TITLE

The cell cycle regulator cyclin D1 modulates the activity of α4-containing GABA_A receptors

AUTHORS

Neus Pedraza*#1, Ma Ventura Monserrat#1, Francisco Ferrezuelo1, Jordi Torres-Rosell1, Neus Colomina1, David Soto2, Fede Miguez2, José A. Esteban3, Joaquim Egea4, Eloi Garí*1.

1Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain.

2Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.

3Department of Molecular Neurobiology, Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Spain.

4Molecular and Developmental Neurobiology, Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain.

*Corresponding authors

#Co-authors
ABSTRACT

Cyclin D1 (Ccnd1)-Cdk4 complexes drive cell cycle progression through phosphorylation of pRb. Interestingly, Ccnd1 moves to the cytoplasm at the onset of differentiation in neuronal precursors and CCND1-null mice show neurological abnormalities. However, the cytoplasmic functions and targets of Ccnd1 in post-mitotic neurons are unknown. Here we identify the α4 subunit of gamma-aminobutyric acid (GABA) type A receptors (GABA_A Rs) as an interactor and target of Ccnd1-Cdk4. Ccnd1 binds to an intracellular loop in α4 and, together with Cdk4, phosphorylates the α4 subunit at threonine 423 and serine 431. These modifications increase α4-containing GABA_A Rs surface levels and activity, measured as reduced rundown in whole-cell patch-clamp recordings. In agreement, inhibition of Cdk4 decreases tonic currents and miniature inhibitory postsynaptic current amplitude in the hippocampus of newborn rats. Moreover, the pattern of dendritic spines from CCND1 knockout mice is altered, according to a role of α4 in synaptic pruning. Overall, our findings endorse the involvement of a G1 cyclin in neuronal signaling and highlight a novel cytoplasmic function of Ccnd1-Cdk4 in the regulation of GABA_A Rs in the central nervous system.

Keywords: Cdk4/ Cyclin D1/ GABA signaling/ gamma-aminobutyric acid type A receptor subunit alpha4
INTRODUCTION

Cyclin D1 (Ccnd1) and its catalytic counterparts, cyclin-dependent kinase 4 (Cdk4) and Cdk6, are main regulators of cell proliferation by promoting the G1-S phase transition of the cell cycle (reviewed in (Sherr & Roberts, 2004)). Under favorable conditions, mitogenic signals induce the expression of Ccnd1, the formation of Ccnd1-Cdk4/6 complexes and their localization to the nucleus. There, they phosphorylate the Retinoblastoma repressor protein (pRB), which eventually leads to its inhibition and in turn releases the activity of the E2F transcription factor. This induces the expression of genes required to go through the next steps of the cell cycle. This pRB-dependent control of cell proliferation is considered the “canonical” function of Ccnd1 and it has been reported as very relevant in tumor proliferation. Accordingly, Ccnd1 is classified as an oncogene frequently amplified in many types of neoplasia, and different cancer treatments with Cdk4/6 inhibitors such as Palbociclib have been approved to block this function. However, Ccnd1 also operates through several other non-canonical pathways including some pRB- and Cdk-independent ones to regulate different cellular processes (reviewed in (Hydbring, Per, Malumbres & Sicinski, 2016)). Thus, Ccnd1 promotes cell detachment, migration and invasion of normal and tumor cells independently of pRB status (Neumeister et al, 2003)(Li et al, 2006)(Cemeli et al, 2019) by interacting with cytoplasmic and membranous targets such as filamin A, pacsin, RasGTPases and paxillin (Zhong et al, 2010)(Meng et al, 2011)(Fernández et al, 2011)(Fusté et al, 2016b). For example, Ccnd1-Cdk4 promotes cell invasion and metastasis through the phosphorylation of paxillin and the activation of the Rac1 pathway in membrane ruffles (Fusté et al, 2016b). Moreover, the expression of a membrane-associated form of Ccnd1 harboring the pharnesylation signal of K-Ras (Ccnd1-CAAX) maximizes the ability of tumor cells to invade and metastasize (Fusté et al, 2016a). Besides cell invasion, membrane-targeted Ccnd1 also influences cell-signaling responses (Chen et al, 2020).

The first hint for a role of Ccnd1 in the nervous system came from the analysis of CCND1 knockout (KO) mice (Sicinski et al, 1995), which present certain behaviors (altered leg-clasping reflex) indicative of neurological abnormalities. Since then, several studies have substantiated the involvement of Ccnd1 in neuronal functioning. In neural stem cells, Ccnd1-Cdk4 has been involved in regulating the length of G1, which is thought to influence the decision of cells to proliferate or differentiate (Lange et al, 2009), (Lim & Kaldis, 2012), (Miyashita et al, 2021). Also, under pathological conditions, nuclear Ccnd1 reactivation/upregulation in post-mitotic neurons has been observed to promote apoptosis (reviewed in (Hydbring, Per, Malumbres & Sicinski, 2016)). Ccnd1 is located in the cytoplasm of differentiating post-mitotic cortical neurons and in neuroblastoma cell lines, although this has been proposed as a mechanism to prevent apoptosis (Sumrejkanchanakij et al, 2003) or to promote cell cycle withdrawal (Sumrejkanchanakij et al, 2006), respectively. Nevertheless, Ccnd1 could be exerting an active role in the cytoplasm. Interestingly, Ccnd1 is necessary for NGF-induced neuritogenesis in PC12 pheochromocytoma cell line (Marampon et al, 2008). Also cytoplasmic expression of Ccnd1-Cdk4 has been observed in the hippocampus during development (Schmetsdorf et al, 2005) where it has been involved in neuronal plasticity (Li et al, 2007). But despite these works, the role and target/s of Ccnd1 in the nervous system and in particular its role in the cytoplasm of the neurons remains poorly understood.
γ-aminobutyric acid (GABA) is the major inhibitor neurotransmitter in the central nervous system. Its actions are mediated through different types of GABA receptors: GABA A receptors (GABA_ARs), which are ligand-gated chloride ion channels, and GABA B receptors (metabotropic G-protein-coupled). Deficits in GABA_AR function are increasingly being involved in different pathologies, such as anxiety, cognitive deficits, depression, epilepsy, schizophrenia and substance abuse (Nakamura <i>et al</i>, 2015). These receptors are also clinically relevant drug targets for anesthetic, anticonvulsant, anxiolytic, or sedative-hypnotic agents. GABA_ARs mediate both phasic and tonic inhibition: synaptic GABA_ARs are activated transiently by the GABA released from presynaptic vesicles, whereas extrasynaptic GABA_ARs are activated by low GABA concentrations in the extracellular space and thus mediate tonic inhibition. The tonic inhibitory currents control neuronal excitability and the strength of synaptic transmission (Comenencia-Ortiz <i>et al</i>, 2014).

GABA_ARs are heteropentamers that belong to the ligand-gated ion channel superfamily. A total of 19 subunits (as well as splice variants) have been cloned and grouped into eight subunit classes: α (1-6), β (1-3), γ (1-3), δ, ε, π, θ and ρ (1-3). GABA_ARs are usually formed by two α, two β, and one γ or one δ subunits. Each subunit contains a large amino-terminal extracellular domain and four transmembrane (TM) domains. Between TM3 and TM4 there is a large intracellular loop (ICL) where regulation by phosphorylation and protein interactions primarily occurs. The subunit composition dictates its subcellular location and function.

GABA_ARs containing the α4 subunit are expressed in the hippocampus, cortex and thalamus, and mediate extrasynaptic inhibition in thalamus and dentate gyrus (Chandra <i>et al</i>, 2006). At the onset of puberty, α4-β-δ GABA_AR expression increases perisynaptically at excitatory synapses in the hippocampus, contributing to anxiety, synaptic pruning and learning deficits in mice (Shen <i>et al</i>, 2007), (Shen <i>et al</i>, 2010), (Afroz <i>et al</i>, 2017), (Afroz <i>et al</i>, 2016), (Parato <i>et al</i>, 2019). In fact, in the α4-KO mice synaptic pruning is prevented, and synaptic plasticity and learning abilities are restored (Chandra <i>et al</i>, 2006), (Shen <i>et al</i>, 2017), (Moore <i>et al</i>, 2010). In the adult hippocampal neurogenesis, α4-containing GABA_ARs are involved in proliferation, migration and dendritic development (Duveau <i>et al</i>, 2011). Mutations in the GABAergic receptor subunit 4 gene <i>GABRA4</i> (Ma <i>et al</i>, 2005), (Collins <i>et al</i>, 2006), (Griswold <i>et al</i>, 2018) and reduced protein and mRNA levels of α4 (Fatemi <i>et al</i>, 2010)(Fatemi <i>et al</i>, 2009), (Fatemi <i>et al</i>, 2010) are reported in patients of autism spectrum disorder. Furthermore, the α4-KO mice show a phenotype compatible with high-functioning autism (Fan <i>et al</i>, 2020).

