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Abstract 

Motivation: Clustering is an unsupervised method for identifying structure in unlabelled data. 25 

In the context of cytometry, is typically used to categorise cells into subpopulations of similar 

phenotype. However, clustering is greatly dependent on hyperparameters and the data to which 

it is applied as each algorithm makes different assumptions and generates a different ‘view’ of 

the dataset. As such, the choice of clustering algorithm can significantly influence results, and 

there is often not one preferred method but different insights to be obtained from different 30 

methods. To overcome these limitations, consensus approaches are needed that directly address 

the effect of competing algorithms, which to our knowledge has not been applied to cytometry.  

Results: We present a novel ensemble clustering methodology based on geometric median 

clustering with weighted voting (GeoWaVe). Compared to graph ensemble clustering methods 

that have gained popularity in scRNA-seq analysis, GeoWaVe performed favourably on 35 

different sets of high-dimensional mass and flow cytometry data. Our findings provide proof 

of concept for the power of consensus methods to make the analysis, visualisation and 

interpretation of cytometry data more robust and reproducible. The wide availability of 

ensemble clustering methods is likely to have a profound impact on our understanding of 

cellular responses, clinical conditions, and therapeutic and diagnostic options. 40 

Availability and implementation: GeoWaVe is available as part of the CytoCluster package 

https://github.com/burtonrj/CytoCluster.  

Contact: Ross.Burton@wales.nhs.uk  
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1 Introduction 45 

Clustering is an unsupervised method for identifying structure in unlabelled data. In the context 

of cytometry, the objective is to categorise events into groups of similar phenotype. This 

technique is increasingly being adopted in the field and is widely regarded as an acceptable 

alternative to manual analysis [1-3]. However, the choice of algorithm appears to be often 

driven either by its availability in commercial software or ease of its use. In many instances the 50 

reason behind the particular choice of algorithm is not discussed at all. Of note, clustering 

algorithms differ in the assumptions made of data, their performance tends to be highly data-

specific and results can vary widely depending on the chosen hyperparameters [4-6].  

Ensemble clustering (also referred to as consensus clustering) offers an opportunity to reduce 

this frequently encountered bias by combining the partitions of multiple clustering algorithms 55 

run on the same data to identify a consensus that is informed by multiple ’views’, thereby 

reducing the dependence on any individual algorithm. Unlike ensemble methods in supervised 

classification, ensemble clustering has many challenges: the number of clusters may differ 

amongst the base partitions, the optimal number of consensus clusters is often unknown, and it 

is necessary to solve the correspondence issue of matching clusters between individual 60 

partitions [4, 7]. 

Broadly speaking, ensemble clustering methods can be grouped into three categories: co-

association methods, feature-based methods and methods using graph representations [4, 7, 8]. 

Co-association methods act on the pairwise similarity of clusters sourced from different 

algorithms. Consensus solutions can be derived from simple techniques such as agglomerative 65 

clustering of the binary co-association matrix (N × N matrix, where N is the number of events, 

for instance the number of single cells) [5] or the cluster-based similarity partitioning algorithm 

(CSPA), that forms partitions on the derived similarity graph using the METIS software [9]. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.496829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.496829
http://creativecommons.org/licenses/by/4.0/


4 
 

Methods that act on co-association are burdened by space complexity and are therefore 

intractable for large data where such a matrix exceeds the available computer memory [4]. 70 

Feature-based methods offer an alternative by presenting the problem as a label-association 

matrix (m × n matrix, where m is the number of unique clusters). Consensus solutions can be 

formulated with iterative voting, finite mixture models, pairwise agreement between clusters, 

or agglomerative clustering of this label-association matrix [7]. 

