G2019S mutation 

present higher risk of non-skin cancer, hormone-related cancers and breast cancer compared 

to non-carriers (Agalliu et al, 2015; Saunders-Pullman et al, 2010). Although the mechanism 

underlying the link between LRRK2 and CD, leprosy and cancer is still unclear, this substantial 

association with peripheral diseases suggests a probably equally important role of the LRRK2 

protein in the peripheral tissues as compared to the CNS. 

 

Protein-protein interactions (PPIs) are fundamental for the maintenance of cellular 

homeostasis, with their alterations (due to mutations or post translational modification) 

potentially leading to diseases (Lehne & Schlitt, 2009; Vazquez et al, 2003). Systems biology 

deals with the complexity of PPIs applying approaches based on a holistic perspective rather 

than on a one-to-one perspective. In particular, the core assumption is that proteins 

interacting with each other constitute a functional unit and thereby are more likely to 

cooperate in the same cellular pathway(s). In this perspective, the analysis of the protein 

network built around one or more “seed proteins” of interest allows to gain insights into the 

biological processes sustained by them, as a community. In this study, LRRK2 was designated 

as the “seed protein” at the centre of the network analysis, and its interactors were derived 
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from curated peer-reviewed literature. The obtained LRRK2 interactome was then 

investigated with the goal of describing the cellular functions regulated by LRRK2 together 

with its interactors under physiological conditions. This strategy had already been employed 

by 2 comprehensive LRRK2-focused PPI studies which were independently published in 2015 

(Manzoni et al, 2015; Porras et al, 2015). These studies, however, did not investigate the 

tissue specificity of the LRRK2 interactome.  

 

Multiple lines of evidence have shown that the expression levels of LRRK2 differs greatly in 

different tissues and cell types, with one possible implication that this variability in expression 

levels may reflect underlying divergence in the cellular functions of LRRK2 (West et al, 2014; 

Witt et al, 2013; Dzamko et al, 2013; Kubo et al, 2010; Thévenet et al, 2011; Taymans et al, 

2006; Fan et al, 2018; Paisán-Ruíz et al, 2008). From a cellular perspective, LRRK2 has been 

associated with many different functions, ranging from modulation of autophagy to control 

of vesicles dynamics, from regulation of signalling pathways to response to stressors (Jeong 

et al, 2018; Bae & Lee, 2020; Berwick et al, 2019; Obergasteiger et al, 2019; Manzoni et al, 

2016, 2013; Cook et al, 2017). A way to make sense of this plethora of functions, is to suggest 

LRRK2 might potentially be implicated in different processes in different tissues, thus 

reflecting a tissue specific functional profile, which might be a consequence of the existence 

of tissue specific LRRK2 protein complexes (Lewis & Manzoni, 2012).  

 

Therefore, here we worked on the hypothesis that the interactions between LRRK2 and its 

partners might be tissue specific. However, since most of PPI data currently available are 

principally derived from in-vitro experiments in cellular models, isolated proteins or from high 

throughput screening, they lack in tissue specificity. With this work we suggest few different 

computational approaches to differentiate the general LRRK2 interactome into tissue specific 

LRRK2 interactomes considering the transcriptomic features and the functional patterns of 

LRRK2 and its interactors in healthy human tissues. These results provide a tool to model 

tissue specificity for PPIs and a valuable window onto the role of LRRK2 in health and disease 

with important implications for the development of safe LRRK2-targeted therapeutic 

approaches. 

 

Methods 

Protein-protein interaction (PPI) download 

PINOT (http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) (Tomkins et al, 2020), 

HIPPIE (http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/index.php) (Alanis-Lobato et al, 

2017) and MIST (https://fgrtools.hms.harvard.edu/MIST/) (Hu et al, 2018) were queried to 

download “homo sapiens” PPIs for LRRK2 (Uniprot ID: Q5S007, 21 October 2020). To access 

the broadest possible set of PPI data, “Lenient” filter level was applied in PINOT; while all 

filters were removed in HIPPIE and MIST.  
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PPIs were quality controlled via an in-house pipeline described in Figure 1; 1) protein IDs of 

data from different repositories were converted into the same identifier system (HUGO Gene 

Nomenclature Committee (HGNC) gene names); 2) the “interaction detection methods” in 

HIPPIE and MIST were reassigned referring to the PINOT Method Grouping Dictionary 

(Lenient version). The PINOT Method Grouping Dictionary clusters similar detection methods 

annotated in PSI-MI ontology (e.g. “Two hybrid fragment pooling approach MI:0399” and 

“Two hybrid bait and prey pooling approach MI:1113” are allocated in the same category: 

“Two Hybrid”); 3) PPIs extracted from the 3 databases were merged after removing duplicates; 

4) LRRK2 interactors were then scored (Final Score, FS) by adding the number of detection 

methods (Method Score, MS) and the number of reporting publications (Publication Score, 

PS). The LRRK2 interactome was generated from interactors with FS > 2. Interactors with 

lower FS (≤ 2) were removed from further analysis because of their poor reliability (either 

were not replicated in multiple experiments or with missing publication identifier or with 

missing record of detection method). Of note, interactors marked as “Unreviewed” in 

UniProtKB were removed as well. PPIs that passed quality control thereby constitute what we 

defined as the general LRRK2 interactome (LRRK2int). Family classification of QC-ed LRRK2 

interactors was extracted (on 19 December 2020) from UniProt via the R package: UniProt.ws 

(Carlson, 2021). 

 
Figure 1: PPI quality control pipeline for LRRK2 interactome construction. Human PPI data downloaded 
from PINOT, HIPPIE and MIST databases were merged after ID conversion using HGNC gene names. 
Merged data underwent interaction detection method reassignment using an in-house dictionary. 
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Publication score (PS) was defined as the number of papers in which a PPI was reported, while method 
score (MS) was defined as the number of different methods by which a PPI was detected. Final score (FS) 
was calculated as PS + MS. PPIs with FS ≤ 2 were excluded from further analysis. 

 

Functional characterisation of the general LRRK2int 

The general LRRK2int was analysed by Functional Enrichment Analysis using the tool g:GOSt 

on 1 Oct 2021 (g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) (Raudvere et al, 2019). The 

parameters were set as follows:  organism - Homo sapiens (Human); data source - GO 

biological process (GO-BPs) only; statistical domain scope – annotated genes only; statistical 

method - Fisher’s one-tailed test; significance threshold – Bonferroni correction (threshold = 

0.05). No hierarchical filtering was included. To increase the sensitivity of analysis, a cut-off 

of ≤ 1500 was set for the “term size” of enriched GO terms. Finally, GO-BPs whose enrichment 

gene set did not include LRRK2 were discarded, thereby keeping only the GO-BPs that LRRK2 

directly contributed to. The remaining GO-BPs were grouped according to their semantic 

similarity (hereby referred as “GO-BP groups”) using an in-house dictionary followed by 

manual scrutiny. LRRK2 interactors contributing to the enrichment of each GO-BP group were 

extracted (hereby referred as “functional groups”). The composition (in terms of LRRK2 

interactors) of different functional groups was compared using Multiple Correspondence 

Analysis (MCA).  

