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Abstract 12 
 13 
Citizen science platforms, social media and multiple smart phone applications enable 14 
collection of large amounts of georeferenced images. This provides a huge opportunity in 15 
biodiversity and ecological research, but also creates challenges for efficient data handling 16 
and processing. Recreational and small-scale fisheries is one of the fields that could be 17 
revolutionised by efficient, widely accessible and machine learning based processing of 18 
georeferenced images. The majority of non-commercial inland and coastal fisheries are 19 
considered data poor and are rarely assessed, yet they provide multiple societal benefits and 20 
can have large ecological impacts. Given that large quantities of fish observations and images 21 
are being collected by fishers every day, artificial intelligence (AI) and computer vision 22 
applications offer a great opportunity to improve data collection, automate analyses and 23 
inform management. Yet, to date, many AI image analysis applications in fisheries are 24 
focused on the commercial sector and are not publicly available for community use. In this 25 
study we present an open-source modular framework for large scale image storage, handling, 26 
annotation and automatic classification, using cost- and labour-efficient methodologies. The 27 
tool is based on TensorFlow Lite Model Maker library and includes data augmentation and 28 
transfer learning techniques, applied to different convolutional neural network models. We 29 
demonstrate the implementation of this framework in an example case study for automatic 30 
fish species identification from images taken through a recreational fishing smartphone 31 
application. The framework presented here is highly customisable for further advancement 32 
and community based image collection and annotation.  33 
 34 
 35 
Keywords: recreational fisheries; artisanal fisheries; citizen science; deep learning; fish 36 
species identification; image annotation; smart phone applications  37 
 38 
 39 
 40 

1. Introduction 41 
 42 
More than 80% of global catches occur in fisheries that lack essential data, resources, and 43 
infrastructure for stock assessments to be performed (Costello et al. 2020). This is especially 44 
true for recreational fisheries, which, in the developed world at least, continue to grow in 45 
popularity and have important well-being and economic benefits, but remain hard to monitor, 46 
control and assess (Meirelles et al. 2020).  47 
 48 
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Given the large number of people engaged in recreational fisheries and generally high level 49 
of technology used, there is a potential for large scale data collection that could greatly 50 
improve our knowledge about recreational catches and the populations’ status. There is 51 
generally a strong motivation among recreational fishers to conserve fish stocks and 52 
experience with other groups have shown that engagement in citizen science programs does 53 
not only help to generate large datasets, but also promote awareness and sense of stewardship 54 
(Dickinson et al. 2010). For recreational fisheries management, citizen science would be 55 
especially powerful because it could enable collaborative research and management which 56 
has been shown to have clear benefits across the world (Venturelli et al. 2017; Harris et al. 57 
2021). Therefore, it is urgently due that recreational fisheries management benefits from the 58 
increasing popularity of mobile fishing applications to achieve a step-change in data 59 
collection and angler engagement.  60 

Artificial intelligence (AI) has already revolutionised weather forecasting, wildfires disaster 61 
response, health care and transportation. AI and computer vision applications also offer a 62 
great untapped opportunity to transform recreational fisheries management because they 63 
allow rapid processing of large citizen science datasets, including automation of species 64 
identification and potentially also the fish size measurement. Even though research applying 65 
AI in fisheries has been increasing, with about 40 scientific publications per year (Ebrahimi 66 
et al. 2021), this is still very limited compared to other fields and mainly applied to 67 
commercial fisheries (e.g. Lekunberri et al. 2022; Ovalle et al. 2022). Moreover, the 68 
methods, tools and scripts developed in these studies are often not publicly available, limiting 69 
wider uptake, application and community-driven improvement.   70 