Here we report that Ccnd1 interacts with the α4 subunit of GABA_ARs. Ccnd1-Cdk4 complex phosphorylates α4 in the intracellular loop between TM3 and TM4 and enhances the efficacy of α4-containing GABA_ARs, affecting the pattern of dendritic spines. We propose a novel role for cytoplasmic Ccnd1-Cdk4/6 in regulating α4-containing GABA_ARs in the central nervous system.

RESULTS

The α4 subunit of GABA_A receptors interacts with cyclin D1

To investigate the role of Ccnd1 in the nervous system, we performed a yeast two-hybrid screening using Ccnd1 as a bait and an adult mouse brain library as a prey (Ruiz-Miró <i>et al</i>, 2020). Ccnd1 binds to the α4 subunit of GABA_ARs.
2011). We found that Ccnd1 interacts with the C-terminal half of the α4 GABA_A receptor subunit (Gabra4). We obtained three independent clones spanning amino acids 354-552, 385-552 and 386-552 (Fig 1A). This region of α4 contains the intracellular loop (ICL) between the TM3 and TM4 transmembrane domains, which is phosphorylated by protein kinase C (PKC, Abramian et al, 2010). To confirm the interaction between the α4 subunit and Ccnd1 we carried out immunoprecipitation (IP) experiments with FLAG-tagged Ccnd1 and the HA-tagged C-terminal region of α4 expressed in HEK-293T cells. We observed specific co-IP of the C-terminal domain of α4 in the Ccnd1 IP (Fig 1B). To test whether there is a direct interaction between Ccnd1 and the α4 subunit, we performed in vitro GST-pull-down assays. Fusions of GST-α4 or GST-C-terminal α4 (354-552aa) purified from E.coli were mixed with FLAG-Ccnd1 produced by in vitro transcription and translation. Ccnd1 was co-precipitated when GST-α4 or GST-C-terminal α4 were pulled down, but not with GST alone (Fig 1C). To analyze the endogenous interaction between Ccnd1 and the α4 GABA_A receptor subunit, we immunoprecipitated Ccnd1 from the hippocampus of adult mice, since co-expression of Ccnd1 and α4 mRNAs in the CA1, CA3 and dentate gyrus regions of the hippocampus is observed in the Allen mouse brain atlas (www.brain-map.org). As shown in figure 1D, α4 subunit of GABA_A receptor co-immunoprecipitated with endogenous Ccnd1, in a specific manner. Overall, our data indicate that there is a specific and direct interaction between Ccnd1 and the α4 subunit of GABA_A receptors.

The α4 subunit of GABA_A receptors phosphorylated at T423 and S431 by Ccnd1-Cdk4 complex

As Ccnd1 is the regulatory subunit of Cdk4/6 kinases, we analyzed the sequence of α4 for putative phosphorylation sites by Cdk4. We found five S/TP sites in the sequence of the intracellular loop (Fig 1A). In an in vitro kinase assay, Ccnd1-Cdk4 complex phosphorylated recombinant GST-α4 and this phosphorylation was prevented by inhibiting the complex with the specific Cdk4/6 inhibitor Palbociclib (Fig 2A). Besides, another subunit of the GABA_A receptors, β3, which lacks S/TP sites, was not phosphorylated by the Ccnd1-Cdk4 complex (Fig 2B). In order to know which residues of α4 were phosphorylated by Ccnd1-Cdk4, we mutated the five intracellular putative Cdk phosphorylation sites to non-phosphorylatable residues (alanine) generating three different mutant alleles: T423A and S431A (α4^{T423AS431A}); S456A and S458A (α4^{S456AS458A}); and T500A (α4^{T500A}). Neither α4^{S456AS458A} nor α4^{T500A} mutants showed a decrease in phosphorylation by Ccnd1-Cdk4 (Fig 2C and 2D). However, the non-phosphorylatable mutant of T423 and S431 (α4^{T423AS431A}) significantly reduced phosphorylation by Ccnd1-Cdk4 in vitro, either with the full-length or the C-terminus construct of α4 (Fig 2C-F). Moreover, we analyzed by mass spectrometry phosphopeptides from the C-terminus of α4 subunit phosphorylated by Ccnd1-Cdk4, and we found that both T423 and S431 were phosphorylated in vitro (Supplementary Fig 1). Altogether, our results show that Ccnd1-Cdk4 complex is able to phosphorylate α4 subunit at T423 and S431.

To investigate if the α4 subunit is also phosphorylated by Ccnd1-Cdk in vivo, we immunoprecipitated Cdk substrates with an anti-phospho-Threonine-Proline (phosphoTP) antibody and the presence of phosphorylated α4 was assessed by western blot. We transiently transfected HEK-293T cells with α4, β3 subunits and Ccnd1 or Ccnd1^{K112E}, a mutant of Ccnd1 that does not form an active complex with Cdk (Baker et al, 2005). For the experiments where we co-expressed Ccnd1 or Ccnd1^{K112E}, we used a variant that contains the CAAX motif of K-ras to maintain Ccnd1 attached to the cell membrane (Fusté et al, 2016a). In the phosphoTP IP, we
observed an increase in the phosphorylated α4 subunit in the presence of Ccnd1-CAAX relative to the presence of Ccnd1 K112E-CAAX (Fig 2G and 2H). Moreover, when we used the non-phosphorylatable α4 mutant (α4 T423A S431A), we did not observe higher levels of phosphorylated α4 in the presence of Ccnd1 (Fig 2G and 2H). This data suggests that Ccnd1-Cdk4 can phosphorylate α4 in vivo at least at T423.

Ccnd1 and T423/S431 phosphorylation of α4 subunit diminishes GABA_AR rundown response

Because Ccnd1-Cdk4 phosphorylates the α4 subunit in the intracellular loop, we reasoned that it may also affect the performance of α4-containing GABA_ARs. To study the electrophysiology of GABA_ARs we carried out whole cell patch-clamp recordings of HEK293 tsA201 cells transiently expressing α4 and β3 subunits, since functional GABA_A receptors can be formed in HEK-293T cells by co-expression of these subunits (Abramian et al, 2010). To measure the behavior of the α4β3 GABA_ARs, 1 μM GABA was applied for 5 seconds every 2 min in these cells (Fig 3). Receptor-mediated current amplitude decreased (rundown) over time (Fig 3 A, D, E): after 12 minutes of recording, GABA-mediated current was 60 ± 5 % (n=7) of the initial response. Co-expression of Ccnd1-CAAX with α4β3 receptors partially prevented their rundown in a significant manner (Fig 3 B, D-E). At 12 minutes after the start of the experiment, the GABA-mediated current amplitude, in the presence of Ccnd1-CAAX, was 80 ± 9 % (n=5) of the initial GABA-mediated response. To confirm that phosphorylation of T423 S431 in α4 is important for this effect, we co-transfected a phosphomimetic α4 T423E S431E mutant with β3 and observed that it completely obliterates the rundown of GABA_ARs (Fig 3 C-E). Thus, our data suggest that Ccnd1 can enhance the efficacy of α4-containing GABA_ARs by modulating the activity of the receptor through the phosphorylation of α4.

Ccnd1 increases the surface levels of the α4 subunit of GABA_AR

Phosphorylation of several subunits of GABA_A receptors can affect their stability and abundance at the cell surface, where they are active (Connelly et al, 2013). To analyze whether phosphorylation by Ccnd1-Cdk4 may affect GABA_AR localization, we studied the surface levels of the α4 subunit when co-expressed heterologously with Ccnd1 in HEK-293T cells. For this, we transiently expressed α4 and β3 in these cells and assessed the surface levels of α4 by biotin labeling of surface proteins (Fig 4A). We used the transferrin receptor (TFRC) protein levels as a surface protein control and quantified the levels of α4 at the surface relative to the levels of α4 in the total cell extract (Fig 4B).