Another popular approach for consensus clustering is by using graph-based methods, where a 75 

weighted graph of the clusters contributing to an ensemble is generated and then partitioned 

into k parts using a graph partitioning technique [4, 7]. Strehl and Ghosh [9] developed the 

hyper-graph partitioning algorithm (HGPA) and the meta-clustering algorithm (MCLA), both 

heuristics that represent the clustering ensemble as a hypergraph. Later the hybrid bipartite 

graph formulation (HBGF) algorithm was introduced as an alternative approach that models 80 

clusters and observations in the same graph. In each case, consensus partitions are constructed 

from a subsequent bipartite graph [10]. The advantage of the aforementioned graph methods is 

their heuristic approach that avoids the need for a co-association matrix, making them 

applicable to large data. 

Ensemble clustering methods have successfully been adopted in the field of single-cell RNA 85 

sequencing (scRNA-seq) but the methodologies chosen usually reflect the size of data 

generated by this technique and do not address the space complexity issues that arise from 

larger datasets. the graph partitioning-based ensemble method for single-cell clustering, Sc-

GPE [11], is an example of a solution deploying co-association to the problem of ensemble 

clustering, where a co-association matrix is weighted by the similarity (adjusted rand index) of 90 

contributing clustering methods. However, the dependence on a co-association matrix makes 

this technique intractable for cytometry data. The same limitation applies to SC3 [12], another 
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consensus approach for scRNA-seq employing CSPA for ensemble clustering. Single-cell 

aggregated (from ensemble) clustering (SAFE-clustering) [13] avoids the need for generating 

a co-association matrix by applying graph-based methods instead but the implementation only 95 

allows a limited number of contributing algorithms to the consensus and is exclusively 

designed for scRNA-seq. 

In contrast to these advances in scRNA-seq data analysis, ensemble clustering methods have 

yet to be applied to cytometry data. Of note, methods developed for scRNA-seq data analysis 

may not scale to the size of data encountered in cytometry data analysis, which can be hundreds 100 

of times greater. We here benchmarked a range of graph ensemble clustering methods against 

popular clustering algorithms for cytometry data analysis and present a novel ensemble 

clustering methodology based on geometric median clustering with weighted voting 

(GeoWaVe). Compared to graph ensemble clustering methods that have gained popularity in 

scRNA-seq analysis, GeoWaVe performed favourably on different sets of high-dimensional 105 

data generated using cytometry by time of flight (CyTOF) or multicolour flow cytometry. Our 

findings provide proof of concept for the power of consensus methods to make cytometry data 

analysis more robust and reproducible. 

 

2 Materials and methods 110 

2.1 Datasets 

Public CytTOF datasets were obtained from open-source repositories [2] and arc-sinh 

transformed with a standard cofactor of 5. Doublets, debris and dead cells were removed, and 

ground-truth labels were taken from the original publications, with manual gating by the 

authors of the Levine-13 [14], Levine-32 [14] and Samusik [15] datasets. An in-house generated 115 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.496829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.496829
http://creativecommons.org/licenses/by/4.0/


6 
 

12-colour flow cytometry dataset was derived from nine patients admitted with acute severe 

sepsis to the Adult Intensive Care Unit at the University Hospital of Wales in Cardiff, United 

Kingdom (see Supplementary Methods). Sepsis data were arc-sinh transformed (standard 

cofactor of 150) and batch effect corrected using the Harmony algorithm [16]. Each sample 

was manually gated for single live CD4+ and CD8+ T cells, Vδ2+ γδ T cells and CD161+ Vα7.2+ 120 

mucosal-associated invariant T (MAIT) cells. The identified lymphocyte populations then 

served as a ground-truth for comparison of results from the clustering algorithms. 