To help address the issue of limited AI application in recreational and small-scale fisheries 71 
research and management we present a modular open source framework for management and 72 
visual recognition of large image collections. The framework includes steps for 1) data 73 
management (storage and pre-processing), 2) image processing (automatic detection of fishes 74 
from images with pre-trained models, manual annotation of species supported by metadata 75 
and images augmentation) and 3) machine learning model development (train and test 76 
algorithms for species classification and detection). Alongside the framework, we also 77 
summarise currently available open-source tools and provide scripts that can be customised 78 
by researchers and applied to different types of imagery data. We demonstrate the 79 
implementation of the framework and its potential use for recreational fisheries research, 80 
through a pilot study that aims to automate detection of fish species from images uploaded to 81 
a smartphone fishing application. Finally, although this framework is developed for fisheries, 82 
it could also be applied to other areas that require image annotation, processing and 83 
classification. 84 
 85 
 86 

2. Framework 87 
 88 

The framework developed in this study is summarised in figure 1 and is divided into three 89 
main modules: data management, image processing and machine learning. This framework 90 
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has a variety of applications and the different components and scripts can be customized to 91 
different image classification oriented projects and used for example for species/individual 92 
identification, size estimation and other phenotypic/morphological pattern identification from 93 
images. 94 
 95 
Computer vision is a branch of computer science which aims to extract information from 96 
images (for example from photos and movies; Prince 2012) and develop visual recognition 97 
systems. Some of the most commonly used methods are image classification and object 98 
detection. Image classification is a technique used to classify or predict the class of a single 99 
object in an image (i.e., single-label classification; Mohri et al. 2012). Object detection is 100 
used to detect the location of one or more objects in a given image and then categorise each 101 
object (i.e. predict the class of each object, also called object classification). Object detection 102 
can be achieved by annotating images with a rectangle or bounding box around the object 103 
(see for example dos Santos & Gonçalves 2019). 104 
 105 

 106 
Figure 1: Overview of the framework, with the main tools used, consisting of three modules: 107 
and six steps. Platforms and specific tools (e.g. Google colab and Google Cloud Platform) 108 
indicated here were used in the example application, but could be replaced with other tools, 109 
as explained below. All steps described are supported by a freely available code library, 110 
deposited in https://github.com/FishSizeProject  111 
 112 
 113 
 114 
 115 

Module 1: Data Management 116 
 117 
The framework presented here assumes that users already have acquired the images. These 118 
images could have been provided by citizen science programs, social media scans or targeted 119 
image collection. 120 
 121 
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Step 1: Storage  122 
 123 
The images and associated metadata are stored on remote servers, i.e. cloud storage. There 124 
are a number of benefits to cloud storage of large datasets, including costs, facilitated 125 
collaboration, easy access from multiple devices, access to virtual servers used for analyses 126 
(see below), efficient back-up, centralization and data protection. Given that many projects 127 
for image analyses may only require storage for a short period, the costs associated with 128 
cloud-based storage are likely to be lower than investing into local devices and hard drives. 129 
From our experience, storage services from the three main cloud storage providers are very 130 
similar and differ mostly in terminology (Table 1). Pricing structure and billing depend on the 131 
type of resource needed and is briefly discussed in the “Lessons learned” section. To access 132 
these services users only need a platform specific account and a payment method. Services 133 
typically provide a free trial for a limited amount of data and time which varies between 134 
providers (for example both Google Cloud Platform and Microsoft Azure Platform provide 135 
$200 credit to use in 30 days in any service and one of Amazon Web Services include 250 136 
hours per month to use the ml.t3.medium computer instance). 137 
 138 
Table 1: A comparison of the main storage services providers Amazon Web Services (AWS), Google 139 
Cloud Platform (GCP) and Microsoft Azure Platform (Azure) with specific terminology used by each 140 
provider.  141 
 142 

Service AWS GCP Azure 
Versioning ✓ ✓ ✓ 
Encryption ✓ ✓ ✓ 
Fine-grained security (multiple 
criteria can be used for 
authorization to access 
data/resources) 

✓ ✓ ✓ 

Lower fees for less frequently 
accessed data 

Infrequently 
accessed class 

Cool Blob 
(binary large 
object) 