We observed a statistically significant increase in the surface levels of α4 (148 ± 20%, P=0.04, Fig. 4A and B) only when Ccnd1-CAAX was also co-expressed. This increase was abolished in the presence of Ccnd1 K112E-CAAX, as well as when the non-phosphorylatable mutant α4 T423A S431A was used (98 ± 29%, P=0.93 and 107 ± 24%, P=0.82, respectively), indicating that the observed effect depends on T423/S431 phosphorylation by Ccnd1-Cdk4. These results suggest that Ccnd1 increases the surface levels of the α4 subunit of GABA_AR in a kinase-dependent manner. Surprisingly, expression of the phosphomimetic allele of α4 did not give rise per se to an increase in α4 surface levels, although this allele did produce a functional effect (Fig 3C). However, when we co-expressed the phosphomimetic allele with Ccnd1-CAAX we did observe a significant accumulation of α4 in the cell surface (Supplementary Fig 2).
may imply that interaction of Ccnd1 with α4, and not only its phosphorylation, may be important to increase its level at the surface.

Cdk4/6 inhibition decreases tonic currents and mIPSC amplitude in the hippocampus

The α4 subunit is a component of extra-synaptic, high-affinity GABA_ARs, which mediate tonic inhibition. To assess the importance of cyclin D-Cdk4/6 on GABA_ARs in a physiological context, we measured tonic currents in hippocampal slices of newborn rats. Organotypic hippocampal slice cultures were treated with DMSO (vehicle) or the Cdk4/6 specific inhibitor Palbociclib at 2.5 µM for 2 h. GABA tonic current was measured in CA1 hippocampal neurons under whole-cell voltage-clamp configuration from the outward shift of the holding current after the application of the antagonist picrotoxin (100 µM). While the holding current in DMSO-treated cells was shifted by 21 ± 4 pA, the shift in Palbociclib-treated slices was only 9 ± 3 pA (Fig 5 A-B). Therefore, cyclin D-Cdk4/6 inhibition by acute Palbociclib application causes a significant decrease in the GABA_AR tonic current.

Given that the α4 subunit can also form synaptic receptors when clustered together with β_xγ₂ subunits (Tang et al, 2010), we tested whether the acute Cdk4/6 inhibition may in turn affect GABA_A receptor synaptic function. To this end, we measured miniature inhibitory postsynaptic currents (mIPSC) in organotypic cultures treated with 2.5 µM Palbociclib for 2 h. We observed that the amplitude of the spontaneous miniature responses was reduced after Ccnd-Cdk4/6 inhibitor treatment as compared to the control (DMSO) treatment (Figure 5C-E). Specifically, the addition of Palbociclib to the cells significantly reduced mIPSC amplitude (-106 ± 20 pA for DMSO vs -51 ± 5 pA for Palbociclib). Putting all these electrophysiological experiments together, our results suggest that Ccnd1-Cdk4/6 enhances GABA_A receptor function in the hippocampus.

Dendritic spine pattern is altered in CCND1 KO neurons

The α4 subunit of GABA_ARs has been involved in synaptic pruning, the removal of dendritic spines, in the hippocampus of adolescent mice (Afroz et al, 2016),(Parato et al, 2019). Since Ccnd1 promotes the activity of α4-containing GABA receptors, we asked if the absence of Ccnd1 could disrupt the normal pattern of spine development. We analyzed the number and morphology of dendritic spines in cortical neurons from WT and CCND1 KO mice. Cultured neurons were transfected with GFP at 3 DIV, and dendritic spines were analyzed at 20 DIV, when spines are completely developed. The density of dendritic spines (WT= 8.51 ± 0.16 vs CCND1 KO= 8.28 ± 0.18 spines/10 µm, non-significant, Fig. 6B) did not depend on Ccnd1 expression. However, the ratio of more mature spines with the mushroom-shape relative to total spines was significantly increased in CCND1 KO neurons compared with neurons from WT animals (0.45±0.01 vs 0.50±0.01, p<0.01, Fig. 6C). This result indicates that Ccnd1 is required for normal dendritic spine development.

DISCUSSION

In neurons, Ccnd1-Cdk4 has been involved in promoting proliferation versus differentiation of stem cells during cortical development (Lange et al, 2009) and in the adult hippocampus (Artegiani et al, 2011). However, the role of Ccnd1 in the regulation of neuronal signaling has
never been investigated before. Interestingly, CCND1 KO mice show an abnormal limb-clasping reflex (Sicinski et al., 1995), being this alteration an early symptom of neurological defects associated with hippocampal neuron malfunctioning (Yamada et al., 2001). In this work, we have unveiled a novel role of Ccnd1 in the stimulation of GABA_A receptor function. Ccnd1 interacts with the α4 subunit of GABA_AR and Ccnd1-Cdk4 complex phosphorylates T423 and S431 in the intracellular loop of α4. This phosphorylation increases the surface levels of α4 subunit and the efficacy of GABA_AR activity in whole cell patch-clamp recordings. Furthermore, Ccnd-Cdk4/6 inhibition decreases tonic currents and the amplitude of mIPSCs in the hippocampus of newborn rats. Accordingly, the proportion of mature dendritic spines is increased in cortical neurons from CCND1 KO mice. Therefore, we propose that Ccnd1-Cdk4 mediated phosphorylation is an important physiological regulator of GABA_AR-mediated inhibition.

The canonical function of the Ccnd1-Cdk4 complex is that of a nuclear complex regulating transcription during the G1/S phase of the cell cycle (Sherr & Roberts, 2004). Then, it may be unexpected that Ccnd1 interacts with a membrane protein such as α4. However, non-canonical functions of Ccnd1 are emerging (Hydbring, Per, Malumbres & Sicinski, 2016). Among them, it has been described that Ccnd1-Cdk4 interacts with membrane-associated proteins such as Filamin A RalGTPases, and Paxillin (Zhong et al., 2010), (Fernández et al., 2011), (Fusté et al., 2016b). For instance, Paxillin is phosphorylated by Ccnd1-Cdk4 in membrane ruffles of fibroblasts and tumor cells, promoting migration and metastasis (Fusté et al., 2016b). Importantly, Ccnd1 has been found in the cytoplasm of postmitotic neurons (Sumrejkanchanakij et al., 2003). As nuclear localization of Ccnd1 in postmitotic neurons promotes apoptosis, its cytoplasmic localization has been suggested as a Ccnd1 sequestration mechanism to avoid cell death. However, Ccnd1 is also re-localized to the cytoplasm of keratinocytes during differentiation and it seems that cytoplasmic Ccnd1 regulates the adhesion of keratinocytes to the cell matrix (Fernández-Hernández et al., 2013). Then, it is also possible that the cytoplasmic Ccnd1-Cdk4 plays an active role in the cytoplasm of post-mitotic neurons. Supporting this feature, the mRNA of Ccnd1 has also been found in the synaptic neuropil in the hippocampus (Cajigas et al., 2012), suggesting local translation of Ccnd1 in the dendrites. Also, Cdk4 has been localized in the cytoplasm in adolescent mouse hippocampal neurons (Li et al., 2007). According with a hippocampal cytoplasmic expression of Ccnd1, here we have detected co-immunoprecipitation of Ccnd1 and α4 in samples from mouse hippocampus where this subunit of the GABA_AR is abundantly expressed (Chandra et al., 2006), providing evidences for a cytoplasmic role of Ccnd1 in neurons.

In this work, we have proved that Ccnd1-Cdk4 phosphorylates α4 at T423 and S431 in the intracellular loop (ICL) in vitro. Moreover, in transiently transfected HEK-293T cells, we have detected Ccnd1-specific phosphorylation of α4 in vivo. Rundown of GABA_A receptors involves phosphorylation-dephosphorylation processes (Stelzer et al., 1988), (Chen et al., 1990), (Gyenes et al., 1994). The ICL between TM3 and TM4 of several subunits of GABA_ARs is regulated by phosphorylation, affecting the interaction of GABA_A receptors with other proteins, the stability and the surface localization of the subunits, or the activity of the GABA_A receptors (Nakamura et al., 2015). For instance, PKC phosphorylates the α4 subunit in the intracellular loop (S443) increasing its stability, membrane insertion and the efficacy of GABA_ARs (Abramian et al., 2010), (Abramian et al., 2014). Consistent with these previous data, we have determined by
whole-cell patch-clamp recordings that the expression of Ccnd1 or the phosphomimetic allele of α4 (α4\(^{T423S431E}\)) caused a decrease in the rundown of α4β3 containing GABA\(_A\) receptors in HEK-293 cells. However, Ccnd1 increased the surface levels of α4, whereas the phosphomimetic allele α4\(^{T423S431E}\) did not. This differential behavior suggests that Ccnd1 is affecting GABA\(_A\) receptors through at least two different mechanisms: not only Ccnd1-Cdk4/6 mediated phosphorylation is important for the increase in the surface levels, but also for increasing the intrinsic efficacy of GABA\(_A\) receptors. In this sense, it has been reported that mutagenesis affecting amino acids harboring ionizable side chains in the ICL between TM3 and TM4 in the α1 subunit affects the activity of the GABA\(_A\) receptors (O’toole & Jenkins, 2011). Thus, the charge has been proposed as a mechanism to regulate ion permeation. In this manner, phosphorylation or the phosphomimetic mutations (S/T-E) affects the charge of the ICL at specific positions and may affect the activity of the GABA\(_A\)Rs. The ICL of GABA\(_A\) receptor subunits have a higher degree of variability compared with the LBD and the TMD in terms of side chain conservation and loop length. Comparing the amino acid sequences of α1 and α6, it has been observed that structures in the TM3 and the ICL between TM3 and TM4 conferred differences in single channel gating kinetics (Fisher, 2004). These studies also support the idea that changes in the ICL affect the activity of the GABA\(_A\)Rs.