2.2 Base clustering 

The following base clustering algorithms were considered individually, and their outputs 

served as input to ensemble clustering: FlowSOM (“self-organising map”) [17], PHATE 125 

(“potential of heat-diffusion for affinity-based trajectory embedding”) [18] with k-means 

clustering, SPADE (“spanning-tree progression analysis of density-normalized events”) [19], 

Phenograph [14] and PARC (“phenotyping by accelerated refined community-partitioning”) 

[20]. These algorithms are computationally efficient and have shown good performance for 

cytometry data analysis. The output of the base clustering algorithms was used to generate a 130 

label-association matrix as input for MCLA, HGPA and HBGF, three graph ensemble 

clustering algorithms that have been successfully applied to scRNA-seq data [13]. For each 

base clustering algorithm, experimentation with multiple input parameters was performed to 

give the best possible performance. The number of clusters generated for each method was 

determined either as a property of the clustering method (as is the case with Phenograph and 135 

PARC), selected from a range of 3-50 using the popular ConsensusClusterPlus method [21], 

or a fixed value of 20 clusters. The output of the base clustering algorithms was used to generate 

a label-association matrix (m clusters × n observations), which served as input for the MCLA, 
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HGPA and HBGF graph ensemble clustering algorithms as implemented using the 

ClusterEnsembles Python package [22]. 140 

2.3 Ensemble clustering 

For graph ensembles, a required hyperparameter is the number of final partitions in the 

consensus solution. This problem was addressed in the base clustering algorithms by searching 

a range of possible clusters and using ConsensusClusterPlus. This approach required sub-

sampling the feature space and computing the co-association matrix for each value of k (the 145 

number of clusters). The cumulative distribution function (CDF) for each co-association matrix 

was generated, and the optimal k chosen where the CDF is maximum. This was applicable to 

methods such as FlowSOM and SPADE that use a heuristic or down-sampled feature space but 

was intractable for graph-based consensus clustering techniques that construct graph 

representations of a m × n label-association matrix. Therefore, the optimal number of consensus 150 

partitions was chosen using internal metrics (metrics that use internal information from the 

clustering process to evaluate the quality of a clustering, e.g. the variation within clusters or 

the degree of overlap between clusters). Ensemble clustering was repeated over a range of k; 

chosen as the smallest and largest number of clusters amongst base clustering algorithms. Four 

internal metrics, implemented in Scikit-Learn [23], were chosen for their ease of interpretation: 155 

Calinski-Harabasz score, Davies-Bouldin index, distortion score and silhouette coefficient. 

Internal metrics were measured for 1000 events with 100 resamples and the distributions 

plotted for each k. The performance of clustering algorithms in comparison to ensemble 

methods was evaluated using external metrics that compare cluster results to ground-truth 

labels, implemented in the Scikit-Learn library [23]: Adjusted Rand Index (ARI), Fowlkes-160 

Mallows Index (FMI) and Adjusted Mutual Information (AMI). 
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3 Results 

3.1 Graph ensemble clustering methods fail to outperform individual clustering 

algorithms for cytometry data analysis 165 

Ensemble clustering solutions should take input from informative algorithms suited to the 

analytical task in question. We here sought to benchmark ensemble methods from the literature 

using externally and internally generated data, in particular ensemble methods that scale to 

large cytometry data (greater than 100,000 data points), namely graph-based methods.  

Base clustering algorithms and ensemble methods were tasked with clustering three datasets 170 

with available ground-truth labels. The Levine-13 data describe a total of 265,627 bone marrow 

cells from two healthy human donors and include 13 parameters (Supplementary Figure S1) 

[14]. Levine-32 describes 167,044 bone marrow cells from a single healthy human donor but 

at higher resolution with 32 CyTOF parameters (Supplementary Figure S2) [14]. Some 

examples of challenges presented by these two datasets include overlapping monocyte subsets 175 

differentiated by CD11b expression in the Levine-13 data, and small subsets of B-cells 

differentiated by IgM and IgD expression in the Levine-32 data. The Samusik data describe 

bone marrow samples with a total of 841,644 cells from 10 C57BL/6J mice and identified 24 

populations using 39 CyTOF parameters (Supplementary Figure S3) [15]; the branching 

topology of which offers a unique challenge to any clustering algorithm aiming to partition 180 

data in meaningful ways (Figure 1). In addition to these three CyTOF datasets, we used an in-

house generated 12-colour flow cytometry dataset from sepsis patients (Supplementary 

Figure S4) where the challenge was to identify relatively small and ambiguous populations of 

unconventional T cells amongst the backdrop of classical CD4+ and CD8+ T cells (Figure 1).  