Nearline (frequently 
accessed), Coldline 
(infrequently 
accessed) 

Archiving Glacier Archive Archive 
Free tier service (use the product 
for free up to specified limits) 

✓ ✓ ✓ 

On-demand charges for resources 
used 

✓ ✓ ✓ 

 143 
 144 
 145 
 146 
Step 2: Pre-processing – sensitive data protection 147 
 148 
For all further steps in this study we used Google Colab (Bisong 2019), an online tool with 149 
built-in (i.e. requires no setup) interactive Python programming environments such as Jupyter 150 
notebooks (Kluyver et al. 2016) and with free access to computing resources such as GPUs 151 
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(graphics processing units, which are essential for computer vision tasks and image 152 
processing). However, this could be replaced with other tools such as JupyterLab or Kaggle. 153 
 154 
In many cases, images collected by citizens or extracted from internet may contain sensitive 155 
data, such as people’s faces. Depending on the nature of subsequent work (e.g. crowdsourced 156 
annotation of images), it may be preferrable to remove such data. In this framework we 157 
introduce a step that uses face detection algorithms to remove sensitive data before further 158 
analyses. This is done using the publicly available script face_detection_overlay.ipynb as a 159 
part of the general framework code. This script uses the function detect_face() of the Python 160 
library CVlib and the pre-trained model caffemodel to detect human faces (Ponnusamy 2018).  161 

 162 
Module 2: Image annotation 163 

 164 
Different computer vision techniques require different types of annotations of images to be 165 
used for training and testing the models. Image annotations are often done manually and this 166 
step is frequently identified as one of the main bottlenecks for using machine learning 167 
approaches. This is particularly true in areas where image annotation for model training 168 
requires expert knowledge such as accurate identification of fish species. In this framework 169 
we focus on image classification and object detection using bounding boxes and do not 170 
include other computer vision tools such as image segmentation. This is because they are the 171 
least time and therefore resource consuming methods, which was an important criterion given 172 
the focus of our study on developing tools for research groups with limited resources.  173 
 174 
Step 3: Pre-annotations – accelerate manual annotation of images 175 
 176 
Although expert based manual annotation of images (into correct species or other groups that 177 
will be used in the model) cannot be avoided, there are several pre-annotation steps that can 178 
reduce the amount of manual work required. Specifically, our framework includes importing 179 
images from cloud storage, running an object detector using the module inception_resnet_v2 180 
a Keras image classification model pre-trained on Open Images Dataset V4 (Kuznetsova et 181 
al. 2020), converting the bounding boxes metadata to absolute coordinates and saving the 182 
metadata in VGG format (in a .csv file). The pre-trained object detector was used to place 183 
bounding boxes around all fish shapes in the image, but the model can be used to detect 600 184 
shapes, including elephant, lynx, bird, insect, shellfish, tree, plant and others. The bounding 185 
box step is needed only for algorithms focused on the object detection method, not for image 186 
classification. If users are only interested in classification, the bounding box step can be 187 
skipped. However, automatic detection of specific shapes might still be useful if some images 188 
in the collection don’t have the object that needs to be classified. For example, the photos 189 
collected through angler apps may include pictures of location, gear or just accidental images. 190 
Running an object detection step will reduce the amount of work required to sort the images 191 
manually. 192 
The scripts for step 3 are available in the notebook object_detection_pre-annotation.ipynb. 193 
The last section of the script includes formatting and saving bounding box coordinates in the 194 
input format required by the software used for manual annotations (VGG software, see 195 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.29.498112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498112
http://creativecommons.org/licenses/by-nc/4.0/