 
 

RNA-Seq data download and quality control 

RNA-seq data (read counts) were downloaded for 56200 genes in 11 brain regions (amygdala, 

anterior cingulate cortex, caudate (basal ganglia), cerebellum/cerebellar hemisphere, 

cortex/frontal cortex (BA9), hippocampus, hypothalamus, nuclear accumbens (basal ganglia), 

putamen (basal ganglia), spinal cord (cervical c-1) and substantia nigra (basal ganglia)), 3 

peripheral tissues (lung, liver, kidney) and whole blood from the Genotype-Tissue Expression 

(GTEx, https://www.gtexportal.org/home/) Analysis Release V8 (dbGaP Accession 

phs000424.v8.p2) on 19 Aug 2021 

(https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_reads.gct.gz). Of note, in GTEx, “cerebellum/cerebellar 

hemisphere” and “cortex/frontal cortex (BA9)” are duplicated pairs 

(https://www.gtexportal.org/home/faq - brainCortexAndCerebellum). Therefore, we kept 

“cerebellum” and “cortex” in our analysis because they contain more samples compared to 

their duplicates (209 vs. 175; 205 vs. 175). For kidney, we only kept data for cortex, while data 

for medulla were discarded because it contains too few samples (n = 4).  

 

RNA-seq data was then quality controlled following an in-house pipeline: for each tissue, 1) 

low count genes (with read counts = 0 in more than 5% of all samples) were discarded; 2) 

samples with mapping rates < 80% were discarded (GTEx’s Sample Attribute file: 

https://storage.googleapis.com/gtex_analysis_v8/annotations/GTEx_Analysis_v8_Annotatio

ns_SampleAttributesDS.txt); 3) expression-profile similarity among remaining samples in a 
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given tissue was examined via pairwise Pearson’s correlation test on the read counts; 4) 

samples were clustered based on the correlation coefficients calculated in 3). Samples that 

lay outside the main cluster(s) in the hierarchical dendrogram were recognised as “outliers” 

and were thereby discarded from further analysis. Read counts for LRRK2 interactors were 

extracted using HUGO gene names and Ensembl Gene IDs. LRRK2 interactors with available 

expression data for all tissues were kept for further analysis.  

 

Evaluation of tissue specific LRRK2ints based on differential expression 

Pair-wise Differential Expression Analysis (DEA) was performed to compare the expression 

values of LRRK2 interactors across different tissues via the R package “DESeq2” (Love et al, 

2014). In “DESeq2”, p-values generated during each round of DEA between every pair of 

tissues were automatically adjusted for multiple testing correction. These p-values were 

further corrected using Bonferroni’s method to reduce the Type II error generated from pair-

wise DEA among all tissues of analysis. This resulted in a matrix containing DEA p-values for 

each possible pair of tissues, for all LRRK2 interactors. For each interactor, tissues were 

ranked according to the DEA results via the following method: for interactor I, if its expression 

level in Tissue A  is significantly higher than in Tissue B (Bonferroni corrected p-value < 0.05), 

then 𝑆𝑐𝑜𝑟𝑒𝐼,𝐴
𝐸𝑥 =  𝑆𝑐𝑜𝑟𝑒𝐼,𝐴

𝐸𝑥 + 1 , while 𝑆𝑐𝑜𝑟𝑒𝐼,𝐵
𝐸𝑥  remains unchanged, and vice versa. If the 

comparison between Tissue A and Tissue B is insignificant (Bonferroni corrected p-value ≥ 

0.05), both 𝑆𝑐𝑜𝑟𝑒𝐼,𝐴
𝐸𝑥  and 𝑆𝑐𝑜𝑟𝑒𝐼,𝐵

𝐸𝑥  remain unchanged. According to this classification, for 

interactor I, 𝑆𝑐𝑜𝑟𝑒𝐼,𝐴
𝐸𝑥 was directly indicative of the expression level of interactor I in Tissue A 

in comparison with the other tissues: the higher the 𝑆𝑐𝑜𝑟𝑒𝐼,𝐴
𝐸𝑥, the higher the expression of 

interactor I in Tissue A. Interactors that presented uniquely and significantly high expression 

in certain tissues (𝑆𝑐𝑜𝑟𝑒𝐼,𝐴
𝐸𝑥 ≥ 12), meaning that the expression level of Interactor I in Tissue A 

is higher than 85.7% (12/14) tissues. 

 

Finally, a heatmap (Heatmap_DEA) was generated based on the mean expression values of 

LRRK2 interactors in different tissues calculated from the normalised read counts matrix 

derived from DEA using R package “gplots” (“DESeq2” transforms the read counts via internal 

normalisation where geometric mean is calculated for each gene across all samples) (Love et 

al, 2014). Two dendrograms were derived from Heatmap_DEA: 1) hierarchical clustering of 

tissues based on the similarity of LRRK2int’s expression distribution (Den_DEA1); 2) 

hierarchical clustering of LRRK2 interactors based on the similarity of their expression 

patterns across different tissues (Den_DEA2). By cutting these 2 dendrograms, we identified 

1) clusters of tissues in which the LRRK2int presented similar expression behaviours; 2) clusters 

of interactors that exhibited similar expression patterns with LRRK2 across different tissues 

(DEA_ClusterLRRK2).  

 

Evaluation of tissue specific LRRK2-ints based on co-expression analysis 
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Read counts data derived from GTEx was used to calculate Pearson’s correlation between 

LRRK2 and its interactors in each single tissue. Multiple testing correction was performed 

using Bonferroni’s method. The co-expression patterns of LRRK2 with its interactors in each 

tissue were evaluated by comparison to the corresponding reference co-expression 

coefficient distribution in the same tissue, which was generated (for each tissue) from co-

expression analysis between LRRK2 and 1000 sets of randomly picked genes (to match the 

size of the general LRRK2int) in GTEx.  

 

The distribution of the co-expression coefficients for the LRRK2 interactors was compared 

across different tissues via the following steps: 1) One-way ANOVA followed by Tukey’s test 

was performed to compare the coefficients across tissues; 2) if the co-expression coefficients 

are significantly higher in Tissue A than in Tissue B (adjusted p-value < 0.05), then 

𝑆𝑐𝑜𝑟𝑒𝐴
𝑐𝑜𝑒𝑥 =  𝑆𝑐𝑜𝑟𝑒𝐴

𝑐𝑜𝑒𝑥 + 1 , while 𝑆𝑐𝑜𝑟𝑒𝐵
𝑐𝑜𝑒𝑥  remains unchanged. If the comparison 

between Tissue A and Tissue B is insignificant (adjusted p-value ≥ 0.05), both 𝑆𝑐𝑜𝑟𝑒𝐴
𝑐𝑜𝑒𝑥 and 

𝑆𝑐𝑜𝑟𝑒𝐵
𝑐𝑜𝑒𝑥  remain unchanged. According to this method, for interactor I, the 𝑆𝑐𝑜𝑟𝑒𝐴

𝑐𝑜𝑒𝑥 in 

was directly indicative of the co-expression level of interactor I with LRRK2 in Tissue A.  

 

Finally, a heatmap (Heatmap_Co-ex) was generated based on the matrix of co-expression 

coefficients between interactors and LRRK2 in different tissues using the R package “gplots”. 

Two dendrograms were derived from Heatmap_Co-ex: 1) hierarchical clustering of tissues 

based on the similarity of LRRK2-interactor coefficient distribution (Den_Co-ex1); 2) 

hierarchical clustering of LRRK2 interactors based on the similarity of their co-expression 

(with LRRK2) behaviours across different tissues (Den_Co-ex2). By cutting the 2 dendrograms, 

we identified 1) clusters of tissues in which the LRRK2int presented similar co-expression 

behaviours; 2) clusters of interactors that exhibited similar co-expression patterns with LRRK2 

across different tissues. In addition, we compared the co-expression coefficients of the 

interactor clusters identified in 2) via t-test, thereby identifying the cluster of interactors that 

presented the highest co-expression with LRRK2 (Co-ex_ClusterLRRK2). 