When evaluating the performance of base clustering algorithms in comparison to graph 185 

ensemble methods, MCLA offered greater performance compared to the other graph ensemble 
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methods as judged by the adjusted rand index (ARI; Figure 2), Fowlkes-Mallows index (FMI; 

Supplementary Figure S5) and adjusted mutual information (AMI; Supplementary Figure 

S6). In the case of the Levine-13 and Levine-32 datasets, MCLA provided similar performance 

to the popular FlowSOM algorithm but overall graph ensemble methods failed to outperform 190 

one or more of the base clustering algorithms for all four benchmark datasets. 

To test whether the performance of graph ensemble methods was a direct result of the method 

employed for selecting k, the number of final consensus clusters (i.e. the use of internal metrics 

as shown in Supplementary Figure S7), the performance of graph-based clustering algorithms 

was examined across different values of k using external evaluation metrics. HBGF was chosen 195 

because it had the best runtime of the three graph ensemble methods (Supplementary Figure 

S8). Here, performance was optimum for low values of k despite the number of ground-truth 

populations being much larger for the Levine-13 and Samusik datasets. The choice of k was 

therefore assumed not to be a factor in the poor performance of graph ensemble methods in 

this case. Taken together, out findings demonstrate that graph ensemble clustering methods for 200 

mass and flow cytometry data performed worse than one or more contributing base clustering 

solutions.  

 

3.2 Geometric median clustering with weighted voting (GeoWaVe): a novel heuristic 

ensemble clustering algorithm 205 

Graph ensemble methods address issues of computational complexity by deriving the 

consensus from graph representations of the label-association matrix, rather than from the 

unmanageable co-association matrix. To improve the performance of consensus approaches, 

we propose an alternative heuristic ensemble clustering method: geometric median clustering 

with weighted voting (GeoWaVe), where the clusters generated by base clustering algorithms 210 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.496829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.496829
http://creativecommons.org/licenses/by/4.0/


10 
 

contributing to an ensemble (such as the examples used in this study, see Figure 3A) are 

summarised by their geometric median (Figure 3B). The geometric median (implemented with 

the hdmedians package [24] and formally defined in Equation 1) was chosen over other 

measures of central tendency because it is robust to outliers, is not necessarily a point from the 

original data, can handle negative values and is defined in any dimension. 215 

𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑥 − 𝑥 ‖ 

 

Using his approach, a summary of the expression profile of all clusters contributing to the 

consensus is generated, which can subsequently be clustered into consensus clusters (Figure 

3C); a consensus cluster being a collection of clusters of similar phenotype. The clusters that 220 

contribute to a consensus are overlapping sets, given that each base clustering algorithm is 

exposed to the same data. Therefore, it is possible that an event can be assigned to more than 

one consensus cluster. This will occur more frequently for events that sit on the boundary 

between clusters. To solve this problem, where an event is assigned to multiple consensus 

clusters a score is calculated for each consensus cluster and the event assigned to the consensus 225 

with the maximum score. 

The consensus cluster score is calculated as follows: given that a consensus cluster can be 

defined as a set of clusters C, the Manhattan distance between an event x and the geometric 

median (Equation 1) of each cluster is computed. The sum of these distances is then divided 

by the number of clusters within the consensus, given a weighting factor, p. This can be 230 

expressed formally as Equation 2: 

𝑝 =  
∑  ‖𝑢(𝑥) − 𝑢(𝑐 )‖∈

|𝐶|
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The final score is calculated as the number of clusters within the consensus divided by p 

(Equation 3): 

𝑠𝑐𝑜𝑟𝑒 =  
|𝐶|

𝑝
 235 

 

Not all clusters are equally defined, and some may be a poor fit for a given event. To account 

for this possibility, the majority voting algorithm is weighted by the distance from an event to 

the centre of each cluster that contributes to a consensus. This method ensures that the 

consensus an event is assigned to was informed by both the number of supporting algorithms 240 

but also the quality of the clusters in that consensus. 

