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Abstract
Drugs are chemical substances of low molecular
weights that require to travel from the site of ad-
ministration to the site of action. For safety and ef-
fective permeability, drugs are required to exhibit
ideal absorption, distribution, metabolism, excre-
tion and toxicity (ADMET) properties. Given
the Simplified Molecular Input Line Entry Sys-
tem (SMILES) representation of drugs, we aim
to predict their ADMET properties. By feeding
molecular descriptors (as global features) to tra-
ditional machine learning models, we show that
ADMET properties of drug molecules can be pre-
dicted with an accuracy competitive with the state-
of-the-art deep learning models. We demonstrate
that the proposed approach with only 31 molec-
ular descriptors beats the state-of-the-art for 3
datasets. Moreover, it stands the second best for
2 other datasets, where none of the best provides
a statistically significant improvement. We also
demonstrate that two-dimensional descriptors can
better represent absorption, distribution and excre-
tion properties than the fingerprints widely used
in the literature. However, they fail to distinguish
metabolism and toxicity properties.

Keywords: ADMET Property, Drug Molecule, Molecular
Descriptor, Machine Learning.

1. Introduction
A drug is a kind of chemical substance comprising small-
molecules that causes changes in the physiology or psychol-
ogy of an organism when consumed. Drugs are required
to travel from the site of administration (e.g., oral, nasal,
etc.) to the site of action (e.g., a tissue) (Arora et al., 2002).
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Due to low molecular weights, drugs can comfortably travel
within the body and pass across biological membrane at
different levels. On completing the action, they decompose
and depart the body. To perform these operations safely and
efficiently, drugs are required to exhibit ideal absorption,
distribution, metabolism, excretion and toxicity (ADMET)
properties (Avdeef, 2012) (Dearden, 2007).

We aim to predict these ADMET properties of drug
molecules with more explainability. Many types of finger-
prints and descriptors (such as PubChem (Kim et al., 2020)
fingerprints, extended connectivity fingerprints, Molecu-
lar ACCess System (MACCS) fingerprints (Polton, 1982),
Mordred descriptors (Moriwaki et al., 2018) etc.) can
be extracted and already used in previous ADMET pre-
diction methods. In this paper, We show that only us-
ing 31 two-dimensional descriptors (Matter, 1997) as fea-
tures, some ADMET related properties of drug can be
predicted with high accuracy. Our prediction method is
able to predict 3 properties (half life obach, vdss lombardo,
clearance hepatocyte az) ranked first and 5 properties
ranked in top 3 among current top models.

2. Problem Statement
The prediction of the ADMET properties plays an important
role in the drug discovery and development process because
these properties account for the failure of about 60% of all
drugs in the clinical phases. Poor ADMET profile is the
most prominent reason of failure in clinical trials. Thus, an
early and accurate ADMET profiling during the discovery
stage is a necessary condition for successful development
of small- molecule candidate. In real-world discovery, the
drug structures of interest evolve over time. Thus, ADMET
prediction requires a model to generalize to a set of unseen
drugs that are structurally distant to the known drug set.

3. Methods
Though there are a number of sophisticated deep learning
approaches in existence, we have demonstrated that they
miss including many important features. That is why, in
this paper we propose, a simplistic approach of global fea-
tures extraction method and some simple machine learning
algorithms with optimised parameters to predict different
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ADMET properties of drug molecule.

3.1. Data Collection

In our study, the experimental values and corresponding
basic information of drug molecule for ADMET properties
prediction were collected from Therapeutics Data Commons
(TDC) (Huang et al., 2021). We considered total 22 datasets
for the current analysis (see Appendix A). The categoriza-
tion of these datasets is highlighted in Fig. 1.

3.2. Dataset Split

For each dataset, TDC provides a separate test set (20%)
and a training-validation set (80%).

Choosing the best model: We tried to employ different
machine learning models (classifiation and regression tasks)
to find out the best one. For this, we randomly split (to
maintain the unbiasness/randomness of data at the time of
model choosing) the training set of each dataset in training
set (87.5%) and validation set (12.5%) using the TDC utility
function. Then used training and validation set to find out
the best predicting ML models for each dataset.

Testing on the independent test set: For a more rigor-
ous analysis, we again split the training set (87.5%) and
validation set (12.5%) using scaffold split (based on the
scaffold of the molecules so that training/validation set is
structurally different). We then trained the chosen model
using both training and validation set, and finally test the
model’s performance on the independent test set.