 6 

below). This section of the script can be easily customised for other formats of annotation 196 
tools. 197 
 198 
Step 4: Annotations – manual annotation of images 199 
 200 
There is a variety of open-source software for manual image annotation (Table 2) with a 201 
range of formats for importing and exporting object annotations; each software package 202 
typically has its own Json-based or csv-based format. Some tools are only available online 203 
and therefore require uploading images to annotation servers. This may limit their application 204 
for sensitive data or in situations where experts engaged in image annotation have limited 205 
internet connectivity.  206 
 207 
In this study we used the VGG software (Dutta & Zisserman 2019), as it could be run locally 208 
and had easy setup and installation. The generated .csv file from the Step 3 209 
(object_detection_pre-annotation.ipynb) was opened in the VGG software, where automatic 210 
pre-annotation of image shapes was inspected manually and corrected if needed (bounding 211 
boxes adjusted to better fit the object), and class names added. In our case class names 212 
included identification of fish species and this step required expert knowledge. If class names 213 
are provided automatically in the pre-annotation step (e.g. the model only aims to classify 214 
fishes or other shapes), they can also be manually corrected.    215 
 216 
Table 2: List of open-source software for image annotation with details about export formats. 217 
 218 

Software Export formats Specifications Web page 

RectLabel YOLO, Create ML, 
COCO json, csv  

Runs locally; only available for 
MacOS operating system 

https://rectlabel.com/ 

Scalable json Runs locally; installation in terminal https://scalabel.ai 
VGG Image 
Annotator  
(via-2.0.11) 

csv, VGG json, 
COCO 

Runs locally; no installation or setup 
required; fast 

https://gitlab.com/vg
g/via 

LabelImg VOC xml, YOLO, 
createML 

Runs locally; installation in terminal https://github.com/tz
utalin/labelImg 

MakeSense Yolo, VOC xml, 
VGG json, csv 

Runs online but not functional for 
many images (if web browser resets, 
all annotations are lost) 

https://www.makesen
se.ai/ 

SuperAnnotate json Runs locally; easy installation (all 
operating systems) 

https://www.superan
notate.com 

LabelBox json Runs online https://labelbox.com/ 
Supervisely json Runs online https://supervise.ly/ 

 219 
Because TensorFlow Lite Model Maker requires annotations input file in a specific format, 220 
we have also developed a script (convert_annotations_VGG_to_TF.ipynb) to format the .csv 221 
file from VGG software to the TensorFlow format. This includes converting bounding boxes 222 
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coordinates from absolute values generated by the VGG software to relative values needed 223 
for TensorFlow and splitting the dataset into train, test and validation sets. 224 
 225 
Step 5: Data augmentation 226 
 227 
Data augmentation involves creating multiple copies of the same images, but with 228 
transformations such as flipping, rotating, scaling and cropping. Image augmentations have 229 
been shown to combat overfitting in deep convolutional neural networks (Shorten & 230 
Khoshgoftaar 2019), improve performance (Mikołajczyk & Grochowski 2018; Shorten & 231 
Khoshgoftaar 2019), model convergence (Liu et al. 2020), generalization and robustness on 232 
out-of-distribution samples (Bengio et al. 2011; Hendrycks et al. 2020), and, in general, to 233 
have more advantages compared to other methods (Hernández-García & König 2018). 234 
Depending on the method of computer vision used, data augmentation steps will differ. For 235 
example, for image classification data augmentation only involves transformations of the 236 
images. However, for the object detection method, when data augmentation is employed after 237 
annotations, as in this framework, augmentation also needs to be applied to the coordinates of 238 
bounding boxes (i.e. annotations need to be converted to be in agreement with image 239 
transformations). 240 
 241 
In this framework we use the open source Albumentations library (Buslaev et al. 2020) for 242 
data augmentation. The script data_augmentation_classification.ipynb defines an 243 
augmentation pipeline for image classification approach and applies vertical and horizontal 244 
flips for all images in a directory. The script data_augmentation_object_detection.ipynb is 245 
used to transform the annotations (bounding boxes) for the object detection method by 246 
applying vertical and horizontal flip to the coordinates of the bounding boxes from the 247 
annotations file. 248 
 249 