The choice of clustering algorithm applied to the geometric medians of clusters is ambiguous 

in that any number of existing methods may be suitable to the task. The advantage of geometric 

medians as a heuristic is that the expression profile can be visualised easily as a heatmap 

(Figure 3C) and different clustering methods can be applied and critiqued. This allows the 245 

investigator to introduce prior knowledge, such as known phenotypes expected to occur in the 

data. 

 

3.3 Validation of GeoWaVe 

To validate GeoWaVe, multiple algorithms for clustering the geometric medians were tried. 250 

Affinity propagation and mean-shift were compared because of their ability to select the 

optimal number of clusters from characteristics of the data. k-means and agglomerative 

hierarchical clustering were also tested, with the optimal number of clusters chosen from a 

range of clusters using the ConsensusClusterPlus method [21]. For agglomerative hierarchical 

clustering a variety of linkage methods and distance metrics were tried.  255 
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GeoWaVe performance was compared to base clustering algorithms and graph ensemble 

methods using external evaluation metrics. GeoWaVe outperformed all other methods in three 

of the four datasets when comparing ARI (Figure 2) and FMI (Supplementary Figure S5). 

GeoWaVe also outperformed graph ensemble methods when comparing ARI, FMI and AMI 

(Supplementary Figure S6) but failed to outperform base clustering methods in terms of AMI 260 

in the Levine-13 and Samusik data. 

The effect of the choice of clustering algorithm applied in GeoWaVe was data specific. For the 

Levine-13 and Levine-32 data, the choice of algorithm was negligible whereas k-means and 

agglomerative hierarchical clustering with average linkage showed a clear advantage in the 

Sepsis data. 265 

 

3.4 GeoWaVe outperforms graph ensemble methods 

External evaluation metrics used in the prior section offer performance criteria that are 

independent of the labels, i.e. they do not require a like-to-like matching of cluster and ground-

truth labels. Instead, measures of similarity between the cluster labels and ground-truth labels 270 

were used. Samusik et al. [15] and Webber et al. [5] alternatively framed such problems in the 

context of a classification task: a one-to-one mapping of ground-truth labels to clusters was 

achieved using the Hungarian algorithm such that the sum of F1 scores across ground-truth 

labels is maximised, and the precision (positive predictive value), recall (sensitivity) and F1 

score (harmonic mean of precision and recall) for each ground-truth label are reported. 275 

This procedure was repeated for the clustering algorithms bench-marked in previous sections 

and the ensemble clustering solutions. Figure 4 shows the average precision, recall and F1 

score for the base clustering algorithms, graph ensemble methods and GeoWaVe with 

bootstrapped 95% confidence intervals from 1000 rounds of re-sampling. GeoWaVe continued 
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to outperform graph ensemble methods across the four benchmark datasets but failed to match 280 

the F1 score obtained by methods such as PhenoGraph and PARC in the Levine-32 and Samusik 

datasets. While MCLA graph ensemble clustering was more comparable to GeoWaVe in the 

Sepsis data when observing F1 score, GeoWaVe with k-means clustering still outperformed 

MCLA in terms of precision, recall and F1 score. 

An advantage to matching clusters to ground-truth populations using the Hungarian algorithm 285 

was the ability to directly compare the performance at the population level. The F1 score for 

ground-truth populations is shown as a heatmap for the Levine data in Figure 5 and compares 

the performance between graph ensemble clustering and GeoWaVe. Each row includes a 

measure of the population size as an additional heatmap on the y-axis. This approach 

demonstrated how the superior performance of GeoWaVe compared to graph ensemble 290 

methods was a result of improved identification of under-represented populations such as 

plasma cells and plasmacytoid dendritic cells in the Levine-13 dataset, and plasma cells, 