3.3. Feature Extraction

Drug SMILES (Simplified Molecular Input Line Entry Sys-
tem) (O’Boyle, 2012) strings were converted into molecular-
data files (‘mol’ format) and fed into RDKit, an open-source
cross-platform chemoinformatics toolkit. The tool has a
built-in functionality for generating both compositional de-
scriptors like MolWt, NumValenceElectrons, NumHDonor,
etc. and topological molecular descriptors like FpDensity-
Morgan1, FpDensityMorgan2, FpDensityMorgan3, etc. The
molecular data files were then read by the Chem.Descriptors
and Chem.Lipinski modules of RDKit to compute 31 molec-
ular descriptors (see Appendix B) for each molecule in each
dataset. This descriptors together can represent the overall
behaviour of a drug.

Each feature can individually describe some behaviour of
a whole drug molecule, so we can also call this global
descriptors of a molecule. This global features improves the
prediction of some ADMET properties of drug molecules.

3.4. Modeling Algorithm

In this study, different modeling algorithms were applied
to develop regression or classification models for ADMET
related properties: Linear Regression (for regression prob-
lem), Logistic Regression (for classification problem), KNN,
Random Forest, Extra Tree, Bagging, AdaBoost, Decision
Tree, Gradient Boosting, XGBoost.

• Linear Regression (Montgomery et al., 2021) shows
the relationship between one dependent variable and
one or more independent variable. How dependent
variable changes with independent variables. Linear
models generate a formula to create a best-fit line to
predict unknown values.

• Logistic Regression (Kleinbaum et al., 2002) is a re-
gression model. The model builds a regression model
to predict the probability that a given data entry belongs
to the category numbered as “1”. Just like Linear re-
gression assumes that the data follows a linear function,
Logistic regression models the data using the sigmoid
function. Logistic regression becomes a classification
technique only when a decision threshold is selected.

• The KNN (Guo et al., 2003) algorithm uses ‘feature
similarity’ to predict the values of any new data points
for both regression and classification problem. Which
means that the new point is assigned a value based on
how closely it resembles the points in the training set.

• Decision trees (Quinlan, 1987) is a non-parametric su-
pervised learning method used for classification and
regression. The goal is to create a model that predicts
the value of a target variable by learning simple deci-
sion rules inferred from the data features.

• Bagging (Bühlmann & Yu, 2002) is an ensemble learn-
ing technique used in both regression and classification
model. It is used to deal with bias-variance trade-offs
and reduces the variance of a prediction model. It
avoids overfitting of data.

• Random Forest (Breiman, 2001) is an ensemble of
unpruned classification or regression trees created by
using bootstrap samples of the training data and ran-
dom feature selection in tree induction.

• Extra Tree (Bhati & Rai, 2020) is a type of ensemble
learning technique that aggregates the results of differ-
ent de-correlated decision trees. Extra Tree does not
perform bootstrap aggregation like in the random for-
est. This model takes a random subset of data without
replacement. Thus nodes are split on random splits and
not on best splits.
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Figure 1. The 22 datasets related to different ADMET properties.

• AdaBoost (Schapire, 2013) was the first really success-
ful boosting algorithm. AdaBoost is short for Adaptive
Boosting and is a very popular boosting technique that
combines multiple “weak models” into a single “strong
models”.

• Gradient Boosting (Natekin & Knoll, 2013) is a pop-
ular boosting algorithm. In gradient boosting, each
predictor corrects its predecessor’s error. In contrast
to Adaboost, the weights of the training instances are
not tweaked, instead, each predictor is trained using
the residual errors of predecessor as labels. There is
a technique called the Gradient Boosted Trees whose
base learner is CART (Classification and Regression
Trees).

• XGBoost (Chen & Guestrin, 2016) is an implemen-
tation of Gradient Boosted decision trees. In this al-
gorithm, decision trees are created in sequential form.
Weights play an important role in XGBoost. Weights
are assigned to all the independent variables which are
then fed into the decision tree which predicts results.
The weight of variables predicted wrong by the tree is
increased and these variables are then fed to the second
decision tree. These individual classifiers/predictors
then ensemble to give a strong and more precise model.

We trained these models with default parameters on training
set and then we compared statistical performances (MAE for
Regression datasets, Accuracy for Classification datasets)
of all models on validation set to choose top 2 best models,
then using RandomSearchCV we optimised parameters of
that top 2 ML models to find out a best model for each
ADMET property prediction problem.

