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 1 

Abstract 1 

 2 
1. Methods for collecting animal behavior data in natural environments, such as direct 3 

observation and bio-logging, are typically limited in spatiotemporal resolution, the 4 

number of animals that can be observed, and information about animals’ social and 5 

physical environments.  6 

2. Video imagery can capture rich information about animals and their environments, 7 

but image-based approaches are often impractical due to the challenges of 8 

processing large and complex multi-image datasets and transforming resulting data, 9 

such as animals’ locations, into geographic coordinates. 10 

3. We demonstrate a new system for studying behavior in the wild that uses drone-11 

recorded videos and computer vision approaches to automatically track the location 12 

and body posture of free-roaming animals in georeferenced coordinates with high 13 

spatiotemporal resolution embedded in contemporaneous 3D landscape models of 14 

the surrounding area. 15 

4. We provide two worked examples in which we apply this approach to videos of 16 

gelada monkeys and multiple species of group-living African ungulates. We 17 

demonstrate how to track multiple animals simultaneously, classify individuals by 18 

species and age-sex class, estimate individuals’ body postures (poses), and extract 19 

environmental features, including topography of the landscape and game trails. 20 

5. By quantifying animal movement and posture, while simultaneously reconstructing a 21 

detailed 3D model of the landscape, our approach opens the door to studying the 22 

sensory ecology and decision-making of animals within their natural physical and 23 

social environments. 24 

 25 

  26 
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 2 

Introduction 27 

 28 
Studying animals in the wild is essential for understanding how they behave within, 29 

and are shaped by, the environments in which they have evolved. Animal behavior impacts, 30 

and is impacted by, biological processes across vast scales, from the neural, genetic and 31 

endocrine interactions within organisms to the emergent functional complexity of groups, 32 

populations and ecosystems. Furthermore, we are in the midst of a biodiversity crisis 33 

(Ceballos et al., 2020), which has created an urgent need to understand how the decisions, 34 

movements, and, ultimately, the fitness of organisms are influenced by anthropogenic 35 

impacts and environmental change. 36 

Historically, studies of animal behavioral ecology have relied on direct observation by 37 

humans (Altmann, 1974), an approach that remains foundational today, but also has 38 

inherent limitations. For example, humans’ attention capacity constrains the spatial and 39 

temporal resolution of the data they can collect, the number of animals they can observe, 40 

and the duration of observations (Dell et al., 2014). Data collected via human observation is 41 

also prone to observer bias and subjective classification (Tuyttens et al., 2014), issues that 42 

cannot be resolved without an objective record of behavior. Video recording allows 43 

researchers to preserve a less biased record and extract more detailed data than is possible 44 

via direct observation. However, manually scoring behavior from video footage is also 45 

subjective and time-consuming, which introduces errors, and limits scalability (Dell et al., 46 

2014).  47 

 Major advances in sensor, battery, and communications technologies over the past 48 

two decades have led to the rapid development of animal-borne data-logging devices, 49 

known as bio-loggers. Bio-logging has become a powerful approach for studying behavior, 50 

allowing scientists to collect data over expansive spatial and temporal scales and from 51 

inaccessible environments (Brown et al., 2013; Kays et al., 2015). This approach has 52 

generated important insights into behaviors that were previously difficult or impossible to 53 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.30.498251doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498251
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

study effectively, including migration (Jesmer et al., 2018), dispersal (Klarevas‐Irby et al., 54 

2021), energetics (Flack et al., 2020; Williams et al., 2014), sleep (Loftus et al., 2022; 55 

Rattenborg et al., 2016), and individual and collective decision-making (Flack et al., 2018; 56 

Strandburg-Peshkin et al., 2015, 2017). 57 

 A key challenge of bio-logging is understanding the behavioral states and 58 

contemporaneous social and environmental factors that give rise to animal movements. 59 

Secondary sensors affixed to tags can provide context for geolocation data (Williams et al., 60 