The different effects that phosphorylation in the ICL produce in the activity of GABA\(_A\) receptors reflects the overwhelming complexity of GABA\(_A\) receptors due to subunit composition and localization. Beta3 subunit is known to be phosphorylated at two adjacent Serine residues (S408 and S409) by PKA, PKC and CamKII (Nakamura et al., 2015). Although we did not observe phosphorylation of β3 subunit by Ccnd1-Cdk4 complex \textit{in vitro}, we cannot discard direct effects on β3 stability or membrane localization due to interaction of β3 with Ccnd1 or indirect effects owing to the activation of other kinases by Ccnd1-Cdk4. However, the similar behavior of Ccnd1 and the phosphomimetic α4 allele makes more probable that phosphorylation of α4 subunit is the mechanism by which Ccnd1 affects GABA\(_A\)R electrophysiology.

Regarding the mechanism by which Ccnd1 increases α4 surface levels, it seems that two steps may be needed. On the one hand, Ccnd1 but not the inactive allele Ccnd1\(^{K112E}\) is able to promote surface accumulation of α4. Moreover, Ccnd1 does not increase surface levels of the non-phosphorylatable mutant of α4 (α4\(^{T423S431A}\)). Thus, the phosphorylation of α4 is necessary. On the other hand, the phosphomimetic mutation of α4 (α4\(^{T423S431E}\)) \textit{per se} does not promote the α4 accumulation at the cell membrane. However, when Ccnd1 is added to the phosphomimetic allele, it promotes a significant increase in the surface levels of α4 (Supplementary Fig 2). These results suggest that Ccnd1 plays a dual role in α4 localization: not only phosphorylation but also Ccnd1 presence are necessary to increase α4 surface levels.

The adjustment of the surface levels of GABA\(_A\)R subunits takes place through the regulation of the export and internalization processes. It is already known that the ICL of β3 subunit is involved in internalization of the receptors by clathrin. There is an atypical site for interaction with clathrin adaptor protein 2 (AP2) (KTHLRRRSSQLK), that contains the phosphorylation site for PKA, PKC and CamKII: it only binds AP2 when dephosphorylated (Kittler \textit{et al}., 2005). Such a mechanism could also be happening for α4 subunit, that contains a similar motif (NMRKRTNAL) in the intracellular loop (aa 385-393). In fact, α4 has been described to interact directly with clathrin μ2 by immunoprecipitation (Gonzalez \textit{et al}., 2012). Although T423 and S431 are not
found inside the motif, phosphorylation of the ICL and/or the presence of Ccnd1 could be affecting the binding of α4 to clathrin. Another possibility is that the trafficking from the ER to the cytoplasmic membrane is affected. In the α4 and δ subunits there are dibasic or multibasic motifs in homologous positions that reduce export from the ER and increase transport back from the Golgi apparatus to the ER (Bracamontes et al., 2014). The mutation of dibasic motif to Ala in α4 enhances surface expression of the receptors. Again, phosphorylation of ICL or interaction with Ccnd1 could affect the association of dibasic sites with trafficking proteins.

Consistently with a role of Ccnd1-Cdk4/6 on GABAergic signaling, we have shown that inhibition of Cdk4/6 in CA1 pyramidal neurons produces a decrease in tonic currents and the amplitude of mIPSCs. Even though α4 is mostly extrasynaptical, it can also form synaptic GABA_ARs when assembled with γ2. Concerning mIPSC amplitude, it is feasible that phosphorylation of α4 by Ccnd-Cdk4/6 complexes is still promoting its activity also when the α4 subunit is forming α4βδγ2 receptors at the synapse (Wafford et al., 1996). This would mean that α4 phosphorylation by Ccnd-Cdk4/6 has the same effect irrespective of whether the receptor localizes synaptically or extrasynaptically. By contrast, α4-containing synaptic and extrasynaptic receptors show different modulation by PKA and PKC phosphorylation. PKA activation decreases synaptic α4 expression while increases extrasynaptic α4. Activation of PKC instead promotes α4-expression at the synapse and has no effect extrasynaptically (Bohnsack et al., 2016).

Dendritic spines are the postsynaptic sites where most excitatory synapsis occurs. Their change in number and morphology underlies synaptic plasticity, important for learning and memory processes. GABA_A, through GABA_ARs activation promotes spine shrinkage and elimination (Hayama et al., 2013). Specifically, GABA_ARs containing α4βδ subunits have been involved in synaptic pruning at the CA1 and CA3 regions in the hippocampus (Afroz et al., 2016),(Parato et al., 2019): the expression of the α4 subunit of GABA_ARs increases in the hippocampus during adolescence (Parato et al., 2019) and the density of dendritic spines decreases post-pubertal, while in the GABRA4 KO mice this pruning does not occur. Therefore, the density of dendritic spines in the hippocampus of adult mice is increased in the GABRA4 KO mice (Fan et al., 2020). The effect of α4 on synaptic pruning is mainly observed in mushroom- and stubby-shaped) dendritic spines (Afroz et al., 2016),(Parato et al., 2019). According to a role of Ccnd1 in promoting α4-containing GABA_ARs activity, we observed an increase in the proportion of mushroom-type spines in CCND1 KO neurons. Mushroom spines are considered to be one of the mature types of spines, involved in memory (Bourne & Harris, 2007). In this sense, the increase in α4βδ receptors at puberty impairs learning (Shen et al., 2010) and the GABRA4 KO mouse has increased spatial memory (Fan et al., 2020). In the same direction, increased expression of Ccnd1 was found in CA1 region of aged learning-impaired rats (Burger et al., 2007) and the expression of Ccnd1 in the hippocampus of rats triggers deficits in spatial working memory (Wu et al., 2012). Moreover, GABRA4 KO mice show an autistic-like behavior, and autism has been associated with an increased number of spines (Penzes et al., 2011). The effect of Ccnd1 on GABA signaling and dendritic spines opens the possibility of exploring Ccnd1 functions in diseases related to the imbalance between inhibitory/excitatory signaling and dendritic spine abnormalities such as autism spectrum disorders and epilepsy.

MATERIALS and METHODS
Cell culture. Mycoplasma-free HEK293T cells were obtained from the American Type Culture Collection. Cells were maintained at 37°C in a 5% CO₂ incubator, and grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), 10 U/mL penicillin/streptomycin (P/S) and 4 mM glutamine. Mycoplasma detection tests were performed in the Cell culture service (SCT-CC). Transient transfection of vectors was performed with Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions.

Expression vectors. Human CCND1 was fused to three copies of the Flag or HA or one of Red monomer epitope under the CMV promoter in pcDNA3. Ccnd1-CAAX construct is a fusion of the 3’ end of the K-Ras ORF containing the CAAX motif (GGC TGT GTG ATT ATA ATG TAA) to the 3’ end of the CCND1 ORF (Fusté et al., 2016a). Mouse GABRA4 (IMAGE ID 6828002, Source BioScience) and Human GABRB3 (IMAGE ID 3871111, Source BioScience) were used to obtain N-terminal GST fusions in pGEX-KG (Clontech) or N-terminal FLAG fusions in pJEN1 (pcDNA3 derived, from Dr. Egea) or cloned into FCIV1 lentiviral vector (from Dr. Encinas). Standard PCR-mediated site-directed mutagenesis was used to obtain the non-phosphorylatable and phosphomimetic mutants of GABRA4 using the following primers: T423A and S431A: CGCCAAATCCATTGCAGGGC and CCGAAGCTAAGTGAGCCTTAGGCGCGTTCAGAGACTCTGGAC; S456A and S458A: CGGCCCCGCTCTTCATGGCAGATCCTGGAC and CGGCAGATGAAAGACCTCTGGCTGM; T500A: CGCCCTTCCTCCGGTCTCCAC and CCGCTGACACATTCCAGCAGC; and T423E and S431E: GCGAACCAAATCCATTCAGCAGGGC and TAGCTAAGTGACCTGGTCTCCAGAAGACTCTGGAC.