3.5. Performance Analysis

Further study was performed to verify our method’s robust-
ness and predictive ensure that the derived model from the
training set has good ability. For generalization ability, we
fitted our model on training and validation set and finally
checked the statistical performance of testing set. We did
this five times to calculate average and standard deviation
of prediction results.

4. Results
Some of the datasets used for predicting ADMET proper-
ties are posed as binary classification problems and the rest
as regression problems. We choose AUROC (area under
ROC curve) and AUPRC (area under PRC curve) as the
performance metrics for the binary classification problems
(Lei et al., 2019), and Mean Absolute Error (MAE) (Chai &
Draxler, 2014) and Spearman’s correlation coefficient for
regression problems. We apply all the machine learning
models mentioned earlier. Average and standard deviation
of their performances across five independent runs on the
test sets are reported in Tables 1-5. The results are com-
pared with all of the state-of-the-art methods reporting their
performance as a part of the ADMET Benchmark Group
challenge1. We used The Google Colaboratory2 with default
runtime (without any virtual hardware accelerator like GPU
or TPU) for all our experiments. For data collection as well
as data set splitting, we employed utility functions from
TDC.

1https://tdcommons.ai/benchmark/admet_
group/overview

2https://colab.research.google.com
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4.1. Results for Absorption related drug properties

There are 3 regression and 3 classification problems de-
fined around the 6 datasets related to Absorption properties.
We observe that for all the regression problems adaboost
regressor performs the best. On the other side, for the clas-
sification problems, we observe that there is no such single
model which works the best across all the datasets. On com-
paring the chosen best models with the state-of-the-art, we
observe that our method is able to rank within top 10 in the
ADMET Benchmark Group challenge for several datasets.
To be precise, it ranks within top 10 for all the three regres-
sion datasets that includes a second best case. However, for
only one classification dataset it performs well (see Table 1).

4.2. Results for Distribution related drug properties

There are 2 regression and 1 classification problems de-
fined around the 3 datasets related to Distribution Properties.
Comparing our best model with the state-of-the-art mod-
els reported in the ADMET Benchmark Group challenge,
we observe that for both the regression problems ranks are
obtained within the top 2, including one case depicting the
rank 1. But for the only classification problem, our method
holds a rank of 10 (see Table 2).

4.3. Results for Metabolism related drug properties

There are 6 datasets in metabolism related properties and all
of them are classification problems. For all these datasets
ensemble learning techniques are found to perform well
among all the models we employed. On comparing this with
all available top models in the ADMET Benchmark Group
challenge, we observe that these models hardly manage to
get a rank within top 10, except for one case (see Table 3).

4.4. Results for Excretion related drug properties

There are 3 regression datasets related to Excretion prop-
erties. We observe that tree based models, specifically Ad-
aboost and extra tree regression models, work well for these
datasets. On comparing our best performing models with
the state-of-the-art results reported in the ADMET Bench-
mark Group challenge, we observe that traditional machine
learning models perform significantly well for all the regres-
sion datasets (see Table 4). This possibly highlights that
two-dimensional molecular descriptors are effective features
for characterizing excretion property of drug molecules.

4.5. Results for Toxicity related drug properties

There are 1 regression and 3 classification problems defined
around the 4 datasets related to Toxicity properties. On
applying the commonly used machine learning models men-
tioned before, we observe that none of the chosen machine
learning models exhibit a consistent performance for the

classification datasets. However, for the regression tasks,
our models manage to get a rank 4 among the present top
models included in the ADMET Benchmark Group chal-
lenge (see Table 5).

To better understand the importance of the features across all
the datasets, we have utilized the internal feature importance
ranking function in Extra-Tree model. All features were
applied and default parameters were used to build the model.
The results are reported in Table 6.