2020), but are themselves limited. For example, accelerometers are commonly used to 61 

record stereotyped behavioral states such as resting, feeding, and locomotion, but generally 62 

cannot capture more complete behavioral repertoires (Brown et al., 2013). On-board 63 

cameras can record the social interactions, foraging decisions, and physical surroundings of 64 

instrumented individuals, but are restricted in their fields of view and prone to occlusion 65 

(Ehlers et al., 2021; Naganuma et al., 2021). Interpreting data from secondary sensors can 66 

also be challenging. Translation of accelerometer data to human-recognizable behavioral 67 

labels requires validation through synchronous acceleration logging and visual observation. 68 

This is time-consuming and often conducted using captive animals or relatively brief 69 

observations of wild animals, which is likely to exclude rare or context-dependent behaviors 70 

(Brown et al., 2013; Wang et al., 2015). Data from animal-borne cameras typically must be 71 

manually reviewed by experts, and variable image quality can prevent extraction of relevant 72 

data (Moll et al., 2007; Naganuma et al., 2021). Alternatively, social behavior can be studied 73 

by instrumenting most or all animals of interest (e.g. Strandburg-Peshkin et al., 2017), but 74 

this approach is costly, logistically challenging and not viable for species with unstable group 75 

composition (Hughey et al., 2018). To understand environmental context, movement data 76 

can be fused with external data streams, such as meteorological records or satellite and 77 

drone imagery (Benitez-Paez et al., 2021; Strandburg-Peshkin et al., 2017); however, these 78 
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data are typically asynchronous with behavioral data or too coarse-grained for analysis at 79 

finer scales (Brum-Bastos et al., 2020). 80 

 Beyond scientific constraints, bio-logging presents other ethical, financial, and 81 

logistical limitations. These include the expense of the devices, costs of remote data 82 

transmission, logistics of capturing animals, and potential reduced fitness of instrumented 83 

individuals (Hughey et al., 2018; Murray & Fuller, 2000). Consequently, the costs of 84 

equipment and potential impact of instrumentation on animals means that, outside of well-85 

funded research initiatives, bio-logging studies typically have small sample sizes and are 86 

rarely replicated over time or across populations. 87 

 Video-based observation, in combination with vision-based machine learning tools, is 88 

an emerging approach and an alternative to bio-logging for studying animals in the wild 89 

(Hughey et al., 2018; Tuia et al., 2022). These methods originated in laboratory settings, 90 

where physical on-animal markers and controlled recording conditions enabled early 91 

automated movement tracking solutions (reviewed in Dell et al., 2014). However, field 92 

settings pose significant challenges for conventional vision-based tracking solutions due to 93 

the variable lighting conditions and complex visual scenes inherent to natural environments. 94 

Recent increases in computational processing power and efficiency, and advances in deep 95 

learning techniques, have transformed automated vision-based tools in field settings (Zhao 96 

et al., 2019). Still, these methods are technically complex and require expert knowledge for 97 

successful implementation. 98 

Similar to the overhead imaging common in many laboratory-based animal tracking 99 

paradigms (Buhl et al., 2006; Katz et al., 2011), drones mounted with high resolution 100 

cameras allow for efficient top down filming that enables precise quantification of animal 101 

positions and reduces occlusion by environmental features or other group members (e.g. 102 

Inoue et al., 2019; Torney et al., 2018). Modern consumer imaging drones are affordable 103 

and easy to pilot. Drones’ mobility makes them a particularly powerful platform for field 104 
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observations because they can be used to film free-roaming animals as they move around 105 

the landscape. However, this camera motion becomes a major source of error that must be 106 

accounted for (Haalck et al., 2020). The topography of natural landscapes also introduces 107 

challenges in accurately projecting 2D image coordinates into 3D space in standard units. 108 

While multi-camera 3D imaging can surmount these issues, they are logistically and 109 

computationally difficult to deploy (Francisco et al., 2020). Therefore, previous drone-based 110 

behavioral studies have typically relied on approaches like manually processing videos 111 