Immunoprecipitation assays. For co-immunoprecipitation experiments, HEK293T cells were harvested 24 h after transfection. The cells were resuspended in RIPA buffer (50mM Tris pH7.4, 150mM NaCl, 1% NP-40, 0.1% sodium deoxycholate, 0.1% SDS, 5mM EDTA, protease and phosphatase inhibitors), rocked 1 h at 4°C, and spun for 5 min at 600 g. The supernatants were incubated with protein G magnetic beads (Dynabeads, Invitrogen) for 30’ at 4°C. After the preclearing, the samples were incubated with 2 μg of aFLAG M2 antibody (Sigma) overnight and precipitated with protein G dynabeads. IP of anti-phosphoThreonineProline antibody (#9391, Cell Signaling) was performed similarly, but using protein A dynabeads. The beads were collected and washed three times with 1 mL of cold RIPA buffer, and bound proteins were separated by SDS-PAGE gels and visualized by western blots.

IP of endogenous Ccnd1 was carried out in hippocampus of adult female mice with a polyclonal antibody (#06–137, Upstate). Briefly, cleared cell extracts in RIPA buffer (with protease and phosphatase inhibitors) were immunoprecipitated with Protein A linked to magnetic beads (Invitrogen). An anti-FLAG (#F7425, Sigma) was used as a mock control. Washes were performed with RIPA buffer without SDS.

Immunoblotting. For immunoblot, protein samples were resolved by SDS-PAGE, transferred to PVDF membranes (Millipore), and incubated with primary antibodies: anti-Ccnd1 (monoclonal DCS-6, BD biosciences, 1:500), anti-Gabra4 (polyclonal, AB5459, Merck, 1:1000, and polyclonal 12979-1-AP, Proteintech, 1:500), anti-Flag (polyclonal, 11508721, Invitrogen, 1:1000), anti-HA (rat monoclonal 3F10, Roche #11867431001, 1:5000), anti-TFR (monoclonal H68.4, Invitrogen #13–6800, 1:1,000) and anti-GST (goat polyclonal, Amersham #274577, 1:2000). Appropriate
peroxidase-linked secondary antibodies (GE Healthcare UK Ltd) were detected using the chemiluminescent HRP substrate Immobilon Western (Millipore). Chemiluminescence was recorded with a ChemiDoc-MP imaging system (BioRad).

Production and purification of recombinant proteins. All of the GST fusions were expressed in *E. coli* BL21 (DE3) by adding 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) to LB broth cultures at a cell density of 0.3 A_{600} and subsequent incubation for 4 h at 30 ºC. The proteins were purified using glutathione-Sepharose 4B beads as directed by the supplier (Amersham Biosciences) in 500 μl of lysis buffer containing 50mM HEPES, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 10% glycerol, 1 mM DTT, and protease and phosphatase inhibitors. The concentration and purity of substrates were estimated by comparison to protein standards stained with Coomassie Brilliant Blue.

For *in vitro* transcription and translation, FLAG-Ccn1 was amplified by PCR (forward primer: CGCGCTAATACGACTCACTATAGGGAGACCCAAGCCCATGGGATCAC; reverse primer: TTTTTTTTTTTTTTTTTTTTTTTTTTTTGGCTGATCAGCGAGCTCTAG), transcribed *in vitro* with the T7 RNA polymerase (New England Biolabs), and *in vitro* translated with a Rabbit Reticulocyte Lysate system (Promega).

GST pull-down assay. For the GST pull-down assay, 400 ng of GST or GST-α4 or GST-Cter-α4 purified from *E. coli* immobilized on Glutathione-Sepharose 4B beads were incubated with Flag-Ccn1 in binding buffer (20 mM HEPES-KOH, pH 7.5, 150 mM KCl, 5 mM MgCl_2, 0.5 mM EDTA, 0.1% NP-40, 1 mM DTT, 1 mM PMSF, 10% glycerol, protease and phosphatase inhibitors) for 30 min at room temperature. After four washes with the same buffer, the samples were analyzed by SDS-PAGE.

Kinase assay. Briefly, 0.2 mg substrate (either GST-α4, GST-Cter-α4 or GST-β3) was mixed with 1.5 μL of active Ccn1-Cdk4 complex purified from baculovirus (Sigma C0620), 10 mM ATP, 7 mCi of γ-32P-ATP (PerkinElmer, 3000 Ci/mmol), and either DMSO or 2 μM of the Cdk4/6-inhibitor Palbociclib (Selleckchem, S1116) in 20 μL of kinase buffer (50 mM Tris–HCl pH 7.5, 10 mM MgCl_2, 0.5 mM DTT, 1 mM EGTA and 2.5 mM b-glycerophosphate). This mixture was incubated for 20 min at 30 ºC, then boiled in 2x Laemmli buffer, and separated by electrophoresis. Phosphorylated proteins were visualized by autoradiography of the dried slab gels.

MS analysis of phosphopeptides. The C terminus of α4 fused to GST was used in an *in vitro* kinase assay with Ccn1-Cdk4 in the presence of ATP or in the absence of ATP as a control. Samples were subsequently subjected to SDS-PAGE. The gels were stained with Coomassie Brilliant Blue G-250 colloidal (EZBlue Gel Staining Reagent, Sigma). After washing with water, protein bands of interest were prepared and submitted to Fundació Institut d’Investigació Biomèdica de Bellvitge (IDIBELL) Proteomics Service (Barcelona) for analysis of the Chymotryptic peptide molecular masses by liquid chromatography-mass spectrometry. Gel slices were manually cut and proteomic service suggested for each band-assay to recover three slices (low 1, middle 2, and high 3 mobility) as phosphorylation could alter band mobility. Briefly, gel bands were washed with water, ammonium bicarbonate (50mM) and 50% acetonitrile. Next, samples were reduced by incubation with DTT (10 mM) at 60 ºC for 45 min and alkylated with iodoacetamide (50mM) for 30 min, in the dark. Finally, proteins were
digested with chymotrypsin (5 ng/μL) at 25°C overnight (Trypsin gold, Promega). Digestion was stopped by addition of 5% formic acid and peptides extracted twice with 70% acetonitrile and 5% formic acid (10 min sonication). Peptide extracts were evaporated to dryness, resuspended with 2% acetonitrile 0.1% formic acid and analyzed by nano-HPLC-MSMS.

Surface biotinylation. For surface biotinylation (all steps performed on ice) HEK-293T cells were washed twice with PBS and incubated with 1 mg/mL EZ-link sulfo-NHS-SS-biotin (Pierce), a nonpermeable biotin, in PBS for 15 min. Following surface labeling, nonconjugated biotin was quenched by washing twice with TBS. Cells were lysed in RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1% NP-40, 0.1% SDS, 5 mM EDTA, with phosphatase and protease inhibitors), and protein concentrations were determined using a DC protein assay (Bio-Rad). Equal amounts of protein (usually 1 mg in 500 μL) were incubated overnight with 20 μL NeutrAvidin-coated beads (Pierce) at 4°C with constant rotation. The next day, beads were washed three times with RIPA buffer and eluted samples were processed for immunoblotting.

Whole-cell currents measurements in tsA201 cells. Electrophysiological experiments were done with mycoplasma-free tsA201 cells (kindly provided by Prof. F. Ciruela, Universitat de Barcelona) and purchased from the American Type Culture Collection (ATCC, CRL-3216, RRID: CVCL_0063). Mycoplasma detection tests were performed with PlasmoTest (Invivogen, code: rep-pt1). Cells were transiently co-transfected with 1 μg total cDNA using polyethylenimine (PEI) transfection reagent (1 mg/mL) in a 3:1 ratio (PEI:DNA). In all transfections the DNA ratio used was 1:1:2 (plasmid A: plasmid B: plasmid C), where A is α4 or α4T423ES431E, B is β3 and C is a control vector or Ccnd1-CAAX codifying plasmid. Cells were re-plated on poly-D-lysine coated glass coverslips to allow optimal density with isolated cells. All experiments were performed 48 h after transfection.