 

Tissue-specific LRRK2 interactomes and functional patterns 

Tissue specific LRRK2ints were constructed by combining the results of DEA and co-expression 

analysis. In each tissue specific LRRK2int, core interactors were defined as LRRK2 interactors 

that i) either presented significantly higher expression in the given tissue as compared to 

other tissues of analysis, or ii) exhibited high co-expression in the given tissues in comparison 

to other interactors in the LRRK2int. The “highly expressed” interactors were filtered via the 

following steps: 1) the absolute expression levels (automatically transformed read counts 

generated by the R package “Deseq2”) were log transformed to reach a normal distribution; 

2) threshold of “high expression” was set as 
∑ 𝐿𝑜𝑔2

𝑥𝑖𝑁
𝑖=1

𝑁
+ 𝑆𝐷 (N: the total number of LRRK2 

interactor in the tissue specific LRRK2int, SD: standard deviation of transformed expression 

levels of LRRK2 interactors in the given tissue); 3) interactors with transformed expression 
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values above the threshold were defined as “highly expressed” interactors in the given tissue. 

Highly co-expressed interactors were defined via the following steps: for each tissue, 1) 

LRRK2:interactor co-expression coefficients were transformed via the formula 10𝜇  (𝜇 = co-

expression coefficient) to reach a normal distribution; 2) threshold of “high co-expression” 

was set as 
∑ 10𝜇𝑖𝑁

𝑖=1

𝑁
+ 𝑆𝐷  (N: the total number of LRRK2 interactor in the tissue specific 

LRRK2int, SD: standard deviation of transformed co-expression coefficients between LRRK2 

and its interactor in the given tissue); 3) interactors with transformed co-expression 

coefficients above the threshold were defined as “highly co-expressed” interactors in the 

given tissue. We analysed functional pattern of each tissue specific LRRK2int by analysing the 

biological processes in which its core interactors were involved, based on the assumption that 

interactors that are higher expressed or co-expressed with LRRK2 are more likely to 

contribute to cellular functions together with LRRK2.  

 

Results 

Construction of the general LRRK2int 

A total of 1436, 548 and 1850 human LRRK2 interactors were retrieved from PINOT, HIPPIE 

and MIST respectively (Figure 1). To harmonise different protein identifiers, all protein IDs 

were converted to HUGO gene names. One interactor (Entrez ID: 333931) was removed 

because its record is no longer valid in NCBI Gene. Furthermore, 3 proteins coded by 

transcriptional read-throughs (RPL17-C18orf32, TPTEP2-CSNK1E and BUB1B-PAK6) were 

marked as “Unreviewed” entries in UniProtKB, and were thereby discarded from further 

analysis. After protein ID conversion, the 3 protein sets (3831 annotations in total) were 

merged into 1 list of 1871 unique interactors (hereby referred as “merged list”), suggesting 

that albeit the differences in data sources and versions, there is a large amount of overlap 

among PINOT, HIPPIE and MIST in terms of PPIs retrieved for LRRK2. Of note, among the 1871 

interactors, 529 (28.3%) were shared by all the 3 tools; 902 (48.2%) were downloaded from 2 

of the 3 databases; 440 (23.5%) were present in only 1 database (10 in PINOT, 11 in HIPPIE 

and 419 in MIST). 

For each PPI in the merged list, the “interaction detection methods” were extracted and 

reassigned according to PINOT Method Grouping Dictionary (Lenient version), where similar 

methods are grouped together. In this way only technically different interaction detection 

methods were considered as independent evidence of protein interaction, thus adding 

stringency to the PPI collection pipeline.  

The LRRK2 interactors were scored based on the number of publications (Publication Score, 

PS) and different types of detection methods (Method Score, MS), thereby generating the 

Final Score (FS = PS + MS). A total of 1463 “low-quality” interactors (1463/1871, 78.2%) with 

an FS ≤ 2 (indicating that these LRRK2 interactions were reported in 1 publication and with 1 

method only, therefore never replicated) were identified and removed from further analyses.  
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A final list containing 408 LRRK2 interactors with FS > 2 was obtained (hereby referred as “the 

general LRRK2int”, Table S1). Among the 408 interactors, 352 (86%) were scored FS ≤ 5; 41 

(10%) were scored between 6 and 8; 18 (4%) were scored FS ≥ 9. LRRK2 itself exhibited the 

highest FS = 50, as many publications confirmed LRRK2 as able to self-interact. Other robust 

LRRK2 interactors were HSP90AA1 (FS = 19); YWHAQ/14-3-3T (FS = 14), followed by HSPA8, 

MSN, YWHAZ/14-3-3Z, CDC37, DNM1L, STUB1 and TUBB (Figure 2A). 

 

 
 

Figure 2: The general LRRK2 interactome A) Nodes (n = 408) represent LRRK2 interactors that were 
with FS > 2 and were reviewed by the UniprotKB. Node fill colour and node size are weighted on the final 
score (FS). Larger size and darker colour indicate higher FS. B) Family classification of LRRK2 interactors. 

 
Out of the 408 LRRK2 interactors, 232 (56.9%) were classified into families based on UniProt 

record: cytoskeleton proteins (n = 51 interactors, 12.5%), ribosomal proteins (n = 41 

interactors, 10.0%), protein kinases (n = 35 interactors, 8.6%), GTPases (n = 24 interactors, 

6.6%), ATPases (n = 14 interactors, 3.4%), heat shock proteins (n = 12 interactors, 2.9%), and 

mitochondrial carriers (n = 8, 2.0%). In addition, 13 (3.2%) LRRK2 interactors were classified 

in ubiquitin-proteasome related protein families; while 27 interactors (6.7%) belonged to 

gene expression-related families (8 transcription factors/regulators, 5 helicases, 4 splicing 

factors and 10 DNA-metabolism-related proteins) (Figure 2B). Of note, the LRRK2 interactors 

included 13 Rab GTPases and seven 14-3-3 proteins. The Rab GTPase family and the 14-3-3 

family are the 2 groups of proteins that have been most widely recognised as LRRK2 

interactors (Mason et al, 2009; Seol et al, 2019).  

 

Functional enrichment analysis on the general LRRK2int 
Functional Enrichment Analysis was performed for the general LRRK2int. A total of 597 

significant GO-BPs (Bonferroni adjusted p-values < 0.05) were returned. A cut-off of “term 

size” ≤ 1500 was applied to the enriched GO-BPs to remove general terms (140/597, 23.4% 
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of terms removed) and improve sensitivity of analysis. GO-BPs whose enrichment gene set 

(i.e. intersection) did not contain LRRK2 were also removed leading to the final enrichment 

list containing 183 GO-BPs. These GO-BPs were clustered into the following 14 functional 

groups based on their semantic similarities: “autophagy”, “cell death”, “development, 

“intracellular organisation”, “immune system”, “metabolism”, “protein catabolism”, “protein 

localisation”, “protein modification”, “response to stress”, “regulation of enzyme functions”, 

“regulation of gene expression”, “signalling”, and “transport”. 

 

LRRK2 interactors contributing to the enrichment of each single functional group were 

extracted. A total of 315 (77.2%) LRRK2 interactors contributed to the enrichment of at least 

1 functional group, while 10 LRRK2 interactors contributed to the enrichment of ≥ 13 out of 

the 14 functional groups (AKT1, CDK5, GSK3B, PRKCZ, HSP90AB1, HSP90AA1, MAPT, HIF1A, 

HDAC6, TP53), suggesting their interactions with LRRK2 are involved in multiple biological 

processes. The largest numbers of LRRK2 interactors were found to contribute to the 

functional groups of: “intracellular organisation” (n = 192/315 interactors, 60.7%), “transport” 

(n = 161/315 interactors, 50.9%) “metabolism” (n = 160/315 interactors, 50.6%), “regulation 

of gene expression” (n = 147/315 interactors, 46.5%) and protein catabolism (n = 137/315 

interactors, 43.4%), confirming the observation already made for the most represented 

functional groups (Figure 3A).  