(Sprogis et al., 2020), analyzing a subset of still frames (Inoue et al., 2019), approximating 112 

animal movement paths using the drone’s position (Raoult et al., 2018), or recording 113 

trajectories in relation to the video frame dimensions rather than geographic coordinate 114 

systems (Ringhofer et al., 2020; Torney et al., 2018). 115 

 Here we describe a method for using aerial video and computer vision to collect high-116 

resolution georeferenced locational and behavioral data on free-ranging animals without 117 

capturing or tagging them. In our approach, we use drones to record overhead video of focal 118 

animals and subsequently use a deep learning-based pipeline to automatically locate and 119 

track all individuals in the video. We use Structure-from-Motion (SfM) techniques to 120 

reconstruct the 3D topography of the surrounding habitat (D’Urban Jackson et al., 2020) 121 

which, combined with further image processing, can accurately transform animal movement 122 

data into geographic coordinate systems independent of camera movement. We 123 

simultaneously generate additional behavioral and environmental information, including 124 

estimates of each animal’s body posture (pose) and landscape features such as game trails. 125 

This method, illustrated in Fig. 1, is applicable to a wide range of species, generates 126 

behavioral data at sub-second and sub-meter resolution, and produces synchronous 127 

information about the surrounding physical and biotic environment. The use of inexpensive 128 

consumer drones, that can be flexibly redeployed, greatly reduces the cost of data collection 129 

relative to bio-logging, and promotes larger sample sizes and replication of studies. Although 130 
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not without its own limitations (see Limitations and Considerations), this approach has many 131 

advantages that make it a powerful alternative or complement to current methodologies. Our 132 

approach thus has the potential to broaden the scope of behavioral ecology to encompass 133 

questions and systems that are unsuitable for direct observation or bio-logging approaches 134 

in isolation. 135 

 136 

Figure 1. Overview of the processing pipeline for extracting movement, behavioral, and 137 

landscape data from aerial drone footage of wildlife. Numbered steps correspond to the 138 

numbered sections in the text. First, the animals of interest are video recorded from above (Step 1). 139 

Next, an object detection algorithm is used to localize each animal in every video frame (Step 2), and 140 

these locations are then linked across frames to generate movement trajectories in pixel coordinates 141 

(Step 3). In parallel, anchor frames are selected from the footage and used to build a 3D model of the 142 

landscape and estimate the locations of the drone across the observation. Camera locations at 143 
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anchor frames and local visual features are combined to estimate camera locations for all frames 144 

allowing the transformation of the animal trajectories from Step 3 into geographic coordinate space 145 

(Step 4). Optionally, further analyses can be performed to extract more detailed behavioral and 146 

landscape information, for example through keypoint detection (Step 5) and landscape feature 147 

detection (Step 6). 148 

 149 

Methods 150 

 151 
Below we outline the major steps of our methodological approach (Fig. 1). Full details of 152 

each step are given in the Supplement. To illustrate our processing pipeline, we provide two 153 

worked examples with complete code and data available on GitHub 154 

(https://github.com/benkoger/overhead-video-worked-examples). We encourage readers to 155 

explore these examples and to modify the code for their own datasets. 156 

In the first example, we apply our method to multiple African ungulate species. We 157 

recorded ungulate groups at Ol Pejeta and Mpala Conservancies in Laikipia, Kenya over two 158 

field seasons, from November 2 to 16, 2017 and from March 30 to April 19, 2018. In total, 159 

we recorded thirteen species, but here we focus our analyses on the endangered Grevy’s 160 

zebra (Equus grevyi) (Rubenstein et al., 2016). We used DJI Phantom 4 Pro drones [DJI, 161 

Shenzhen, China], and deployed two drones sequentially in overlapping relays to achieve 162 

continuous observations longer than a single battery duration. Our method is agnostic to the 163 

exact drone-type used, and is scalable to the higher-resolution video made possible by 164 

employing more recent models.   165 

In the second worked example, we process video recordings of grassland-dwelling 166 

gelada monkeys (Theropithecus gelada). Aerial video recordings of gelada monkeys were 167 

provided by the Guassa Gelada Research Project. The recordings were collected between 168 