basophils and CD16+ natural killer cells in Levine-32. The ability of GeoWaVe to outperform 

graph ensemble methods is supported by observations in the Samusik data (Figure 6) where 

multiple populations of moderate size were absent from the output of graph ensemble methods 295 

but could successfully be identified by GeoWaVe; examples include natural killer T cells, 

macrophages and non-classical monocytes. Despite the success of GeoWave in comparison to 

graph ensemble methods, it still failed to identify very rare subsets in high-dimensional data, 

for example platelets in the Levine13 dataset and CD34+ CD38+ CD123+ haematopoietic stem 

and progenitor cells in the Levine-32 dataset. However, while graph ensemble methods 300 

performed better on the Sepsis data compared to the other three datasets, minor populations of 

Vδ2+ γδ T cells and MAIT cells were more reliable identified by the GeoWaVe algorithm. 
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4 Discussion 

Cytometry has become a cornerstone to biomedical and healthcare research and is widely used 305 

in clinical diagnosis. In many pathological conditions, the understanding of disease 

mechanisms and how to exploit them for patient benefit relies largely on cytometry, including 

the diagnosis of conditions like leukaemia and HIV infection, and studying antigen-specific 

responses in vaccine trials. Historically, cytometry data have been processed and analysed 

manually. Until recently, this was deemed acceptable given that cytometry instruments could 310 

only accommodate relatively few parameters in any experiment. Over the past decade, 

however, the number of available parameters has increased drastically with the advent of 

multicolour flow cytometry and mass cytometry, allowing characterisation of even minor 

populations at single cell level and the discovery of novel cell types and new functional 

features. Traditional approaches no longer suffice – as the number of parameters grows, data 315 

analysis is becoming more labour intensive, more subjective and harder to standardise and 

reproduce across studies and sites. In response to the technological advances, the domain of 

cytometry bioinformatics is rapidly evolving to provide new computational solutions for data 

analysis and interpretation such as autonomous gating, supervised classification and 

unsupervised clustering. Arguably the most impactful technology introduced to this space is 320 

dimension reduction for the purpose of data visualisation, such as t-distributed stochastic 

neighbourhood embedding (t-SNE), uniform manifold approximation and projection (UMAP) 

and PHATE. The top clustering algorithms alone have already amassed >12k citations in the 

scientific literature within a few years and are enabling researchers to make rapid progress in 

their fields – for instance in the understanding of the immunopathology of COVID-19 that 325 

rapidly translated into novel therapies, outcome prediction and vaccine development [25-28]. 
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We here developed GeoWaVe, an ensemble clustering algorithm, as a solution to reduce the 

variance commonly observed amongst clustering methods in the cytometry literature, where 

results depend upon hyperparameter choice and the particular context in which they are 

applied. Presently, there is an absence of a “one size fits all” solution to clustering cytometry 330 

data, leaving scientists to rely on exploratory analysis that risks biasing results through data 

dredging [28]. Ensemble clustering offers an alternative by finding a consensus informed by 

the results of multiple clustering algorithms exposed to the same data. This multi-view 

approach theoretically offers robust, consistent and stable solutions [4, 8] without biasing the 

analysis with the assumptions of a single algorithm. The act of employing ensemble clustering 335 

also forces the analyst to compare and contrast the results of multiple algorithms, which can be 

an informative exercise. 

Ensemble clustering presents many challenges that come to bear when applied to complex data 

such as those generated with cytometry. Unlike supervised classification, there are not a 

defined number of classes provided by labelled examples. Different algorithms may generate 340 

different quantities of clusters, which must be compared and consolidated into consensus 

clusters. Cytometry data also tends to generate large data that can be difficult to handle with 

conventional computer resources. This is becoming increasingly relevant for studies that intend 

on phenotyping hundreds or even thousands of subjects. 