 

Multiple Correspondence Analysis (MCA) was performed to compare the composition (in 

terms of LRRK2 interactors) of the 14 functional groups (Figure 3B). The top three 

components (Dim.1, Dim.2, Dim.3) accounted for 35.8% of total variability in the data (18.6%, 

15.0% and 12.2%, respectively). “Development”, “intracellular organisation”, “metabolism”, 

“protein localisation” and “transport” presented as independent elements as they were 

distant from every other functional group in the MCA graph. “Protein localisation”, “protein 

modification” and “protein catabolism” were clustered in Cluster I, while “signalling”, 

“regulation of enzyme functions”, “immune system” and “response to stress” were clustered 

in Cluster II. This suggested the functional groups within each of the two clusters have a 

similar composition in terms of LRRK2 interactors.  
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Figure 3: Functions of LRRK2int. A) The bar graph shows the numbers of interactors contributing to the 

enrichment of different functional groups. B) The 14 functional groups were then analysed via MCA to 

compare their composition in terms of LRRK2 interactors. Two clusters of functional groups were 

identified, suggesting each of these clusters comprises similar LRRK2 interactors. 

 

RNA-Seq data download and quality control 

RNA-Seq read counts data of 56200 genes for 11 brain regions, lung, liver, kidney (cortex) and 

whole blood were downloaded from GTEx. More than 50% of the genes were discarded due 

to low read counts (identified as having more than 5% of samples with null read counts in a 

given tissue). Of note, a total of 7 LRRK2 interactors were removed in this step, reducing the 

dimension of the LRRK2int from 408 to 401 analysable interactors. Pairwise Pearson’s 

correlation test was performed within each tissue to evaluate the similarity of gene 

expression profiles read count across the samples. Samples were grouped by hierarchical 

clustering based on the Pearson’s coefficients to identify samples whose gene expression 

profile was generally off-scale. No outlier samples were found in any tissue, suggesting that 

GTEx RNA-Seq data are barely affected by batch effects. Read counts for LRRK2 interactors 

were then extracted using HUGO gene names and Ensembl Gene IDs. Five proteins were not 

found in GTEx Ensembl Gene ID list and were thereby removed. Seventeen LRRK2 interactors 

presented missing expression values in certain tissues and were also excluded. In total, read 

counts for 379 (92.9%) LRRK2 interactors were obtained for further analysis. 

 

Construction of tissue specific LRRK2ints 

Differential Expression analysis on the LRRK2int 

Pair-wise differential expression analyses (DEA) were performed for each LRRK2 interactor 

across different tissues. Tissues were ranked based on the DEA results of each LRRK2 

interactors. We were able to observe the following tissue-specific expression patterns of the 

general LRRK2int: i) the tissues with the largest numbers of LRRK2 interactors showing 
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significantly high expression levels are blood (with 163 LRRK2 interactors expressed 

significantly higher in blood than in ≥ 10 of the other tissues analysed [𝑆𝑐𝑜𝑟𝑒𝐼𝑛,𝑏𝑙𝑜𝑜𝑑
𝐸𝑥  ≥ 10]), 

cerebellum, spinal cord c-1 and frontal cortex (with n = 117; n = 74; and n = 67 highly 

expressed LRRK2 interactors respectively, all with 𝑆𝑐𝑜𝑟𝑒𝐼,𝑡𝑖𝑠𝑠𝑢𝑒
𝐸𝑥  ≥ 10). The expression levels of 

LRRK2 interactors were generally lower in caudate, putamen, kidney cortex and liver (scored 

< 9 in 98.1% of all interactors) (Figure 4A). When considering the individual components of 

the LRRK2int, a total of 185 out of 379 interactors (48.8%) presented with unique and 

significantly high expression in a certain tissue (with a 𝑆𝑐𝑜𝑟𝑒𝐼,𝐴
𝐸𝑥 > 12, suggesting that the 

expression level of Interactor I is significantly higher in Tissue A than in ≥ 12 other tissues 

analysed). These 185 highly expressed interactors were distributed across 6 tissues 

(cerebellum, frontal cortex, spinal cord c-1, hypothalamus, anterior cingulate cortex and 

blood) and showed high tissue-specificity, i.e. they were highly expressed only in 1 tissue 

(Figure 4B). 

 

A heatmap was generated based on the normalised expression matrix derived from DEA 

(Heatmap_DEA, Figure 4C). Two dendrograms were extracted from Heatmap_DEA: 1) 

Den_DEA1 for the hierarchical clustering of tissues based on the overall LRRK2int expression 

patterns; 2) Den_DEA2 for the hierarchical clustering of each LRRK2 interactor based on 

expression behaviours across different tissues. In Den_DEA1, brain regions and peripheral 

tissues presented in two distinct groups, suggesting that the overall expression levels for the 

components of the LRRK2int are different in the brain in comparison with other tissues. Among 

the 11 brain regions, putamen, caudate, and nucleus accumbens were clustered together, 

indicating that the LRRK2 interactors exhibited similar expression patterns in these 3 brain 

regions (in terms of absolute expression levels). Of note, putamen, caudate and nucleus 

accumbens regions are the fundamental parts of striatum, which is substantially impacted 

with PD pathology. Den_DEA2 was cut following the principle of obtaining the largest number 

of clusters while avoiding generating clusters comprising single interactors, thereby 4 clusters 

were obtained (Cluster 1-4; n = 25, 124, 91 and 138 interactors, respectively). A total of 124 

interactors presented in the same cluster as LRRK2 (Cluster 1, hereby referred as 

DEA_ClusterLRRK2), suggesting these proteins exhibited a similar expression pattern (in terms 

of absolute expression levels) when compared with LRRK2 in different tissues. 
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Figure 4 Differential Expression Analysis (DEA) on the LRRK2int A) DEA was performed to compare 

the expression levels of each LRRK2 interactor across different tissues. Tissues were ranked based 

on the significant comparison results. The bar graph shows the distribution of the ranks of different 

tissues. Each bar in the graph represents a tissue, and segments in the bar represent ranks of that 

tissue at three levels: AVERAGE (≤ 4); MIDDLE (between 5 and 9); HIGH (≥ 10). Of note, an AVERAGE 

rank suggests that for interactor I, the expression level in a given tissue is lower/not significantly 

higher than in other tissues, or only higher than in ≤ 4 tissues (< 27% of all tissues), while a HIGH 

rank means the expression level of interactor I is significantly higher in a given tissue than in ≥ 10 

other tissues (> 67% of all tissues). B) The network graph shows the LRRK2 interactors with 

significantly high expression in certain tissues (tissue ranks ≥ 12), suggesting that the expression 

levels of these interactors in a specific tissue are significantly higher than in ≥ 12 other tissues (86% 

of all tissues). Tissues are represented as rectangular nodes, while interactors are represented as 

round nodes. Different colour indicates different tissues. C) Heatmap_DEA was generated from 

normalised read counts (log2 transformed) of LRRK2 interactors in different tissues derived from 

DEA. Darker colour represents higher expression levels. The horizonal dendrogram of 

Heatmap_DEA was extracted as Den_DEA1. It shows the hierarchical clustering of tissues in which 

the LRRK2int exhibits similar expression patterns. The vertical dendrogram of Heatmap_DEA was 

extracted as Den_DEA2. It shows the hierarchical clustering of LRRK2 interactors based on the 

similarity of their expression figures across different tissues. Den_DEA2 was cut to generate 4 

clusters of LRRK2 interactors (Cluster 1-4, marked in green, red, blue and yellow, respectively). The 

cluster containing LRRK2 (marked in red) is defined as DEA_ClusterLRRK2, in which the interactors 

presented similar overall expression distribution across tissues as LRRK2. Abbreviations: ACC: 