5. Discussion
A significant of the state-of-the-art models (taking part in the
ADMET Benchmark Group challenge) that we compared
our results with are based on fingerprint based features.
The limited rest of them uses a large amount of molecu-
lar descriptors, thereby giving no clue about what kind of
descriptors might be appropriate for predicting what type
of ADMET property. A deeper look at the prediction re-
sults across all of the ADMET properties (Tables 1-5) reveal
that two-dimensional descriptors can better represent the
properties like absorption, distribution and excretion. Note
that the descriptors that are used in the current analysis are
based on oral bioavailability (Veber et al., 2002) of drug
molecules. This might be the reason of their success for
the said three properties. On the other hand, metabolism
is related to biochemical properties of the drug molecules
and their clinical relevance is difficult to assess from the
molecular descriptors only. Moreover, the toxicity property,
being connected with the drug target interactions (Yaman-
ishi et al., 2010), cannot be characterized suitably through
those descriptors. We have seen that the traditional machine
learning models chosen by us are more effective in solving
regression problems than classification because of using
molecular descriptors. This is possibly because most of the
regression problems are posed from datasets pertaining to
absorption, distribution and excretion properties.

It appears from the median ranking of the descriptors (see
Table 6) across all the experiments that some Lipinski pa-
rameters are crucial in reflecting the ADMET properties.
This includes octanol-water partition coefficient (PARTI-
TION COEFFICIENT), fraction of C atoms that are SP3
hybridized (FRACTIONCSP3), partial charge (both mini-
mum and maximum), and topological molecular descriptors
(like FPDENSITYMORGAN1 and 3). A recent analysis
has shown that most of these are two-dimensional topologi-
cal/topochemical properties that provide useful information
about the molecular surface and its potential interactions
with the binding species (Chaube et al., 2020). Interestingly,
topological molecular descriptors generate similarity finger-
prints using certain chemical and connectivity attributes of
atoms (Riniker & Landrum, 2013). Hence, they provide a
better accountability in predicting the ADMET properties
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Table 1. Comparative performance of predicting ABSORPTION related property in the ADMET Benchmark Group challenge. Arrows (↑,
↓) in performance metric indicate the direction of superiority.

DATASET PROBLEM TYPE MODEL WITH PARAMETERS
PERFORMANCE
METRIC

PERFORMANCE
SCORE

CURRENT
RANK

CACO2 WANG REGRESSION
ADABOOSTREGRESSOR(
BASE ESTIMATOR= DECISION-
TREEREGRESSOR(),
LEARNING RATE=0.2,
N ESTIMATORS=500,
RANDOM STATE=0)

MAE ↓ 0.321 ± 0.005 2

HIA HOU CLASSIFICATION
BAGGINGCLASSIFIER(
BASE ESTIMATOR=
DECISIONTREECLASSIFIER(),
N ESTIMATORS=200,
RANDOM STATE=0)

AUROC ↑ 0.818 ± 0.01 9

PGP
BROCCATELLI

CLASSIFICATION
EXTRATREESCLASSIFIER(
N ESTIMATORS=500,
RANDOM STATE=0)

AUROC ↑ 0.818 ± 0.0 -

BIO-
AVAILABILITY
MA

CLASSIFICATION
RANDOMFORESTCLASSIFIER(
N ESTIMATORS=400,
RANDOM STATE=0)

AUROC ↑ 0.523 ± 0.011 -

LIPOPHILICITY
ASTRAZENECA

REGRESSION
ADABOOSTREGRESSOR(
BASE ESTIMATOR= DECISION-
TREEREGRESSOR(),
LEARNING RATE=0.3,
N ESTIMATORS=500,
RANDOM STATE=0)

MAE ↓ 0.617 ± 0.003 8

SOLUBILITY
AQSOLDB

REGRESSION
ADABOOSTREGRESSOR(
BASE ESTIMATOR= DECISION-
TREEREGRESSOR(),
LEARNING RATE=0.2,
N ESTIMATORS=450,
RANDOM STATE=0)

MAE ↓ 0.828 ± 0.002 4
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Table 2. Comparative performance of predicting DISTRIBUTION related property in the ADMET Benchmark Group challenge. Arrows
(↑, ↓) in performance metric indicate the direction of superiority.

DATASET PROBLEM TYPE MODEL WITH PARAMETERS
PERFORMANCE
METRIC

PERFORMANCE
SCORE

CURRENT
RANK

BBB MARTINS CLASSIFICATION
BAGGINGCLASSIFIER(
BASE ESTIMATOR=
DECISIONTREECLASSIFIER(),
N ESTIMATORS=100,
RANDOM STATE=0)

AUROC ↑ 0.811 ± 0.013 10

PPBR AZ REGRESSION
GRADIENTBOOSTING-
REGRESSOR(
LEARNING RATE=0.005,
N ESTIMATORS=500,
RANDOM STATE=0)

MAE ↓ 9.185 ± 0.0 2

VDSS
LOMBARDO

REGRESSION
ADABOOSTREGRESSOR(
BASE ESTIMATOR= DECISION-
TREEREGRESSOR(),
LEARNING RATE=0.005,
N ESTIMATORS=200,
RANDOM STATE=0)

SPEARMAN ↑ 0.627 ± 0.01 1

of drugs.