Module 3: Machine learning 250 
 251 
Step 6: Model training and testing 252 
 253 
This framework uses the Tensorflow Lite Model Maker library (Abadi et al. 2016a; b) and 254 
transfer learning which reduces the amount of training data required and model training time. 255 
Tensorflow Lite supports several model architectures, including EfficientNet-Lite, 256 
MobileNetV2 and ResNet50 (He et al. 2016; Sandler et al. 2018; Tan & Le 2019) which are 257 
pre-trained models for image classification, and EfficientDet-Lite[0-4], a family of mobile 258 
and IoT-friendly models for object detection, derived from the EfficientDet architecture (Tan 259 
et al. 2020). The library is flexible and new pre-trained models can be added by customising 260 
the library code. 261 
 262 
For this framework, we developed the script image_classification.ipynb to train and test 263 
(evaluate) an image classification model using the pre-trained models mentioned above. This 264 
script also generates a confusion matrix for visualizing model performance and functions to 265 
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load a trained model and run classification inference on new images. The script 266 
object_detection.ipynb includes functions to train and test an object detection model. 267 
 268 
 269 

3. Pilot case-study 270 
 271 
To illustrate the feasibility of the framework developed here, we present a pilot case-study of 272 
detecting the species Common bream (Abramis brama), European carp (Cyprinus carpio), 273 
Northern pike (Esox lucius), Largemouth bass (Micropterus salmoides), European perch 274 
(Perca fluviatilis) and Pikeperch (Sander lucioperca) (Figure 2). Images were obtained 275 
through a collaborative agreement with a company Fish Deeper™, which provides fishfinder 276 
devices which are popular among anglers and runs a smart phone application enabling 277 
anglers to log their catch. The anonymous data obtained included images and associated 278 
metadata, such as fish species identification by the user, GPS coordinates and other 279 
information. After the automated pre-annotation to select only images with fish, the manual 280 
image annotation was done by one person (Justas Dainys) with the required expertise in fish 281 
species identification (see discussion at the end for more details about the time used in this 282 
step). Next, we applied image augmentation (vertical and horizontal flips) to increase the 283 
number of images for model training, which provided 3 additional images for each original 284 
photo and resulted in a total of 4809 images. 285 
 286 

 287 
Figure 2: Example of images used for training the model, for each class (fish species) 288 
 289 
 290 
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Table 3: Sample sizes (images annotated) for both techniques: image classification and object 291 
detection. 292 

Species Common name Number of annotated 
images 

Total number of images 
(after augmentation) 

Abramis brama Common bream 111 333 
Cyprinus carpio European carp 377 1131 
Esox lucius Northern pike 420 1260 
Micropterus salmoides Largemouth bass 175 525 
Perca fluviatilis European perch 332 996 
Sander lucioperca Pikeperch 188 564 

 293 
The best performance for the image classification was achieved when using EfficientNet-294 
Lite0 model architecture, a batch size of 32 and 20 epochs, with an overall accuracy of 0.91 295 
and mean loss of 0.71 (Figure 3). Many classes had high precision values, although the 296 
precision for Sander lucioperca was quite low. From the confusion matrix (Figure 3), Sander 297 
lucioperca were commonly mistaken for Esox lucius, Abramis brama and Perca fluviatilis. 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 
 306 

 307 
 308 

 309 
Figure 3: Confusion matrix of the image classification results with normalized, relative 310 
values of correct predictions for each species (i.e. precision) obtained when using 311 
EfficientNet-Lite0 model architecture, a batch size of 32 and 20 epochs. 312 
 313 
For object detection, the best overall precision obtained was 0.48 when using EfficientDet-314 
Lite0 model architecture, a batch size of 32 and 20 epochs (Table 4). Interestingly, only the 315 
class Cyprinus carpio exhibited high precision, indicating that the size of the training dataset 316 
by itself might not be the only indicator of model performance. Similarly to what other 317 
researchers found (e.g. Horn et al. 2017; Zheng et al. 2019), our results show that the 318 
classification method achieve higher overall performance when compared to the overall 319 
performance of the detection methods. Training the model with larger number of images, a 320 
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balanced dataset and optimizing hyperparameters (such as epochs and batch size) may 321 
improve model performance. 322 