Anterior Cingulate Cortex; AMYG: Amygdala; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: 

hippocampus; HYPT: hypothalamus; NAc: nucleus accumbens; PUT: putamen; SN: substantia nigra; 

SPC: spinal cord c-1; Kidney_c: kidney cortex. 
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Co-expression analysis on the general LRRK2int 

Pearson’s correlation test was performed to calculate the co-expression coefficients between 

LRRK2 and each of its 379 interactors in different tissues. The distribution of the 379 co-

expression coefficients for each tissue was compared to the corresponding reference 

distribution generated from co-expression analysis between LRRK2 and 1000 sets of randomly 

picked genes (for each random gene list, n = 379 to match with the dimension of the general 

LRRK2int). In frontal cortex, putamen, nucleus accumbens, hypothalamus, anterior cingulate 

cortex, caudate, and cerebellum, LRRK2int presented a larger distribution of high co-

expression coefficients (0.65 to 0.85) in comparison to the reference, indicating that LRRK2 

interactors were strongly correlated with LRRK2 in comparison with randomly picked genes. 

In hippocampus, spinal cord c-1 and lung, the LRRK2 interactors presented more moderate 

co-expression with LRRK2 (0.45 to 0.65) in comparison to the reference, suggesting they are 

mildly correlated with LRRK2 in comparison with randomly picked genes. The distribution of 

co-expression coefficients of the LRRK2int overlapped with the reference for amygdala, 

substantia nigra, blood, liver and kidney cortex, suggesting no significant co-expression 

between LRRK2 and its interactors was present in these tissues. 

 

One-way ANOVA followed by Tukey’s test was performed to compare the distribution of co-

expression coefficients across tissues. The tissues were then ranked based on the significant 

results. Tissues with the higher co-expression coefficients between LRRK2 and its interactors 

were putamen ( 𝑆𝑐𝑜𝑟𝑒𝑃𝑈𝑇
𝑐𝑜𝑒𝑥  = 14, suggesting that the co-expression coefficients were 

significantly higher in putamen compared to all other 14 tissues analysed) and nucleus 

accumbens (𝑆𝑐𝑜𝑟𝑒𝑁𝐴𝑐
𝑐𝑜𝑒𝑥 = 13), followed by caudate and hypothalamus (𝑆𝑐𝑜𝑟𝑒𝐶𝐴𝑈

𝑐𝑜𝑒𝑥, 𝑆𝑐𝑜𝑟𝑒𝐻𝑌𝑃𝑇
𝑐𝑜𝑒𝑥  

= 10). Hippocampus was the brain region with the lowest number of interactors co-expressed 

with LRRK2 (𝑆𝑐𝑜𝑟𝑒𝐻𝑃
𝑐𝑜𝑒𝑥= 1). Kidney cortex obtained the highest rank among the peripheral 

tissues (𝑆𝑐𝑜𝑟𝑒𝑘𝑖𝑑𝑛𝑒𝑦
𝑐𝑜𝑒𝑥   = 5) (Figure 5A).  

 

A heatmap was generated from the coefficient matrix derived from co-expression analysis 

(Heatmap_Co-ex, Figure 5B). The 2 dendrograms in Heatmap_DEA were extracted as follows: 

1) Den_Co-ex1 for the hierarchical clustering of tissues in which the LRRK2int presented similar 

co-expression patterns; 2) Den_Co-ex2 for the hierarchical clustering of the LRRK2 interactors 

that exhibited similar co-expression behaviours with LRRK2 across different tissues. In 

Den_Co-ex1, two clusters were identified: i) frontal cortex, putamen, nucleus accumbens and 

caudate; ii) spinal cord c-1, hypothalamus, cerebellum and anterior cingulate cortex, 

indicating that the pattern of co-expression between LRRK2 and its interactors was different 

between the 2 clusters but similar for the tissues within each cluster. This suggests that the 

LRRK2int may participate in different cellular functions in the 2 clusters of brain regions. 

 

A cut-off was applied to the Den_Co-ex2 to cluster LRRK2 interactors based on the similarity 

of co-expression behaviour (with LRRK2) across different tissues. The cut-off was set to obtain 
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the largest number of clusters while avoiding generating clusters comprising single interactors. 

A total of 6 clusters was generated (Cluster A-F; n = 15, 19, 91, 77, 72, 104, respectively), in 

which Cluster D (n = 77/379, 20.3%) contained the LRRK2 interactors presenting the highest 

overall co-expression coefficients with LRRK2 across different tissues. Cluster D represents 

the group of LRRK2 interactors whose genes are more frequently co-expressed with LRRK2 

considering the pool of tissues under investigation (hereby referred as Co-ex_ClusterLRRK2). 

 

 
Figure 5: Co-expression analysis on the LRRK2int. A) Pair-wise Tukey’s test was performed to 
compare the co-expression coefficients (interactors vs LRRK2) across different tissues. Tissues were 
ranked according to the results. The bar graph shows that putamen, nucleus accumbens, caudate 
and hypothalamus are tissues with the highest ranks. Liver presents a rank of 0, meaning the co-
expression coefficients of LRRK2 interactors are the lowest in comparison with any other tissues 
analysed. B) The heatmap was generated from the coefficient matrix derived from the co-
expression analysis (Heatmap_Co-ex). Darker colour represents higher co-expression coefficient. 
The horizonal dendrogram of Heatmap_Co-ex was extracted as Den_Co-ex1, which shows the 
hierarchical clustering of tissues in which the LRRK2 interactors exhibited similar co-expression 
patterns with LRRK2. The vertical dendrogram of Heatmap_Co-ex was extracted as Den_Co-ex2, 
which shows the hierarchical clustering of interactors based on the similarity of their co-expression 
figures with LRRK2 across different tissues. Den_Co-ex2 was cut to generate 6 clusters of LRRK2 
interactors (Cluster A-F, marked in green, blue, yellow, red, purple and turquoise, respectively). 
Interactors in Cluster D presents the highest level of overall co-expression behaviour with LRRK2 
across different tissues (referred as Co-ex_ClusterLRRK2). Abbreviations: ACC: Anterior Cingulate 
Cortex; AMYG: Amygdala; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; 
HYPT: hypothalamus; NAc: nucleus accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal 
cord c-1; Kidney_c: kidney cortex. 
 

Tissue specific LRRK2 interactomes 

The DEA and co-expression results were combined to generate 15 tissue specific LRRK2ints, 

which presented distinct expression/co-expression profiles across different tissues. In 
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putamen, caudate and nucleus accumbens, LRRK2 interactors presented moderate 

expression levels (in comparison with the other tissues analysed) but a larger number of 

interactors showing high co-expression levels with LRRK2. In frontal cortex, substantia nigra 

and cerebellum, some interactors exhibited especially high expression levels (in comparison 

with the other tissues analysed), but the LRRK2:interactors co-expression was generally lower 

as compared to the 3 brain regions discussed above. Blood was the tissue with the largest 

number of LRRK2 interactors with high expression levels, but these interactors presented a 

generally low co-expression with LRRK2. Finally, the LRRK2 interactors presented the lowest 

expression levels and co-expression (with LRRK2) in hippocampus, liver, lung, and kidney 

(Figure 6). 
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Figure 6: Tissue specific LRRK2ints. The network graphs represent the 15 tissue specific LRRK2ints 

generated from the results of DEA and co-expression analysis. Node colour represents the 

normalised expression level of LRRK2 interactors. The darker the colour, the higher the expression 

level of the interactor in a given tissue. Node size represents co-expression coefficient. The larger 

the node, the higher the co-expression coefficient calculated between LRRK2 and the interactor in 

a given tissue. Abbreviations: ACC: Anterior Cingulate Cortex; AMYG: Amygdala; CAU: caudate; CR: 

cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: nucleus accumbens; 

PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1; Kidney_c: kidney cortex. 