For the measurements of GABA-evoked whole-cell currents in tsA201, cells were visualized with an inverted microscope (AxioVert A.1, Carl Zeiss) and maintained in extracellular flowing solution at a rate of 60 mL/h. The extracellular solution contained (in mM): 140 NaCl, 5 KCl, 10 HEPES, 11 glucose, 2.5 CaCl₂, 1.2 MgCl₂ (pH = 7.4 with NaOH; osmolarity 305 mOsm/Kg adjusted with sorbitol). Electrodes were fabricated from borosilicate glass (1.50 mm O.D., 1.16 I.D., Harvard Apparatus) pulled with a P-97 horizontal puller (Sutter Instruments) and polished with a forge (MF-830, Narishige) to a final resistance of 2–5 MΩ. The intracellular solution contained (in mM): 140 KCl, 2 MgCl₂, 2 CaCl₂, 10 HEPES, 1.1 EGTA, 2 Mg ATP (pH = 7.2 with KOH; osmolarity 295 mOsm/Kg adjusted with sorbitol).

Macroscopic GABAₐ₅-mediated currents were recorded at room temperature (22-25°C) in the whole-cell configuration from cells positive for Venus (α4 in FCIV1) and mCherry (Ccnd1-CAAX in pcDNA3 Red monomer) fluorescence at a holding membrane potential of -60 mV. Currents were recorded with Axopatch 200B amplifier, filtered at 2 kHz and digitized at 5 kHz using Digidata 1440A interface with pClamp 10 software (Molecular Devices Corporation). Series resistance was typically 5–20 MΩ, and was monitored at the beginning and at the end of the experiment. Cells that showed a change in series resistance greater than 20% were rejected.

Rapid application of the agonist GABA (1-2 ms exchange) was applied by switching between a continuously flowing control solution (extracellular solution diluted by 5%) and a GABA-containing solution (1 μM GABA and 2.5mg/mL of sucrose diluted in extracellular solution).
Solution switching was achieved by piezoelectric translation of a theta-barrel application tool made from borosilicate glass (1.5 mm O.D.; Sutter Instruments) mounted on a piezoelectric translator (P-601.30; Physik Instrumente). Agonist was applied at 2 minutes interval and the magnitude of the peak current was measured (I\textsubscript{GABA}). Electrophysiological recordings were analyzed using IGOR Pro (Wavemetrics Inc.) with NeuroMatic (Jason Rothman, UCL).

Preparation of organotypic hippocampal slice cultures. Organotypic hippocampal slice cultures were prepared as previously described (Gähwiler et al., 1997). Briefly, whole brain of newborn rats (postnatal days 5-7) were dissected and placed in ice-cold Ca2+-free dissection solution (10 mM D-glucose, 4 mM KCl, 26 mM NaHCO\textsubscript{3}, 8% sucrose, 5 mM MgCl\textsubscript{2}, 1:1000 Phenol Red) saturated with 5% CO\textsubscript{2} / 95% O\textsubscript{2}, enabling the brain to chill for 1 min. Hippocampi were then isolated with the help of a magnifying glass, cut in slices (400 µm) in the same solution using a tissue chopper (Stoelting), and maintained at 35.5 °C in culture on permeable membranes in a medium containing 20% horse serum, 1 mM CaCl\textsubscript{2}, 2 mM MgSO\textsubscript{4}, 1 mg/L insulin, 0.0012% ascorbic acid, 30 mM Hepes, 13 mM D-glucose, and 5.2 mM NaHCO\textsubscript{3}. Culture medium was replaced with fresh one every 2-3 days. The slices were used at 4-8 days in vitro.

Whole-cell recordings of GABA\textsubscript{A} receptor-mediated currents. Prior to the electrophysiological recordings, slices were treated for 2 hours with either DMSO (control solution) or 2.5 µM Palbociclib (Cdk4/6 inhibitor) (Selleckchem). After that, slices were placed in a chamber and perfused with artificial cerebrospinal fluid [aCSF: 119 mM NaCl, 2.5 mM KCl, 1 mM NaH\textsubscript{2}PO\textsubscript{4}, 26 mM NaHCO\textsubscript{3}, 11 mM glucose, 1.2 mM MgCl\textsubscript{2}, 2.5 mM CaCl\textsubscript{2}; osmolarity adjusted to 290 mOsm; pH7.5] supplemented with 100 µM AP5 (NMDA receptor antagonist), 10 µM CNQX (AMPA receptor antagonist), 1 µM strychnine (glycine receptor antagonist), 4 µM 2-chloroadenosine (to reduce neurotransmitter release and stabilize synaptic transmission) and DMSO or Palbociclib as external solution gassed with 5% CO\textsubscript{2} / 95% O\textsubscript{2} at 29 °C in the electrophysiology set-up. Patch recording pipettes (4-6 MΩ) were pulled from thin-walled borosilicate capillary glass (World Precision Instruments [WPI], Sarasota, FL) on a P-2000 laser electrode puller (Sutter Instrument, San Rafael, CA) and filled with high chloride internal solution (178 mM CsCl, 10 mM Hapes, 2.5 mM MgCl\textsubscript{2}, 4 mM Na\textsubscript{2}ATP, 0.4 mM Na\textsubscript{3}GTP, 10 mM sodium phosphocreatine, 0.6 mM EGTA; pH adjusted to 7.2, osmolarity adjusted to 290 mOsm). GABA inhibitory postsynaptic currents were evoked with single voltage pulses (200 µs, <30 V) delivered through platinum-iridium bipolar electrodes (FHC, Bowdoin, ME, USA) placed on Schaffer collaterals. CA1 pyramidal neurons were recorded under whole-cell voltage-clamp at -60 mV using Multiclamp 700A amplifier (Molecular Devices, San Jose, CA, USA). At least 10 min of stable baseline synaptic responses and holding currents were recorded. The tonic GABA\textsubscript{A} receptor-mediated current was measured as the outward shift in holding current following application of picrotoxin (100 µM). Synaptic responses were used to monitor effective inhibition of GABA\textsubscript{A}Rs by picrotoxin. To measure miniature inhibitory postsynaptic currents (mIPSC), 1 µM tetrodotoxin was added to the aCSF to block action potentials. Recordings were obtained with the gap-free mode of pClamp and mIPSCs were analyzed with the event detection of pCLAMP software (Molecular Devices).

Cortical neuron culture. For primary culture of cortical neurons, cortices were dissected from E15.5 CCND1 KO or WT mice in ice-cold HBSS-MHPS (Hank’s Balanced Salt Solution, 10 mM MgSO\textsubscript{4}, 10 mM HEPES pH 7.2 and 10 U/mL P/S). After dissection, cortices were incubated with...
papain solution (1 mg/mL papain in HBSS-MHPS) at 37°C for 23 min. Enzymatic digestion was inhibited by washing the tissue 3 times with 10 mg/mL trypsin inhibitor (Fisher) in HBSS-MHPS. Additionally, one more wash was done with Neurobasal medium supplemented with 2% B27, 2 mM Glutamax and 1 mM sodium pyruvate (NB27, Fisher) at room temperature. The tissue was triturated by passing it through a flame-polished Pasteur pipette (<20 times). After the mechanical disaggregation, the supernatant containing mostly single cells was centrifuged at 650 rpm for 4 min. The pellet was resuspended in NB27 and the cells were counted in a Neubauer chamber. Cells were seeded at low density (25000 cells/cm²) with NB27 medium in poly-D-lysine (0.5 mg/mL) and laminin (5 μg/mL)-coated plates, in 1:1 conditioned medium. One third of the culture medium is replaced with fresh one every 3-4 days. Primary cortical neurons were transfected at 3 DIV using Lipofectamine 2000 (Invitrogen) following the manufacturer’s recommendations and the proportion 0.3 μg DNA: 1.2 μL Lipofectamine2000. The media was changed 4 hours after transfection and cells were fixed at 20 DIV.

Genotyping of CCND1 knockout mice. CCND1 knockout mice (Sicinski et al., 1995) were obtained from Charles-River. Transgenic mice were maintained in a mixed background of C57BL/6 and SV129. Embryo’s tails were collected and warmed at 95 °C NaOH 50 mM for 45 min. After neutralization with Tris 0.15 M pH8.5, the samples were then centrifuged for 1 minute at 10000 rpm. Supernatant containing genomic DNA was used for CCND1 genotyping by PCR. The following primers were used: a common primer CTGTCGGGCAGTAGCAGAGAGCTACAGAC, a CCND1 primer CGCACAGGTCTCCTCGTGATGATGAC and a neomycin primer CTAGTGAGACGTGCTACTTCCATTTGTCACG. PCR was performed in a Thermal Cycler (T100 Bio-Rad) and PCR products were analyzed in a 1.5 % agarose gel followed by Ethidium Bromide staining. The expected band pattern is 249 bp for WT, and 394 bp for KO alleles.