An existing ensemble approach that can scale to large data and was included in this study are 345 

the graph-based methods, such as HGPA, MCLA and HBGF. These techniques were 

benchmarked against four independent datasets but failed to outperform individual clustering 

algorithms such as FlowSOM, PhenoGraph, or SPADE. In response to this, an alternative 

heuristic ensemble method named GeoWaVe was developed, which was suitable to the nature 

of cytometry data. Given that the dimensions of cytometry data are not beyond the 350 

comprehension of the investigator and meaningful phenotypes can be determined by 
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considering sets of features, we propose to summarise each cluster contributing to a consensus 

by its geometric median in the feature space. This can for instance be visualised in a heat map. 

Our study demonstrates that clustering the matrix of these geometric medians can generate 

informative consensus clusters. 355 

Our analyses showed that GeoWaVe consistently outperformed HGPA, MCLA and HBGF. 

The use of geometric medians also provided a useful visual aid when choosing the number of 

consensus clusters to be formed. By visualising the heat map of geometric medians in 

combination with t-SNE, UMAP or PHATE embeddings, a suitable number of partitions can 

easily be estimated. This allows the investigator to introduce informative priors and select 360 

clusters based on knowledge of the underlying biology. If uncertain, a range of partitions can 

be searched using the ConsensusClusterPlus method [21]. 

The use of geometric medians as a heuristic is not without limitations. Summarising a cluster 

using the geometric median tells little of the topology, and a significant loss of information 

may result in misinformed consensus clusters that are not representative of the data themselves. 365 

Additionally, the optimal choice of clustering method applied to the matrix of geometric 

medians is not immediately apparent and performance can vary depending on the data – for 

instance, this choice was important to the performance on the Samusik dataset, but less relevant 

for Levine-32. Of note, the use of a heuristic means that the run-time of GeoWaVe is fast 

enough to accommodate hyperparameter tuning. The investigator is therefore encouraged to 370 

experiment with different clustering algorithms and hyperparameters and inspect the partitions 

on the geometric median heat maps and embeddings generated from a suitable dimension 

reduction technique. Although this fails to remove the exploratory approach to clustering of 

cytometry data, it introduces the multi-view consensus necessary for robust results. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.496829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.496829
http://creativecommons.org/licenses/by/4.0/


17 
 

Webber et al. [5] performed a similar assessment of clustering algorithms without the focus on 375 

consensus methods and framed their assessment as a classification problem, inspired by the 

work by Samusik et al. [15]. They chose to use F1 score by first mapping clusters to ground-

truth labels using the Hungarian algorithm and maximising F1 scores across reference 

populations. This methodology was repeated in the present study and supported the conclusion 

that GeoWaVe ensemble methods outperform the graph ensemble methods of HGPA, MCLA 380 

and HBGF. Closer inspection of individual population F1 scores revealed that rare cell 

populations were often not identified by graph ensemble methods. Although identification of 

these subsets was improved in GeoWaVe, performance was often worse than individual 

clustering algorithms and some populations, such as platelets in the Levine-13 data, remained 

unidentified. 385 

There is a significant flaw in the assessment of clustering performance through F1 score. 

Mapping clusters to ground-truth labels in such a way implies that a one-to-one relationship 

must exist between the clusters generated and the reference populations. Clustering analysis 

can be complicated by sub-structures in data captured as clusters but absent in the ground-truth 

labels. If the purpose of clustering cytometry data is to identify a precise number of clusters, 390 

then this form of evaluation seems justified although one could argue that in such a scenario a 

supervised classification approach might be more suitable. Clustering analysis tends to be 

applied in the interest of discovery when the number of clusters is unknown. Despite this flaw 

it was deemed necessary to replicate the methods of Webber et al. [5], which was informative 

of the role population size plays. It showed that although the consensus clustering of geometric 395 

medians outperforms graph-based methods, there is still work to be done to ensure rare cell 

populations do not go undetected with this technique. It would be advisable that if rare cell 

populations are suspected to be present, that the consensus is formed by methods with high 