6. Conclusion
Through this study we worked only with 31 two-
dimensional global molecular descriptors. For that, our
method is very less expensive in terms of time and com-
putational power. These 31 features with some traditional
machine learning models are sufficient to predict 3 AD-
MET properties more accurately than any of the current
existing methods or models. Though we focus only on two-
dimensional descriptors in this work, higher dimensional
descriptors are also worthy to look into in future.

Availability
All the codes related to our work (including data
import, features extraction, feature selection, mod-
eling and performance checking) are publicly avail-
able from the GitHub link: https://github.com/
NilavoBoral/Therapeutics-Data-Commons.
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Table 3. Comparative performance of predicting METABOLISM related property in the ADMET Benchmark Group challenge. Arrows
(↑, ↓) in performance metric indicate the direction of superiority.

DATASET PROBLEM TYPE MODEL WITH PARAMETERS
PERFORMANCE
METRIC

PERFORMANCE
SCORE

CURRENT
RANK

CYP2D6 VEITH CLASSIFICATION
EXTRATREESCLASSIFIER(
N ESTIMATORS=250,
RANDOM STATE=0)

AUPRC ↑ 0.358 ± 0.0 -

CYP3A4 VEITH CLASSIFICATION
XGBCLASSIFIER(
N ESTIMATORS=400) AUPRC ↑ 0.654 ± 0.0 -

CYP2C9 VEITH CLASSIFICATION
BAGGINGCLASSIFIER(
BASE ESTIMATOR=
DECISIONTREECLASSIFIER(),
N ESTIMATORS=350,
RANDOM STATE=0)

AUPRC ↑ 0.556 ± 0.0 -

CYP2D6
SUBSTRATE
CARBONMANGELS

CLASSIFICATION
BAGGINGCLASSIFIER(
BASE ESTIMATOR=
DECISIONTREECLASSIFIER(),
N ESTIMATORS=250,
RANDOM STATE=0)

AUPRC ↑ 0.478 ± 0.018 -

CYP3A4
SUBSTRATE
CARBONMANGELS

CLASSIFICATION
XGBCLASSIFIER(
LEARNING RATE=0.005,
N ESTIMATORS=150)

AUROC ↑ 0.605 ± 0.0 7

CYP2C9
SUBSTRATE
CARBONMANGELS

CLASSIFICATION
BAGGINGCLASSIFIER(
BASE ESTIMATOR=
DECISIONTREECLASSIFIER(),
N ESTIMATORS=500,
RANDOM STATE=0)

AUPRC ↑ 0.281 ± 0.0 -

Table 4. Comparative performance of predicting EXCRETION related property in the ADMET Benchmark Group challenge. Arrows (↑,
↓) in performance metric indicate the direction of superiority.

DATASET PROBLEM TYPE MODEL WITH PARAMETERS
PERFORMANCE
METRIC

PERFORMANCE
SCORE

CURRENT
RANK

HALF LIFE
OBACH

REGRESSION
ADABOOSTREGRESSOR(
BASE ESTIMATOR= DECISION-
TREEREGRESSOR(),
LEARNING RATE=0.08,
N ESTIMATORS=350,
RANDOM STATE=0)

SPEARMAN ↑ 0.438 ± 0.011 1

CLEARANCE
MICROSOME
AZ

REGRESSION
ADABOOSTREGRESSOR(
BASE ESTIMATOR= DECISION-
TREEREGRESSOR(),
LEARNING RATE=0.3,
N ESTIMATORS=350,
RANDOM STATE=0)

SPEARMAN ↑ 0.518 ± 0.005 8

CLEARANCE
HEPATOCYTE
AZ

REGRESSION
EXTRATREESREGRESSOR(
N ESTIMATORS=500,
RANDOM STATE=0)

SPEARMAN ↑ 0.44 ± 0.003 1
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Table 5. Comparative performance of predicting TOXICITY related property in the ADMET Benchmark Group challenge. Arrows (↑, ↓)
in performance metric indicate the direction of superiority.