October 16, 2019 and February 28, 2020 at the Guassa Community Conservation Area in 169 

the Ethiopian highlands. Geladas were recorded with a DJI Mavic 2 Pro [DJI, Shenzhen, 170 

China].  171 
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In each worked example, we generate movement trajectories for each animal in the 172 

example videos and 3D models of the surrounding landscape. In the ungulate example, we 173 

also track body keypoints and analyze landscape imagery to detect game trails, which 174 

zebras tend to follow while moving across the landscape. For the geladas, we train our 175 

detection model (Step 2), to distinguish between adult males and other individuals. 176 

 177 

Step 1. Video Recording 178 

 179 
Videos should be recorded from above the animals of interest with the camera pointing 180 

directly down. The visibility of the animals is of vital importance and will be affected by the 181 

habitat type, video resolution and characteristics of the animals themselves. As a general 182 

rule, videos in which the animals are easily detectable by humans will significantly ease 183 

processing. Although any camera platform can be used to capture the footage, drone-184 

mounted cameras will likely be the most common approach and subsequently we use 185 

“drone” and “camera” interchangeably. For specific points to consider when planning drone-186 

based data collection, see Limitations and Considerations, below and Step 1 in the 187 

Supplement. 188 

 189 

Step 2. Detection  190 

 191 
Animal detection and localization in each video frame is accomplished with deep 192 

convolutional neural networks (CNNs), which we build, train and deploy to predict localizing 193 

bounding boxes (see Table 1 for definitions of bolded terms) for all individuals in all frames 194 

of each video. We first manually annotate frames from the video footage to build image sets 195 

for training the model and evaluating its performance. Annotation can be tedious, and the 196 

content of the images will strongly affect model performance; therefore, it is important to 197 

carefully consider the best annotation strategy to achieve high information value for each 198 
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 9 

annotation while minimizing human labor (see Supplement section 2.1). Users can improve 199 

the efficiency of the annotation process via model-assisted labeling and active learning 200 

techniques, which concentrate annotation effort on examples that are particularly 201 

challenging for the model to detect. 202 

 To train a deep learning-based object detection model, researchers must first choose 203 

an appropriate software framework and a specific model to train within that framework (see 204 

Supplement section 2.2). We use the Detectron2 API within the PyTorch framework (Paszke 205 

et al., 2019; Wu et al., 2019) in our worked examples, but the user may choose a different 206 

framework depending on their level of coding proficiency or prior experience with other 207 

programming libraries. For simple use cases with clearly-visible individuals, many common 208 

models can be readily re-configured for the researchers’ data. Users with more challenging 209 

footage may need to make more considered choices and in some cases move towards 210 

incorporating more recent high-performance algorithms. Generally, users should choose 211 

models that have been pretrained on general image datasets and that incorporate image 212 

augmentation, as these steps increase training efficiency and require smaller annotated 213 

training sets. See Table S1 for annotation statistics and model performance metrics for the 214 

datasets and trained models used in the worked examples. 215 

 After the model is trained, all frames from all videos can be automatically processed. 216 

For each video frame the model generates bounding box coordinates, predicted object 217 

classes and confidence scores for every detected object (Fig. 2). We initially take the mean 218 

of the coordinates of the bounding box corners as an individual’s location in the frame, which 219 

we subsequently use for tracking. 220 

 221 
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 222 

Figure 2. Predicted bounding boxes for two example video frames using the trained models 223 

from our worked examples. A) In the ungulates example, the model distinguishes between five 224 

classes (zebra, impala, buffalo, waterbuck, and other). The animals in dark blue bounding boxes are 225 

Grevy’s (Equus grevyi) and plains zebras (E. burchelli) and animals in white bounding boxes are 226 

impala (Aepyceros melampus). B) In the gelada monkey example, we distinguish between species 227 

and age-sex class (human-observer, adult-male gelada, and other-gelada). Yellow boxes are 228 

predicted adult-males while light blue boxes are a mix of females and juveniles.  229 