Immunofluorescence and spine analysis. Cortical neurons were fixed using 4% PFA and 4% sucrose in PBS for 15 min at room temperature and then washed with PBS. Neurons were permeabilized for 5 min with 0.1% Triton X-100 in PBS and blocked with 3% BSA in PBS. Primary antibody α-GFP (A11120, ThermoFisher) was diluted 1:200 in 0.3% BSA in PBS. Proteins were detected by incubation with secondary antibody Alexa 488 rabbit anti-mouse (A11059, ThermoFisher). Images were acquired with an Olympus FV1000 confocal microscope using the following parameters: stacks of 10 slices were imaged every 0.37 μm, under a 60X objective. Laser power and PMT values were kept constant throughout images and conditions. Immunofluorescence quantification was performed using NeuronJ of ImageJ. Spine density and morphology analysis of WT and CCND1 KO cortical neurons was performed on 3D reconstructions of confocal z series acquired using a 2x zoom. Spines were counted as mushroom-type if the spine head was wider than the spine neck. All analysis was done blind to the experimental condition.

Statistical analyses. Different statistical analyses were used in this work. In every analysis, the minimum level of statistical significance was a p-value equal to 0.05. The significance level is represented in each graph as indicated. In order to evaluate possible differences between two experimental groups a t-test was performed. When there was a multiple comparison, one-way ANOVA with a post-hoc test (Tukey) was performed. In whole-cell recordings in ts201A cells, comparisons between groups were done using the parametric student’s t-test. For tonic
currents comparison, Wilcoxon test was performed and in mIPSC amplitude, Mann-Whitney and Kolmogorov-Smirnov tests were done. Microsoft Excel and GraphPad Prism v5.0 (GraphPad) were used for statistical analysis and graphical representation.

Ethical considerations. All procedures with animals follow the protocols approved by the Institutional Committee of Care and Use of Animals (Comitè Institucional de Cura i Ús d’Animals), and experiments were approved by the Ethics Committee of the University of Lleida (CEEA 03-02/19). Animals were housed and maintained in the animal facility of the University of Lleida with 12h:12h light/dark cycle and food/water available *ad libitum*. For electrophysiological experiments, all biosafety procedures and animal care protocols were approved by the bioethics committee from the Consejo Superior de Investigaciones Científicas and were performed according to the guidelines set out in the European Community Council Directives (2010/63/EU, 86/609/EEC). All efforts were made to minimize the number of animals and their suffering.

ACKNOWLEDGEMENTS

We are grateful to M. Encinas for plasmids. We thank Sònia Rius for technical assistance and members of the CYC lab for helpful considerations. The cell culture experiments were performed in the Cell Culture Scientific & technical Service from Universitat de Lleida. This work was funded by the Spanish Ministry of Innovation and Science MICINN (PID2019-104859GB-I00 to E.G. and PID2020-117651RB to J.A.E.) and by Generalitat de Catalunya (2017-SGR-569). M. Ventura Monserrat was supported by a predoctoral fellowship of University of Lleida.

AUTHORS CONTRIBUTION

Neus Pedraza: conceptualization, supervision, validation, investigation, methodology, writing—original draft, writing – review & editing; Ma Ventura Monserrat: validation, investigation, methodology; Francisco Ferrezuelo: funding acquisition, data curation, writing – review & editing; Jordi Torres: funding acquisition, supervision, writing – review & editing; Neus Colomina: funding acquisition, methodology; David Soto: funding acquisition, investigation, validation, methodology; Fede Miguez: investigation, methodology; JA Esteban: supervision, validation, methodology, funding acquisition; Joaquim Egea: funding acquisition, conceptualization, methodology; Eloi Garí: conceptualization, supervision, funding acquisition, investigation, writing – review & editing.

In addition to the CRediT author contributions listed above, the contributions in detail are: NP, JE, EG conceptualized the study. NP, MVM, DS, FM, EG and JAE investigated the study. NP wrote the original draft. FF, JT and EG wrote, reviewed and edited the manuscript. FF, NC, JT, DS, JAE, JE and EG acquired funding. NP, JAE and EG supervised the study.

CONFLICT OF INTEREST

The authors declared that they have no conflict of interest.
REFERENCES

Afroz S, Parato J, Shen H & Smith SS (2016) Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABA A receptors on dendritic spines. Elife 5: 1–23

Chen QX, Stelzer A, KAY AR & Wong RKS (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. *J Physiol* 420: 207–221

endocytosis via the intracellular domain of δ-containing GABA(A) receptors. *J Neurosci* 32: 17874–17881

Hylbring, Per, Malumbres M & Sicinski P (2016) Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. *Nat Publ Gr*

cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene 22: 8723–8730

FIGURE LEGENDS

Figure 1. Ccnd1 interacts with the α4 subunit of GABA_A receptors. A) Amino acid sequence of mouse (Mm) GABRA4 (552aa). The extracellular and intracellular domains are labeled on the left. The four transmembrane (TM) domains are underlined. In a yeast two-hybrid screening, Ccnd1 was found to interact with three independent clones of the C-terminal region of the α4 subunit, spanning amino acids 354-552, 385-552, 386-552 (the starting amino acids are shown within boxes). The three clones contained the intracellular loop (ICL). Putative phosphorylation sites for Cdk (SP or TP) in the ICL are shown in red. B) HEK-293T cells were transfected with the C terminus of α4 subunit (354-552aa, tagged with HA: HA-α4-C) and Ccnd1 (tagged with Flag: Flag-Ccnd1). Flag-Ccnd1 was precipitated using αFlag agarose beads (Sigma). Co-immunoprecipitation of the C terminus of α4 with Ccnd1 was analyzed by western blot using anti-HA and anti-Flag antibodies. C) In vitro translated FLAG-Ccnd1 was incubated with recombinant GST or GST fusions of α4 full length (GST-α4) or the C terminus of α4 (GST-C-α4) purified from E. coli. Input and GST pull down samples were analyzed by western blot to detect Ccnd1 and GST. Intact protein fusions are indicated. D) Immunoprecipitation of endogenous Ccnd1 from adult mouse hippocampal extracts was performed using a rabbit polyclonal antibody against Ccnd1. As a control, a rabbit polyclonal antibody against the Flag epitope (FL) was used. Input (IN) and IP samples were analyzed by western blot to detect Ccnd1 and α4 subunit.

Figure 2. Ccnd1-Cdk4 phosphorylates α4 at T423 and S431 residues. A) In vitro radioactive kinase assay using purified recombinant GST-α4 fusion and Ccnd1-Cdk4 (Sigma). Cdk4/6 inhibitor Palbociclib was added at 1 µM concentration. Coomassie blue staining is shown as loading control (Input). B) Recombinant GST-α4 and GST-β3 fusions were tested for Ccnd1-Cdk4 kinase activity as in A. C) Kinase assay was performed with Ccnd1-Cdk4 against GST-α4 wild type and the non phosphorylatable mutants: T423A, S431A (GST-α4T423A,S431A); S456A, S458A (GST-α4S456A,S458A); and T500A (GST-α4T500A). D) Quantification of the phosphorylation in C showing the mean ± SEM. The amount is relative to a pRB control (n=3, One-way ANOVA, post-Tukey analysis *p<0.05). E) Kinase assay was performed with Ccnd1-Cdk4 against the C-terminus of α4 wild type (GST-C-α4) and two clones (5 and 6) of the non
phosphorylatable mutant T423A, S431A (GST-C-α4T423AS431A). F) Quantification of the phosphorylation in E showing the mean ± SEM. The amount is relative to a pRB control (n=3, ANOVA ***p<0.001). G) Immunoprecipitation of Cdk substrates in HEK-293T cells transfected with α4 or α4A (α4T423AS431A), β3 and Ccnd1-CAAX or Ccnd1^K112E-CAAX. PhosphoTP antibody was used for the IP, and α4 was detected by immunoblot. H) Quantification of the phosphorylation in G showing the mean ± SD (n=2).