DATASET PROBLEM TYPE MODEL WITH PARAMETERS
PERFORMANCE
METRIC

PERFORMANCE
SCORE

CURRENT
RANK

HERG CLASSIFICATION
BAGGINGCLASSIFIER(
BASE ESTIMATOR=
DECISIONTREECLASSIFIER(),
N ESTIMATORS=150,
RANDOM STATE=0)

AUROC ↑ 0.715 ± 0.011 -

AMES CLASSIFICATION
EXTRATREESCLASSIFIER(
N ESTIMATORS=500,
RANDOM STATE=0)

AUROC ↑ 0.716 ± 0.0 -

DILI CLASSIFICATION
KNEIGHBORSCLASSIFIER(
N NEIGHBORS=4) AUROC ↑ 0.7 ± 0.0 -

LD50 ZHU REGRESSION
EXTRATREESREGRESSOR(
N ESTIMATORS=350,
RANDOM STATE=0)

MAE ↓ 0.636 ± 0.001 4
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Table 6. Ranking of descriptors (features) based on their prediction capability of ADMET properties across all the datasets. The features
are ordered by their average rank.
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Appendix A
The 22 datasets that we considered from TDC for the current
analysis are described hereunder (Huang et al., 2021).

• Datasets Related to Absorption Property ():

1. caco2-wang: The human colon epithelial cancer
cell line, Caco-2, is used as an in vitro model to
simulate the human intestinal tissue. The experi-
mental result on the rate of drug passing through
the Caco-2 cells can approximate the rate at which
the drug permeates through the human intestinal
tissue.

2. hia-hou: When a drug is orally administered, it
needs to be absorbed from the human gastroin-
testinal system into the bloodstream of the human
body. This ability of absorption is called human
intestinal absorption (HIA) and it is crucial for a
drug to be delivered to the target.

3. pgp-broccatelli: P-glycoprotein (Pgp) is an ABC
transporter protein involved in intestinal absorp-
tion, drug metabolism, and brain penetration, and
its inhibition can seriously alter a drug’s bioavail-
ability and safety. In addition, inhibitors of Pgp
can be used to overcome multi-drug resistance.

4. bioavailability-ma: Oral bioavailability is de-
fined as the rate and extent to which the active
ingredient or active moiety is absorbed from a
drug product and becomes available at the site of
action.

5. lipophilicity-astrazeneca: Lipophilicity mea-
sures the ability of a drug to dissolve in a lipid (e.g.
fats, oils) environment. High lipophilicity often
leads to high rate of metabolism, poor solubility,
high turn-over, and low absorption.

6. solubility-aqsoldb: Aqeuous solubility measures
a drug’s ability to dissolve in water. Poor water
solubility could lead to slow drug absorptions,
inadequate bioavailablity and even induce toxicity.
More than 40% of new chemical entities are not
soluble.

• Datasets Related to Distribution Property:

1. bbb-martins: As a membrane separating circulat-
ing blood and brain extracellular fluid, the blood-
brain barrier (BBB) is the protection layer that
blocks most foreign drugs. Thus the ability of a
drug to penetrate the barrier to deliver to the site of
action forms a crucial challenge in development
of drugs for central nervous system.

2. ppbr-az: The human plasma protein binding rate
(PPBR) is expressed as the percentage of a drug
bound to plasma proteins in the blood. This rate

strongly affect a drug’s efficiency of delivery. The
less bound a drug is, the more efficiently it can
traverse and diffuse to the site of actions.

3. vdss-lombardo: The volume of distribution at
steady state (VDss) measures the degree of a
drug’s concentration in body tissue compared to
concentration in blood. Higher VD indicates a
higher distribution in the tissue and usually in-
dicates the drug with high lipid solubility, low
plasma protein binidng rate.

• Datasets Related to Metabolism Property:

1. cyp2d6-veith: The CYP P450 genes are involved
in the formation and breakdown (metabolism)
of various molecules and chemicals within cells.
Specifically, CYP2D6 is primarily expressed in
the liver. It is also highly expressed in areas of the
central nervous system, including the substantia
nigra.

2. cyp3a4-veith: The CYP P450 genes are involved
in the formation and breakdown (metabolism)
of various molecules and chemicals within cells.
Specifically, CYP3A4 is an important enzyme in
the body, mainly found in the liver and in the intes-
tine. It oxidizes small foreign organic molecules
(xenobiotics), such as toxins or drugs, so that they
can be removed from the body.