resolution such as those formed on nearest-neighbour graphs [14, 15, 20]. 
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Future work should focus on more diverse ensemble clustering. In this work, four classes of 400 

algorithm were chosen based on their popularity in the cytometry literature and their available 

implementations. However, there is a wide variety of further clustering algorithms that could 

be explored for inclusion in ensemble clustering. There are ongoing efforts to address the 

computational complexity, such as improvements to SC3 [30]. Other solutions to the 

computational complexity may come from advances in the statistical and computational 405 

literature, such as consensus formed on heuristics of cluster similarity using metrics such as 

the Jaccard index [31]. In the meantime, clustering on geometric medians is likely to be a viable 

solution for cytometry data analysis. We are confident that the availability of user-friendly but 

powerful ensemble clustering methods has the potential to represent a major advance in big 

data analysis, with implications for an improved understanding of cellular responses, clinical 410 

conditions, and therapeutic and diagnostic options.  
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 560 

 

 

Figure 1: UMAP density plots of the Levine-13, Levine-32, Samusik and Sepsis data. Colour 

intensity corresponds to the density of observations in a region of events. 
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Figure 2: Adjusted rand index (ARI) for base clustering algorithms (left), graph ensemble 

methods (middle) and GeoWaVe ensemble (right) for the four benchmark datasets. ARI 570 

provides a measure of similarity between clusters and ground-truth labels by considering all 

pairs of observations. Pairs that are assigned to the same or different clusters in the predicted 

and ground-truth populations are counted and contrasted to mismatched pairs. The Rand Index 

can be described as a measure of the percentage of correct classifications by the clustering 

algorithm and is adjusted for chance by estimating the expected rand index using a permutation 575 

model, and then normalising by this expectation. ARI scores clustering results between −1 and 

+1, where random label assignment will be negative or close to zero and perfect clustering will 

have an ARI close to +1. The best ARI score for each dataset is shown as a dotted orange line, 

and the best performing method for those data is coloured in orange.  
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 580 

Figure 3: Schematic diagram of the GeoWaVe algorithm. (A) Clusters generated by multiple 

clustering algorithms are pooled, and (B) the geometric median for each cluster is calculated 

to create a matrix of c clusters. (C) This matrix of cluster geometric medians (clusters of the 

Levine-13 data shown here as an example) is clustered into consensus clusters; groups of 

clusters within similar expression profiles. Consensus cluster labels are then assigned to 585 

individual events and overlapping consensus assignments handled with a score that accounts 

for the distance of the event to the members of each consensus cluster.   
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 590 

Figure 4: Performance of base clustering algorithms, graph ensembles and GeoWaVe 

ensembles, after matching cluster labels to ground-truth labels using the Hungarian linear 

assignment algorithm and maximising the sum of F1 scores across ground-truth label and 

cluster label pairings. Average precision (positive predictive value; PPV), recall (sensitivity) 

and F1 score are reported. Error bars represent 95% confidence intervals after bootstrap 595 

sampling of population values with 1000 rounds of re-sampling. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.496829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.496829
http://creativecommons.org/licenses/by/4.0/


30 
 

 
 

Figure 5: Heatmap of population F1 scores for the Levine-13 (top) and Levine-32 (bottom) 600 

data, with comparisons between graph ensemble methods (left) to GeoWaVe ensemble 

methods (right). Ground-truth populations (rows) are coloured by F1 score in the central 

heatmaps, with darker colours indicating a lower F1 score. On the right y-axis each row is 

labelled with an additional heatmap that describes the log-normalised size of the population 

(total number of events).  605 
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Figure 6: Heatmap of population F1 scores for the Samusik (top) and Sepsis (bottom) data, 

with comparisons between graph ensemble methods (left) to GeoWaVe ensemble methods 610 

(right). Ground-truth populations (rows) are coloured by F1 score in the central heatmaps, with 

darker colours indicating a lower F1 score. On the right y-axis each row is labelled with an 

additional heatmap that describes the log-normalised size of the population (total number of 

events). 
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