 
 

Tissue specific functional patterns of LRRK2ints  

In order to identify potential functional patterns of the LRRK2int in different tissues, for each 
tissue, we extracted “core interactors” that either 1) presented high expression levels or 2) 
exhibited high co-expression behaviours with LRRK2. The functional pattern of LRRK2int of 
each tissue was obtained by calculating the contribution of the core interactors (for that 
tissue) to the enrichment of the 14 functional groups identified in the functional enrichment 
analysis for the general LRRK2int (Figure 7). 
 
In terms of the brain regions, core interactors in caudate presented high involvement in all 14 
functional groups from the perspectives of both highly expressed and co-expressed (with 
LRRK2) interactors. Core interactors in frontal cortex and nucleus accumbens showed a similar 
high-engagement pattern in most of the functional groups but only from the perspective of 
interactors with high co-expression behaviour with LRRK2. For cerebellum, core interactors 
that presented high co-expression levels with LRRK2 were mainly found contributing to the 
enrichment of “cell death”, “protein localisation” and “regulation of gene expression”; while 
in substantia nigra, the core interactors were involved in the functions of “intracellular 
organisation”, “protein catabolism” and “transport”. Of note, putamen had its highly 
expressed core interactors engaged in “autophagy”; while core proteins in spinal cord c-1 
were primarily participating in the enrichment of the functional group “immune system”; 
while the core interactors for amygdala were mostly included in the groups of “protein 
modification”. 
 
As for the peripheral tissues, the core interactors for blood presented involvement in all 14 
functional groups. Lung had most of its core interactors involved in “autophagy”, “immune 
system”, “development” and “metabolism”; while the core interactors in kidney cortex were 
mainly involved in “metabolism”, “protein modification”, “protein localisation”, “regulation 
of gene expression” and “transport” mostly from the perspective of highly co-expressed 
LRRK2 interactors. However, no functional groups were found to include core interactors 
from liver. 
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Figure 7：  Functional patterns of tissue specific LRRK2ints. The radar graphs represent the 

functional patterns of 15 tissue specific LRRK2ints based on their core interactors. Functional 

patterns described by highly expressed LRRK2 interactors were represented via orange curve; while 

the patterns described by highly co-expressed interactors (with LRRK2) were represented via blue 

curve. Numbers in the graphs represent the numbers of core interactors for different tissues that 

were included in a given functional group identified in the functional enrichment analysis for the 

general LRRK2int. Abbreviations: ACC: Anterior Cingulate Cortex; AMYG: Amygdala; CAU: caudate; 

CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: nucleus 

accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1; Kidney_c: kidney cortex. 

 

Application of tissue specific LRRK2ints: Differentiating LRRK2:Rab interactions 
in the CNS and the periphery 
 

The LRRK2ints generated in this work can be used to explore specific interactors of interest; 

here we selected the Rab proteins as an example to illustrate how the tissue specific LRRK2ints 

can be filtered to investigate the features LRKR2:Rab protein interaction across different 

tissues. A total of 13 Rab proteins were identified in the LRRK2int (RAB38, RAB10, RAB11A, 

RAB11B, RAB11FIP2, RAB1A, RAB1B, RAB29, RAB32, RAB5A, RAB5B, RAB7A and RAB8A), while 

RAB38 was excluded due to its incomplete expression data across 15 tissues of analysis, 

thereby only 12 Rab proteins were included for further analysis. Of note, among these Rab 

proteins, RAB29, RAB8A and RAB11FIP2 presented in the DEA_ClusterLRRK2, suggesting these 

3 proteins have a similar expression pattern as LRRK2 across all the 15 tissues analysed; while 

RAB10, RAB11A, RAB11FIP2, RAB1A, RAB1B, RAB5A, RAB5B, RAB7A and RAB8A presented in 

the Co-ex_ClusterLRRK2, indicating that these Rab proteins show a generally higher co-

expression with LRRK2 in all the 15 tissues analysed.  

 

All of the 12 Rab proteins contributed to the enrichment of the functional group of “transport” 

together with LRRK2, while 11 of them exhibited in the group of “intracellular organisation” 

together with LRRK2, suggesting that these are the 2 functions that are generally sustained 

by LRRK2-Rab cooperation (Figure 8). Five Rab proteins (RAB1A, RAB1B, RAB5A, RAB7A and 

RAB8A) presented in the “autophagy” functional group, potentially indicating these are the 

Rab proteins to participate in the waste-disposal processes regulated via LRRK2. Only a small 

number of Rab proteins was included in the functions of “cell death, protein catabolism, 

protein modification and regulation of enzyme (≤ 2), though these were the functions 

presenting the highest enrichment of the general LRRK2 interactors. 
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Figure 8: Functional roles of Rab interactors of LRRK2. The heatmap shows the functional groups 

that included the Rab proteins presented in the LRRK2int. Blue squares represent the presence of a 

certain Rab interactor in a given functional group identified in the functional enrichment analysis 

for the general LRRK2int. 

 

After filtering out non-Rab proteins from the LRRK2ints for each tissue, 15 tissue specific 

LRRK2:Rab interactomes were generated (Figure 9). Overall, RAB7A and RAB5B presented the 

highest expression level across the majority of tissues analysed, while RAB10, RAB11FIP2, 

RAB11A, RAB7A and RAB5B exhibited the highest co-expression with LRRK2 in most of the 

tissues except for amygdala, hippocampus, kidney cortex, lung and liver. Among the brain 

regions, putamen, caudate, frontal cortex and nucleus accumbens showed identical 

distribution of absolute expression levels of Rab interactors and similarly high co-expression 

between these proteins and LRRK2. Of note, RAB32 and RAB29 presented a similar co-

expression pattern with LRRK2 across different tissues as compared to other Rab proteins. A 

high LRRK2:RAB32 was seen in hypothalamus, cerebellum, substantial nigra spinal cord c-1 

and blood. Of note, RAB32 presented the highest expression level in blood (𝑆𝑐𝑜𝑟𝑒𝑅𝐴𝐵32,𝑏𝑙𝑜𝑜𝑑
𝐸𝑥   

= 14), suggesting a potentially more important role of LRRK2:RAB32 interaction in blood. 

Similarly, RAB29 presented a high co-expression with LRRK2 in hypothalamus, substantia 

nigra and spinal cord c-1. These suggest a potential co-function among LRRK2, RAB32 and 

RAB29 in these brain regions. In comparison, LRRK2:Rab co-expression was weak in amygdala 

and lung, while the poorest co-expression was seen in hippocampus, liver and kidney cortex. 
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Figure 9: Tissue specific LRRK2:Rab interactomes (LRRK2ints_Rab). The network graphs show the 

different interaction attributes between LRRK2 and 12 Rab proteins derived from the general 

LRRK2int. Nodes represent Rab interactors of LRRK2. Node colour represents normalised expression 

levels of Rab proteins. The darker the colour, the higher the expression level of a certain Rab 

interactor of LRRK2 in a given tissue. Node size represents co-expression coefficients. The larger the 

node, the higher the co-expression coefficient presented between LRRK2 and a certain Rab 

interactor in a given tissue. Abbreviations: ACC: Anterior Cingulate Cortex; AMYG: Amygdala; CAU: 

caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: nucleus 

accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1; Kidney_c: kidney cortex. 