3. cyp2c9-veith: The CYP P450 genes are involved
in the formation and breakdown (metabolism)
of various molecules and chemicals within cells.
Specifically, the CYP P450 2C9 plays a major
role in the oxidation of both xenobiotic and en-
dogenous compounds.

4. cyp2d6-substrate-carbonmangels: CYP2D6 is
primarily expressed in the liver. It is also highly
expressed in areas of the central nervous system,
including the substantia nigra.

5. cyp3a4-substrate-carbonmangels: CYP3A4 is
an important enzyme in the body, mainly found
in the liver and in the intestine. It oxidizes small
foreign organic molecules (xenobiotics), such as
toxins or drugs, so that they can be removed from
the body.

6. cyp2c9-substrate-carbonmangels: CYP P450
2C9 plays a major role in the oxidation of both
xenobiotic and endogenous compounds. Sub-
strates are drugs that are metabolized by the en-
zyme.

• Datasets Related to Excretion Properties:

1. half-life-obach: Half life of a drug is the duration
for the concentration of the drug in the body to
be reduced by half. It measures the duration of
actions of a drug.
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2. clearance-hepatocyte-az: Hepatocytes, the ma-
jor parenchymal cells in the liver, play pivotal
roles in drug metabolism, detoxification and ex-
cretion. They also activate innate immunity
against invading microorganisms by secreting in-
nate immunity proteins that directly kills bacteria
and block iron uptake by bacteria. They deter-
mine the in vitro intrinsic clearance of any drug
compound.

3. clearance-microsome-az: Located in the liver,
Microsomes are subcellular fractions, that con-
tains membrane bound drug metabolishing en-
zymes, can determine the in-vitro intrinsic clear-
ance of a drug molecule. Microsomes are pooled
from multiple donors to minimise the effect of
inter-individual variability. Liver microsomes are
more predictive of in vivo clearance than hepato-
cytes, when in vitro intrinsic clearance in micro-
somes is faster than hepatocytes.

• Datasets Related to Toxicity Properties:

1. herg: Human ether-à-go-go related gene (hERG)
is crucial for the coordination of the heart’s beat-
ing. Thus, if a drug blocks the hERG, it could
lead to severe adverse effects. Therefore, reliable
prediction of hERG liability in the early stages
of drug design is quite important to reduce the
risk of cardiotoxicity-related attritions in the later
development stages.

2. ames: Mutagenicity means the ability of a drug to
induce genetic alterations. Drugs that can cause
damage to the DNA can result in cell death or
other severe adverse effects. Nowadays, the most
widely used assay for testing the mutagenicity of
compounds is the Ames experiment which was
invented by a professor named Ames. The Ames
test is a short-term bacterial reverse mutation as-
say detecting a large number of compounds which
can induce genetic damage and frameshift muta-
tions.

3. dili: Drug-induced liver injury (DILI) is fatal
liver disease caused by drugs and it has been the
single most frequent cause of safety-related drug
marketing withdrawals for the past 50 years (e.g.
iproniazid, ticrynafen, benoxaprofen).

4. acute-toxicity-LD50: Acute toxicity LD50 mea-
sures the most conservative dose that can lead to
lethal adverse effects. The higher the dose, the
more lethal of a drug.

Appendix B
The 31 descriptors (used as features) are listed below.

• Exact molecular weight,

• FpDensityMorgan1,

• FpDensityMorgan2,

• FpDensityMorgan3,

• Average molecular weight of the molecule ignoring
hydrogens,

• Average molecular weight,

• Number of radical electrons,

• Number of valence electrons,

• Partition coefficient,

• Fraction of C atoms that are SP3 hybridized,

• Number of heavy atoms,

• Number of NHs or OHs,

• Number of Nitrogens and Oxygens,

• Number of aliphatic carbocycles,

• Number of aliphatic heterocycles,

• Number of aliphatic rings,

• Number of aromatic carbocycles,

• Number of aromatic heterocycles,

• Number of aromatic rings,

• Number of Hydrogen Bond Acceptors,

• Number of Hydrogen Bond Donors,

• Number of Heteroatoms,

• Number of Rotatable Bonds,

• Number of saturated carbocycles,

• Number of saturated heterocycles,

• Number of saturated rings,

• Number of rings.
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