 230 

Step 3. Tracking 231 

 232 
Tracking, or linking positions across video frames, allows us to generate trajectories for all 233 

detected individuals in the pixel coordinate system of the video. To match individual 234 

locations across consecutive frames, we use a modified version of the Hungarian algorithm 235 

(Kuhn, 1955), which finds the pairing of trajectories and new positions that minimizes the 236 

total distance between all pairs. We have incorporated additional distance- and time-based 237 

rules for connecting detections to tracks that make the algorithm more robust to missing or 238 

false detections by the detection model or from individuals entering or leaving the camera’s 239 

field of view during the observation (see Step 3, in the Supplement). 240 
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  The initial process of linking positions is automated but can result in multiple partial 241 

trajectories for a single individual in the case of environmental occlusions and other 242 

detection issues. For these instances, we provide a graphical user interface (GUI) for easy 243 

track validation and error correction. This allows the user to obtain, with limited manual 244 

effort, human-verified continuous trajectories of all individuals in each video within the pixel-245 

based coordinate system of the video frame, which can then be transformed to a geographic 246 

coordinate system. 247 

 248 
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Figure 3. Trajectories extracted from drone videos. Trajectories of A) a gelada monkey group over 249 

a period of 5 minutes and B) a Grevy’s zebra herd over a period of 50 minutes, 24 seconds plotted in 250 

video coordinates. Drone and animal movement are entangled and the position of the animals on the 251 

earth is unknown. In C) and D), the same trajectories are plotted in geographic coordinates and 252 

embedded in a reconstructed landscape. The landscape reconstruction includes visual information 253 

(top) as well as topographic information (bottom). E) The trajectories have submeter human-validated 254 

error between observed locations in video frames and embedded map locations (0.17m median, 255 

interquartile range 0.11-0.23m from 100 validated gelada locations; 0.40m median, interquartile range 256 

0.26m-0.58m from 350 validated zebra locations). In A and C, light blue tracks denote adult male 257 

geladas. In B and D, two tracks are highlighted in yellow and pink for easier comparison. In E, the 258 

horizontal line shows the median. 259 

 260 

Step 4. Landscape Reconstruction and Geographic Coordinate Transformation 261 

 262 
Transforming trajectories into precise geographic coordinates allows us to disentangle the 263 

movement of the tracked animals over variable terrain and the movement of the drone (Fig. 264 

3), and also allows the user to analyze the resulting movement data in standard units and in 265 

relation to external georeferenced data sources, such as satellite imagery. To achieve an 266 

accurate transformation, we must estimate the topography of the landscape over which the 267 

animals are moving and the location of the camera relative to that landscape (Fig. 4). We 268 

obtain this information by feeding a subset of frames (“anchor frames”) from each video into 269 

Structure-from-Motion (SfM) software (Supplement section 4.1). This builds a detailed 3D 270 

model of the landscape surrounding each observation and also calculates the location of the 271 

camera when each anchor frame was captured. To accurately locate and scale the model in 272 

geographic space, we georeference it using either ground control points collected in the 273 

field or information from the drone’s onboard GPS sensor (Supplement section 4.2). We 274 

track visual features in each frame to estimate local camera movement between anchor 275 

frames allowing us to calculate the camera position for every frame in the video (Supplement 276 

section 4.3). We then transform animal positions from the pixel coordinates of the frames 277 

into the geographic coordinates of the 3D model by projecting rays from the estimated 278 
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camera location to the surface of the landscape model (Supplement section 4.4). In our 279 

examples, this method yields movement trajectories with sub-meter mean and median error 280 