Table 4: Precision values for the best performing object detection model (model architecture = 323 
EfficientDet-Lite0, batch size = 32, epochs = 20) 324 

Species Common name Precision 

All (Average Precision)  0.48 
Abramis brama Common bream 0.20 
Cyprinus carpio European carp 0.75 
Esox lucius Northern pike 0.55 
Micropterus salmoides Largemouth bass 0.53 
Perca fluviatilis European perch 0.31 
Sander lucioperca Pikeperch 0.53 

 325 
 326 

4. Lessons learned, challenges and future applications 327 
 328 
In our pilot case study we illustrate the scientific application, utility and potential for 329 
scalability of the framework presented here. The framework is flexible and can be customised 330 
and applied to a variety of image datasets and research questions. With a relatively small 331 
number of images per class (200-300) we demonstrate that a high performing model can be 332 
developed for a small number of classes by a small research group with few resources. 333 
Traditional deep learning-based approaches require training models on a dedicated server and 334 
high computational power to make the inference. To overcome this issue, this framework 335 
uses the Tensorflow Lite Model Maker library (Abadi et al. 2016a; b) and transfer learning 336 
which reduces the amount of training data required as well as model training time. In 337 
addition, this library is very flexible and new pre-trained models can be added by customising 338 
the library code. 339 
 340 
While applying the framework to our pilot case study we have used a total of 59.39 GiB of 341 
cloud storage and computer resources included 16 vCPUs, 60 GB RAM and a Nvidia Tesla 342 
P4 GPU which resulted in a total of €117.20 (usage for three months). The cloud storage was 343 
used during the three month period and total expenses related to this service were €12.81. 344 
However, it is important to note that the costs were also kept low because we took advantage 345 
of free online tools with Python programming environments and free computing resources 346 
(Google colab) for most of exploratory work. Paid services of compute engine resources and 347 
notebooks were used only for intensive model runs.   348 
 349 
We found that in the steps 2 and 3 the pre-trained model for detecting human faces or fish 350 
shapes were not always accurate. The pre-trained model caffemodel that was used to detect 351 
human faces sometimes failed to detect a face if it was not in a vertical position, as was the 352 
case in rotated images. False positives also occurred when the model placed bounding boxes 353 
on fish “faces”. This step could be improved by training a model to detect human faces using 354 
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augmented data with transformations such as image rotation or vertical flip. Still, for images 355 
that need to be crowdsourced to public domains, for e.g., manual annotations or citizen 356 
science projects, the potential for sensitive data leakage must be carefully addressed. 357 
When it comes to detecting fish shapes and placing bounding boxes around them, in most 358 
cases the pretrained model inception_resnet_v2 worked well, although often the box 359 
excluded small parts of the fish (usually end of the tail). However, when there were many 360 
overlapping fishes in the image, the model did not always detect all fishes in an image. In a 361 
few images, the pretrained model identified other object (e.g. shoes, boxes, etc.) as fish. 362 
 363 
Manual annotation is fast but might be even faster  364 
 365 
Manual annotation of images was identified as an important challenge, where expert 366 
knowledge was crucial for correctly identifying fish species. The pre-annotation step (step 3) 367 
accelerated the process by automatically adding bounding boxes around fish, but images still 368 
needed to be individually assessed and identified. On average, for the six common and 369 
clearly distinct species, annotating one photo took about 2-3 seconds (although in some cases 370 
separating the common bream from other similar species took longer). In our case all 371 
annotated photos were divided into separate folders, depending on the month they were 372 
taken. Each folder contained c. 2000-2500 photos and up to half of them did not include any 373 
fish. In general, to review and annotate all the photos in the folder it took approximately 2-3 374 
hours of intensive work by a highly skilled expert. This might be slowed down, depending on 375 
the speed of the computer and internet, or expertise level. As the model is developed and 376 