 

 

 

 

Discussion 

In this study, we constructed the LRRK2 protein-protein interactome from PPIs derived from  

peer-reviewed literature. To maximise literature coverage, PPIs were obtained from 3 

secondary repositories: HIPPIE, MIST and PINOT. These tools extract PPIs from multiple 

primary, manually curated databases allowing to effectively text mine the available PPI 

literature. Although PINOT, MIST and HIPPIE are usually considered as interchangeable 

resources, they collect PPI information in different manners: PINOT extracts human PPIs from 

7 primary databases (bhf-ucl, BioGRID, InnateDB, IntAct , MBInfo, MINT and UniProt) via the 

PSIQUIC interface, while in HIPPIE and MIST PPIs are firstly retrieved from several primary 

databases (including IntAct, MINT, BioGRID, HPRD, DIP, BIND and MIPS) and then stored in an 

internal repository. Although this strategy allows for a quicker retrieval of PPIs from HIPPIE 

and MIST in comparison to PINOT, their internal repositories require constant updates, while 

PINOT does not due to the live download via PSIQUIC. Another point of difference is in the 

quality control process these 3 tools apply to the PPI data. These processes involve divergent 

scoring systems based on different factors, thereby causing potential variation in the query 

results. Therefore, a combined use of HIPPIE, MIST and PINOT was essential to effectively 

maximise the literature coverage while extracting LRRK2 PPIs. A total of 3831 PPI annotations 

were collectively retrieved for LRRK2. After removal of duplicated entries, a list of 1871 

unique interactions remained, suggesting indeed a high (but not complete) overlap in 

performance among the 3 tools used. Considering the total list of 1871 PPIs, 529 (28.3%) were 

retrieved from all 3 databases; 902 (48.2%) from 2 of the 3 tools; while 440 (23.5%) were 

obtained from one tool only (373 from MIST and 15 from HIPPIE) 

 

With such a large number of LRRK2 interactors, it was important to set filters to extract the 

most reliable core within the vast LRRK2 interactome. We defined “reliability” as 

“reproducibility”, therefore we reduced the LRRK2 PPIs to those that have been reported at 

least twice in literature. To achieve this, we followed a 2-step strategy. Firstly, we converted 

similar interaction detection methods into one single method class (using the PINOT Method 
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Grouping Dictionary, Table S1). This step was essential for accurate evaluations of the 

reproducibility of the LRRK2 PPIs, as curators behind different databases might record the 

same PPI under multiple interaction detection methods that are actually methodological 

synonyms, thereby introducing semantic bias. Secondly, “Low quality” PPIs – defined as 

interactions reported in literature within 1 publication only and validated with methods 

belonging to 1 category only – were filtered out from the LRRK2 interactome. 

 

Following the 2-step strategy, the LRRK2 interactome was reduced to only 408 out of 1871 

(21.8%), clearly showing that one of the problems we are facing with LRRK2 investigations 

(and potentially with PPI analyses in general) is that most of the data are not reproduced and 

thereby not directly trustable. This poor reproducibility may result from delays in curation of 

papers into primary databases, limited interest in wet-lab research aimed at reproducing 

information that has already been published, or the real inflation in type 1 errors within the 

field of protein interaction research. 

 

The 408 interactors that passed the quality control constituted the general LRRK2 

interactome, which is to our knowledge the most comprehensive, quality controlled human 

protein interactome of LRRK2 (LRRK2int) currently available. Further analysis of the general 

LRRK2 interactome was performed to evaluate whether the stringent, reductionist approach 

adopted in the construction of the general LRRK2 interactome was adequate to capture the 

current knowledge around LRRK2. Among the 408 interactors, LRRK2 itself exhibited the 

highest score for interaction (FS = 50), confirming LRRK2 self-interaction as the best known 

and reproducible PPI of LRRK2. Heterologous interactors with high FS (i.e. replicated in many 

publications using a plethora of different methods) were, as expected: HSP90AA1 (FS=19); 

YWHAQ (FS=14), HSPA8 (FS=13), MSN (FS=13), YWHAZ (FS=13), CDC37 (FS=11), DNM1L 

(FS=11), STUB1 (FS=11) and TUBB (FS=11). A large proportion of the general LRRK2int was 

composed of cytoskeletal proteins (12.5%), which is in accordance with the known role of 

LRRK2 in cytoskeletal dynamics (reviewed by (Civiero et al, 2018)). Finally, 35 protein kinases 

and 13 Rab GTPases were part of the LRRK2int, confirming, again, that the general LRRK2int 

built in our analysis does recapitulate the general knowledge related to LRRK2 interaction 

partners. 

 

Functional enrichment analysis of the general LRRK2int identified a plethora of biological 

processes, which were grouped into 14 larger functional groups. MCA was performed to 

compare the contribution of each single LRRK2 interactor to the enrichment of these 

functional groups. Interestingly, the majority of the functional groups (namely “autophagy”, 

“cell death”, “development”, “ intracellular organisation”, “metabolism”, “transport” and 

“regulation of gene expression”) were not combined in any cluster. Only 2 clusters were 

identified: 1) the super-functional group of “protein metabolism” (Cluster I) containing 

“protein modification”, “protein localisation” and “protein catabolism”, and 2) the super-

functional group of “response to stimulus” (Cluster II) comprising “signalling”, “regulation of 
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enzyme functions”, “immune system” and “response to stress”. These results confirmed that 

i) the LRRK2int is  indeed involved in a wide range of different functions and ii) when looking 

at each of these functions, it appears that they are driven by distinct sets of LRRK2 interactors. 

In other words, LRRK2 interactors do not contribute, as a group, to the enrichment of all the 

LRRK2 associated functions. Rather, specific sets of LRRK2 interactors contribute to the 

enrichment of specific LRRK2 associated functions. This note is of importance as it sustains 

the hypothesis that differential expression of groups of LRRK2 interactors in different tissues 

might indeed be responsible for the specialisation of LRRK2 functions. In this model, the 

multiple functions the LRRK2int is associated with are not all active at the same time/place; 

rather they are differentially relevant within different tissues, cell types and moments in time. 

 

RNA-seq read counts for the LRRK2 interactors were downloaded from GTEx for 11 brain 

regions and 4 peripheral tissues. These data were used to differentiate the general LRRK2int 

into 15 tissue specific LRRK2 interactomes. Two different strategies were applied based on 

pair-wise DEA (considering absolute expression levels) and pair-wise co-expression analysis 

(considering LRRK2:interactor co-expression levels). In general, the level of co-expression is 

regarded as a preferential measure as it is assumed that co-expressed proteins are co-

regulated at a gene level and involved in the same biological processes. However, there is no 

reason to rule out an analysis based on DEA as an increased level of expression for a certain 

protein in a tissue might indicate increased demand for the biological processes in which that 

protein participate. Therefore, DEA and co-expression analysis were used to analyse 15 tissue 

specific LRRK2ints following the assumption that LRRK2 interactors can increase or decrease in 

concentration in a tissue specific fashion following the unique functional requirements of 

each tissue. Similarly, in different tissues, LRRK2 can be co-expressed with different 

interactors depending on the functional unit that need to be activated to sustain the tissue 

specific functions. 