(Fig. 3E); we provide a GUI that allows the user to efficiently assess the accuracy of their 281 

own track locations (Supplement section 4.5). 282 

 283 

Figure 4. Both camera position and landscape topography are necessary to generate accurate 284 

trajectories from locations extracted from 2D images. A) At the end of Step 3 in the data 285 

extraction pipeline, we have linked detections across frames to generate trajectories for individual 286 

animals in the pixel-based coordinate space of the video frames. These trajectories do not distinguish 287 

between camera movement and animal movement, and thus changes in animal positions across 288 

frames (here from t0 to t1) do not accurately represent animal movements in the real world. B) By 289 

incorporating landscape features in the background of the video frames we calculate each frame's 290 

relative camera position and so disentangle camera movement from animal movement. C) By 291 

combining camera location information with the 3D topography of the environment, we can 292 

reconstruct accurate movement trajectories in 3D space. Without a model of the landscape structure, 293 

the user must assume a flat earth, which introduces error into trajectories. 294 

 295 

Step 5. Body-part Keypoint Detection 296 

 297 
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A major advantage of image-based techniques is that each image contains much more 298 

behaviorally-relevant information than does position alone. If the video resolution is 299 

sufficient, the user can, for example, use existing tools for markerless pose estimation (e.g. 300 

SLEAP (Pereira et al., 2020), DeepLabCut (Mathis et al., 2018; Nath et al., 2019), 301 

DeepPoseKit (Graving et al., 2019)) to extract positions of user-defined body parts on each 302 

detected animal, generating time-varying postural information for tracked individuals (Step 5 303 

in the Supplement; Fig. 5B). Such postural data are particularly amenable to automated 304 

behavioral annotation, and other downstream tasks, because the user can pair the 305 

(relatively) low dimensional keypoint information with human verified annotations from the 306 

raw video. 307 
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Figure 5. Additional landscape and behavioral data generated beyond animal location. A) An 309 

SfM-generated 3D triangular mesh landscape model. B) Examples of keypoints detected on zebras. 310 

Nine user-defined keypoints (snout, head, base of the neck, left and right shoulder, left and right 311 

hindquarters, tail base and tip of the tail) are tracked using DeepPoseKit (Graving et al. 2019). C) 312 

Combining landscape data and animal body and head location allows the visualization of animal’s 313 

visual fields in their landscapes. Here, the red object is the focal zebra, the white rays show its visual 314 

field, and the green and white polygons represent bushes and conspecifics, respectively. D) A SfM-315 

generated 2D orthomosaic image showing predicted game trail presence score. Predictions are 316 

generated by a CNN trained on separate orthomosaics that were annotated by three independent 317 

human annotators. See worked examples for more detail. The black box indicates the area shown in 318 

E and F, which provide detailed views of the orthomosaic and the game trail predictions, respectively. 319 

The color bar applies to both D and F. 320 

 321 

Step 6. Landscape Quantification 322 

 323 
The SfM software used in Step 4 generates multiple forms of landscape data that provide 324 

valuable environmental context for the behavior of the observed individuals, including 2D 325 

rasters encoding elevation data, orthomosaic images, and 3D point clouds and 326 

triangular meshes (Fig. 5A, E). These outputs can be used directly or further processed to 327 

extract information regarding local landscape features and topography, classify habitat 328 

types, or even estimate the visual fields of tracked animals. In the ungulate worked example 329 

we apply pixel-wise classification algorithms, known as semantic segmentation, to 330 

orthomosaic images to automatically detect game trails, which we expect will influence 331 

animal movement (Fig. 5D, F). Further possibilities are explored in the section Analysis, 332 

Extensions, & Applications. 333 

 334 

Limitations and Considerations 335 

 336 
Here we discuss the logistics of using drones to capture behavioral data, the suitability of 337 

different research questions to this approach, and the coding skills necessary to implement 338 

this method. For required computing resources, please see the Supplement. 339 
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 340 

Ethical, logistical and legal considerations 341 

 342 
It is important to consider the potential impact of the drone on the focal animals when 343 

planning future research. Behavioral and physiological responses to drone flights can 344 

negatively impact wildlife (Ditmer et al., 2015; Weimerskirch et al., 2018), and may lead to 345 

biased or misleading results in behavioral studies (Duporge et al., 2021). Most species that 346 

respond to drones seem to be primarily affected by the sound of the drone (Duporge et al., 347 

2021; McEvoy et al., 2016). Pilots may be able to reduce disturbance by choosing quieter 348 

drone models, using low-noise propellers, launching the drone far away from target animals, 349 

approaching from downwind, and flying at higher altitudes. While still an emerging field of 350 

study, Duporge et al. (2021) and others (Bevan et al., 2018; Christiansen et al., 2016; 351 