more species are added, new photos can be identified faster by applying the model to them 377 
first and then manually processing only those photos that had low classification score. 378 
 379 
Citizen scientists can also supplement manual annotation of images for ML projects. For 380 
example, Gundelund et al. (2021) show that citizen scientists can estimate fisheries metrics 381 
and identify species with results comparable to surveys by scientists. If images can be shared 382 
publicly, crowdsourcing citizen science platforms Zooniverse (https://www.zooniverse.org/) 383 
could speed up the annotation and its accuracy. For example, Anton et al. (2021) used the 384 
platform to engage many citizen scientists to efficiently and accurately annotate data 385 
from underwater footage to detect cold water corals. To ensure higher accuracy the authors 386 
used repeated annotations, i.e. each video clip was annotated by eight citizen scientists and an 387 
agreement threshold of 80% was used. 388 
 389 
Like other researchers (e.g. Lekunberri et al. 2022), we found that image augmentation 390 
through rotation and flips improved the image classification model performance (overall 391 
accuracy increased by 10%). The augmentation was easy, fast and straightforward and we 392 
recommend using it in most image classification and object detection applications.  393 
 394 
In our pilot case study, the process of model training using the classification technique took 395 
6903 seconds (approximately 2 hours), while using the object detection technique it took 396 
3906 seconds (approximately 1 hour) for the same number of images (n=4809) batches 397 
(n=32) and epochs (n=20) but a different model architecture (EfficientNet-Lite0 and 398 
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EfficientDet-Lite0 respectively). The time required for the training phase of a model is an 399 
important consideration when choosing which computer vision technique to use. For the 400 
same amount of data and hyperparameter space (batch size and epochs) image classification 401 
can require more time to train a model, when comparing to the object detection technique. 402 
However, to achieve higher performance, object detection methods might need larger amount 403 
of data and more time for hyperparameters optimization. In addition, the time consuming 404 
process of manual annotation of images for object detection is also important to consider. 405 
 406 
In fisheries contexts, the majority of image processing and classification models aim to 407 
automatically identify fish species and are developed at the regional level, and are often 408 
fisheries-specific (Lekunberri et al. 2022; Ovalle et al. 2022; Palmer et al. 2022). Even 409 
though groups use different techniques (such as image classification, object detection and 410 
segmentation) these individual (and regional) models could be combined into a global, 411 
hierarchical classification framework for automatically identifying fish species worldwide. 412 
The process of combining different machine learning models is called ensemble learning. 413 
Usually, an ensemble classification model consists of two steps: (1) generating classification 414 
results using multiple weak classifiers, and (2) integrating multiple results into a consistency 415 
function to get the final result with voting schemes (Dong et al. 2020). There are different 416 
methods of ensemble learning with their own advantages and disadvantages (reviewed in 417 
Dong et al. 2020) and this area of research is rapidly evolving. However, ensemble learning 418 
has already been recognised to improve the performance of individual models and building a 419 
new model by ensemble learning requires less time, data and computational resources than 420 
training a new model with all the data combined.  421 
 422 
Global open-access machine learning models would have a range of applications for research 423 
and fisheries management. Platforms such as iNaturalist and Fishbase.org could benefit from 424 
fisheries-specific models or models developed at regional levels which can be combined by 425 
ensemble learning. Data collection can be further accelerated as tasks such as automatic fish 426 
identification, size estimation or sex determination can be speeded up with model predictions 427 
therefore helping citizen scientists with the process of metadata entry. In return, research 428 
projects and management efforts could take advantage of these platforms and data. 429 
 430 
 431 
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