 

We then used these results to compare the 15 tissues against each other thus effectively 

evaluating the different expression behaviours of the LRRK2ints across different tissues. Firstly, 

we evaluated the hierarchical clustering of the 15 tissues to compare the expression 

behaviour of the LRRK2ints in the 4 peripheral tissues vs the 11 brain regions. The results 

showed a clear difference in expression profiles (peripheral tissues vs CNS). In the DNA 

analysis the 4 peripheral tissues formed a distinct cluster meaning the LRRK2 interactors are 

in general expressed at different levels in the periphery in comparison with the CNS. In the 

co-expression analysis, the different peripheral tissues did not cluster together, however, 

they did not cluster with the brain regions either. In particular, when the brain regions were 

all already grouped into 3 clusters, the peripheral tissues were still left unclustered. This might 

suggest that from a co-expression perspective LRRK2 interactors behave similarly in some 

brain regions, while they show peculiar and unique behaviours in the 4 peripheral tissues. 
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Interestingly, the hierarchical clustering of the 11 brain regions based on the results from both 

DEA and co-expression analysis showed a similar result: putamen, caudate and nucleus 

accumbens were always found within the same cluster, suggesting the expression behaviour 

of the LRRK2int is very similar within these 3 regions both in terms of absolute expression 

levels of LRRK2 partners and LRRK2:interactors co-expression. This suggests the 3 regions 

might form a LRRK2 functional unit within the brain where the LRRK2int sustains similar 

processes/functions.  

 

Of note, putamen, caudate and nucleus accumbens form the striatum, target for the 

projection of dopaminergic neurons and one of the most affected brain regions during 

Parkinson’s disease (PD) progression. In fact, multiple studies have associated the 

degeneration of putamen and caudate with motor and non-motor PD symptoms (Wang et al, 

2018; Playford et al, 1992; Manes et al, 2018); while nucleus accumbens, involved in 

mediating emotional and motivational processes such as rewarding experiences, impulsive 

and compulsive behaviours, might be implicated in the neuropsychiatric symptoms of PD 

(Hammes et al, 2019; Barbosa et al, 2019).  

 

The results from the expression analyses were also used to compare and rank the LRRK2 

interactors based on their expression behaviour across the 15 different tissues. A total of 124 

interactors presented in the same differential expression cluster as LRRK2 (named 

DEA_ClusterLRRK2). This cluster represents the proteins within the LRRK2int that share the same 

pattern of differential expression as LRRK2 in the majority of tissues under analysis. A smaller 

number of interactors (n = 77) were grouped in the Co-ex_ClusterLRRK2, which is composed of 

the proteins (within the LRRK2int) presenting with the highest co-expression level with LRRK2 

in the majority of the analysed tissues. Of note, 30 interactors overlapped between these two 

clusters, meaning they showed both conserved co-expression with LRRK2 and similar 

expression profiles as LRRK2 across the majority of tissues. Due to this peculiar behaviour, 

these 30 interactors might be the gateway to understand the “constitutive” LRRK2 functions 

that are conserved in different districts. These 30 interactors mainly participate in the 

functions of “intracellular organisation”, “metabolism” and “regulation of gene expression”. 

 

We then investigated the functional patterns of each tissue specific LRRK2int. Firstly, we 

defined “core interactors” within each tissue as LRRK2 interactors that either presented high 

expression levels or high co-expression behaviours with LRRK2 in that given tissue. The 

thresholds for defining “core interactors” were tissue specific and were set on normally-

distributed expression levels and co-expression coefficients (obtained via transformation) to 

ensure a similar numbers of “core interactors” were identified for each tissue. The tissue-

specific “core LRRK2 interactors” were functionally annotated. Results showed that in the 

substantia nigra, the brain region involved in the primary degeneration during PD progression  

(Zou et al, 2021), the core LRRK2 interactors were involved in the functions of “intracellular 

organisation”, “protein catabolism” and “transport”, potentially suggesting that among all the 
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LRRK2 functions, the biological processes concerning the regulation of endocytosis and 

trafficking of vesicles to the lysosomes might be of greater importance at this brain location. 

When we looked at the core LRRK2 interactors for the “putamen-caudate-nucleus accumbens” 

LRRK2 functional unit we previously defined, we found they are principally involved in the 

functions of “metabolism”, “protein localisation”, “response to stress”, “regulation of gene 

expression” and “signalling”. Of note, the “core LRRK2 interactors” for lung were particularly 

involved in autophagy and immune functions. This finding is in accordance with previous 

studies indicating that LRRK2 may function in preventing alveolar type II (AT2) cells from 

adverse immune response caused by pulmonary fibrosis (Kuwahara & Iwatsubo, 2020).  

 

However, it should be noted that the functional groups in our analysis were generated with 

only Gene Ontology Biological Processes types of terms and classified via an in-house 

grouping dictionary. Therefore, the functional annotations can be incomplete, which is 

unfortunately a general issue with functional enrichment approaches. Hence, these 

functional data should be interpreted as suggestive rather than definitive. 

 

Finally, we complemented our analysis by investigating the Rab protein family as an example 

to show how the LRRK2ints generated from our pipeline can be applied to answer a specific 

research question regarding a singular or a particular group of interactors of interest. We 

extracted information focused on the LRRK2 interactors belonging to the Rab protein family 

thus describing the LRRK2-Rab relationship (from the perspective of expression and co-

expression behaviours) across different tissues. Rab proteins have been widely recognised as 

LRRK2 interactors. They have been reported to cooperate with LRRK2 in a number of cellular 

processes such as the regulation of endolysosomal functions, response to stress and vesicle 

trafficking (Bae & Lee, 2020; Eguchi et al, 2018). Here we used tissue specific LRRK2:Rab 

interactomes to describe how this cooperation between LRRK2 and Rab proteins may 

potentially vary across different tissues. Our results suggested that, in general, caudate, 

putamen and nucleus accumbens (that we previously defined as striatal LRRk2 functional unit) 

have the highest levels of LRRK2:Rab co-expression, hinting a potentially stronger association 

between LRRK2 and the Rab proteins in the striatum in comparison with other brain regions 

or peripheral tissues. Among these Rab proteins, RAB7A and RAB5B presented both high 

expression and high co-expression levels with LRRK2 in most of the tissues, suggesting these 

2 Rab proteins may play a constitutive and conserved role in the LRRK2:Rab interactome 

across the whole body. In comparison, RAB32 and RAB29 presented unique LRRK2:co-

expression patterns with higher co-expression levels in substantia nigra, hypothalamus, spinal 

cord c-1, cerebellum and blood, suggesting these 2 Rab proteins may be specific LRRK2 

partners in these tissues only.  

 

Conclusion 
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PPIs can help in understanding the functional milieu around a hub protein, such as LRRK2 in 

this study. However, tissue specificity is generally not considered in these analyses. With this 

work we have designed a pipeline that makes use of expression data to provide indication of 

tissue specific differences within the interactome of a given hub protein (LRRK2 in this case). 

On one hand we provided evidence that brain tissues are different from peripheral tissues 

concerning expression patterns of the LRRK2int and within the brain we defined a cluster 

composed of caudate, putamen and nucleus accumbens, where the LRRK2 interactors shows 

very conserved expression patterns. Additionally, we identified 30 LRRK2 interactors, showing 

the most conserved co-expression with LRRK2 and the most similar expression profile as 

LRRK2 across the majority of tissues analysed. We have also identified tissue specific LRRK2 

interactors, as those few LRRK2 interactors showing particularly high expression levels in 1 or 

2 tissues only. Finally, we have used this pipeline to differentiate the functional patterns of 

LRRK2ints in different tissues. On the other hand, we presented an example with the Rab 

protein family, to illustrate how the LRRK2ints generated via our pipeline (available for 

download) can be filtered for answering research questions regarding the tissue specificity of 

LRRK2 PPIs. As LRRK2 is a crucial target for PD treatment, with several small molecules 

currently in clinical trials, a better understanding of LRRK2’s tissue specific functionality has 

indeed become a research priority. This pipeline intends to be a rigorous bioinformatical 

attempt to raise awareness of the complexity and variability of LRRK2’s interplay with its 

interactors. 
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