Figure 3. Ccnd1 or the phosphomimetic allele of α4 (α4^T423ES431E) decreases GABA_A receptor rundown.
A) Representative recording of whole-cell currents evoked by rapid application of 1 μM GABA (solid line above the trace) to HEK-tsA201 cells expressing wild-type αβ3 GABA_ARs. The GABA-evoked current at the beginning of the recording (time 0 min) and the response after 14 minutes (time 14 min) are shown. Dashed line denotes the zero current. Holding potential was held at −60mV. B) Same as A, but from cells co-expressing wild-type αβ3 GABA_ARs plus Ccnd1-CAAX. Note that the rundown of the peak current at 14 minutes is smaller than in condition A. C) Same as A, but from cells co-expressing phosphomimetic GABA_A receptor α4^T423ES431Eβ3. D) Peak current values at different times of GABA stimulation. Grey circles, wild type receptor alone (α4β3); red circles, wild type receptor together with Ccnd1-CAAX (α4β3+D1-CAAX; blue circles, phosphomimetic GABA_AR (α4^T423ES431Eβ3). *p<0.05, α4β3 vs. α4β3+Ccnd1-CAAX; #p<0.05 α4β3 vs. α4^T423ES431Eβ3; Unpaired student’s t-Test. E) Bar graph showing the mean ± S.E.M. of the relative current at t=12 minutes compared with current at time=0 for cells expressing wild type αβ3 GABA_ARs (n=7), αβ3 GABA_ARs plus Ccnd1-CAAX (n=5) or for α4^T423ES431Eβ3 GABA_ARs (n=6). Open circles denote single experimental values. P values as in D.

Figure 4. Ccnd1 increases surface levels of α4 subunit.
A) HEK-293T cells were transfected with β3 and α4-FLAG or the nonphosphorylatable mutant (α4T42A3S431A-FLAG) or a phosphomimetic allele of α4 (α4^T423ES431E-FLAG). Either HA-Ccnd1-CAAX or HA-Ccnd1^K112E-CAAX (a dead kinase version of Ccnd1) or a control vector was co-transfected. A biotinylation assay was used to purify cell surface proteins. TFRC is used to normalize α4 levels. Representative blots with whole cell extracts and surface proteins are shown. Antibodies used for protein detection are indicated on the left of the blot: R FL, polyclonal rabbit anti-FLAG; TFRC, monoclonal mouse anti-TFRC. B) Quantification of the experiment in A as a surface:WCE ratio. Bars show mean values ± S.E.M (n=4 independent experiments). *p<0.05 (Unpaired student’s t-test).

Figure 5. Cdk4/6 inhibition by Palbociclib decreases GABA tonic currents and mIPSC amplitude in rat hippocampal slices.
A) Effects of picrotoxin (100 µM) on holding currents recorded in DMSO- (grey rounds) or Palbociclib-treated (red squares) (2.5 µM, 2 hours) hippocampal slices. Recordings are aligned at the time of picrotoxin addition (t=0). Each point represents the mean value of holding current at a specific time for 10 cells. Tonic currents are reduced in Palbociclib-treated slices compared to vehicle (n=10 for each). B) Quantification of results in A represented in a scatter dot plot showing mean values ± S.E.M (*p<0.05, Wilcoxon-Mann-Whitney test). C) Representative traces of mIPSC of DMSO- or 2.5 µM Palbociclib-treated cells. D) Scatter dot plot showing mIPSC amplitude quantifications of DMSO- (n=9) and Palbociclib-treated (2.5 µM, 2 hours) cells (n=8). Bars show mean values ± S.E.M. *p<0.05, Wilcoxon-Mann-Whitney test. E) Cumulative distribution of mIPSC amplitude from CA1 pyramidal neurons treated with either Palbociclib or control vehicle, as indicated. “n” represents number of miniature responses recorded from nine (DMSO) or eight (Palbociclib) cells. (*p<0.001, Kolmogorov-Smirnov test).

Figure 6. CCND1 KO increases the maturity of dendritic spines in cortical neurons.
Cultured cortical neurons from WT and CCND1 KO mice were transfected at 3 DIV with GFP and fixed at 20 DIV. Changes in spine density and morphology were assessed by analyzing GFP-positive neurons with NeuronJ (see Materials and Methods). A) Representative confocal images of WT and CCND1 KO neurons (top) and higher magnification of dendrites with NeuronJ software (bottom) are shown. Scale bar: 10 µm. B) Quantification of the number of total dendritic spines relative to 10 µm of neurite, from WT (n= 59
neurons) and CCND1 KO (n= 62) neurons (4 mice/group). Bars show mean values ± S.E.M. ns: non-significant, unpaired student’s t-test. C) Quantification of the number of mushroom spines relative to the number of total spines from the same samples as in B. Bars show mean values ± S.E.M. **p<0.01, Unpaired student’s t-test.

EXPANDED VIEW FIGURE LEGENDS

Supplementary Figure 1. The α4 subunit of GABA_A receptors is phosphorylated at T423 and S431 by Ccnd1·Cdk4. The GST-C-α4 wild type was phosphorylated in vitro by Ccnd1-Cdk4 and the Chymotryptic peptide molecular masses were analyzed by liquid chromatography-mass spectrometry. Both T423 and S431 of α4 subunit were found to be phosphorylated by Ccnd1-Cdk4.

Supplementary Figure 2. Ccnd1 increases surface levels of α4 subunit. A) HEK-293T cells were transfected with β3 and α4 or the phosphomimetic allele of α4 (α4^{T423E5431E}). HA-Ccnd1-CAAX or a control vector was co-transfected. A biotinylation assay was used to purify cell surface proteins. TFRC is used to normalize α4 levels. Representative blots with whole cell extracts and surface proteins are shown. Antibodies used for protein detection are indicated on the left of the blot: α4, polyclonal rabbit anti-α4; TFRC, monoclonal mouse anti-TFRC. B) Quantification of α4 relative to TFRC from the experiment in A as a surface:WCE ratio. Bars show mean values ± S.E.M (n=5 independent experiments). *p<0.05 (Unpaired student’s t-test).
Figure 1

A diagram showing a protein's extracellular and intracellular domains with amino acid sequences.

B

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAG-Ccnd1</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HA-α4-C</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gel Analysis

- 35kDa
- 30kDa
- Flag
- HA

Adult Hippocampus

- GST-α4 (87kDa)
- GST-α4-C (47kDa)
- 35kDa

Table

<table>
<thead>
<tr>
<th></th>
<th>FLAG-Ccnd1</th>
<th>HA-α4-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IP</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Legend

- IN: Immunoprecipitation
- IP: Immunoblotting
- FL: Full-length
- D1: Domain 1

The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license (which was not certified by peer review). This version posted July 1, 2022. doi: bioRxiv preprint
Figure 2

A

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>+</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1/Cdk4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST-α4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palbociclib</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

100 kDa
GST-α4
Input

B

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1/Cdk4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST-α4</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>GST-β3</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

p32
Input

C

<table>
<thead>
<tr>
<th></th>
<th>wt</th>
<th>T423A S456A</th>
<th>S431A S458A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-α4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100 kDa
GST-α4
Input

D

<table>
<thead>
<tr>
<th></th>
<th>α4 wt</th>
<th>T423A</th>
<th>S456A</th>
<th>S458A</th>
<th>T500A</th>
</tr>
</thead>
<tbody>
<tr>
<td>full α4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relative band intensity</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th></th>
<th>St</th>
<th>C-α4</th>
<th>T423A</th>
<th>S431A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST-C-α4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

55 kDa
GST-C-α4
Input

F

<table>
<thead>
<tr>
<th></th>
<th>C-α4</th>
<th>C-α4 T423A S431A</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative band intensity</td>
<td>0</td>
<td>1 ***</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th></th>
<th>α4β3</th>
<th>α4β3 T423A S431A</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP: pTP: α4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

70 kDa

H

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D1K112E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α4β3</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>α4β3 T423A S431A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4

A

WCE

<table>
<thead>
<tr>
<th></th>
<th>α4β3</th>
<th>α4β3</th>
<th>α4β3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D1(^{K112E})</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Surface

<table>
<thead>
<tr>
<th></th>
<th>α4β3</th>
<th>α4β3</th>
<th>α4β3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D1(^{K112E})</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

B

Surface/WCE

![Graph showing relative ratio Surface/WCE α4 levels](image)

* Indicates a significant difference (p < 0.05).
Figure 5

A

Holding current (baseline subtracted, pA)

Time (min)

B

GABA R Tonic Current (pA)

DMSO
PALBOCICLIB

Wilcoxon matched-pairs signed rank test 0.0273

C

PALBOCICLIB
DMSO

mIPSC amplitude (pA)

D

mIPSC amplitude (pA)

DMSO (n=9)
PALBOCICLIB (n=9)

E

Cumulative probability

Peak Amplitude (pA)

DMSO (n=126)
PALBOCICLIB (n=109)
Figure 6

A

WT

Ccnd1 KO

B

spine density

WT

Ccnd1 KO

C

mushroom/total spines

WT

Ccnd1 KO