Mulero-Pázmány et al., 2017) offer guidelines for flying drones near a variety of species. It is 352 

typically prudent to perform preliminary flights prior to data collection in order to assess the 353 

animals’ response to the drone and establish appropriate protocols.  354 

 When choosing a study environment, factors such as extreme temperatures, dust, 355 

wind, precipitation and fog can reduce visibility, equipment longevity and flight performance. 356 

Furthermore, landscapes (such as open water and snow fields) without abundant and 357 

persistent visible landmarks are not suitable for SfM methods, and may preclude 358 

transformation of animal trajectories into geographic coordinates (Step 4). SfM height 359 

mapping accuracy is also sensitive to vegetation structure and motion (such as tall grass in 360 

the wind), which may introduce errors in those parts of the landscape relative to static 361 

regions (D’Urban Jackson et al., 2020). Additionally, the real-world geospatial accuracy of 362 

the final data is ultimately determined by the quality of the 3D landscape models. For sub-363 

meter accuracy one must either be able to place ground control points in the landscape of 364 

interest or have access to existing georeferenced landscape models or imagery. 365 
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 Finally, researchers must be aware of and abide by legal regulations regarding drone 366 

operations in any prospective study area both in terms of formal permissions and licenses 367 

required to deploy drones as well as limitations on in-flight maneuvers. Particular rules vary 368 

by location and are continually evolving but can include limits on flight altitudes, distances, or 369 

locations (i.e. airports, national parks, or certain government areas) and requirements for 370 

maintaining visual contact with drones and keeping safe distances from people and 371 

structures. Beyond legal requirements, researchers should also ensure that projects do not 372 

negatively impact local communities. For a thorough discussion of ethical drone use, see 373 

Duffy et al. (2018).  374 

 375 

Research question suitability 376 

 377 
In determining whether image-based data collection is appropriate for a research 378 

question, researchers should consider the required data resolution and spatial and temporal 379 

scales of all targeted study behaviors. Animal groups that are spread over large areas may 380 

be impossible to fully capture at an appropriate resolution, especially if automated tracking 381 

or individual posture data are required. Deploying multiple drones simultaneously can 382 

increase spatial coverage, but complicates flight protocols and data processing. Additionally, 383 

spatially-expansive behaviors like long-distance hunts may draw the drone beyond the legal 384 

operation distance from stationary pilots (Creel & Creel, 1995). Nocturnal or crepuscular 385 

animals would require imaging via thermal or high-sensitivity cameras, which imposes 386 

further constraints to the spatial, and temporal, resolution of video that can be obtained.  387 

The timescale over which behaviors occur is also important. Drone battery efficiency 388 

has rapidly improved over the years, but flight times are still relatively short (currently 30-45 389 

minutes for widely-used models). While observation time can be extended with multiple 390 

sequential flights, the duration of observations are still limited by battery supply, pilot fatigue, 391 

and the movement of the focal animals away from the operational site. Similar to direct 392 
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observation, recording rare or unpredictable behaviors, such as predation events, requires 393 

deploying drones in the right place at the right time. Incorporating external observational or 394 

biologging data could help predict such behaviors and inform the location and timing of 395 

deployments. Relatedly, deploying a small number of geolocators on individuals in the target 396 

population could allow researchers to more reliably locate rare species or repeatedly target 397 

focal individuals and associated conspecifics for drone-based observation. 398 

 399 

Programming proficiency 400 

 401 
All code provided in the worked examples is written in the Python programming language. 402 

We expect limited additional programming will be required to apply this code to new datasets 403 

that are similar in scope to the examples. However, we expect many researchers will want to 404 

adapt our base code to better suit their needs, which will require some degree of 405 

programming skill, depending on the functionality required. Furthermore, since this method 406 

generates large volumes of high-resolution and high-dimensional data, certain programming 407 

capabilities will prove essential for effective visualization and analysis (see below for 408 

possible analysis directions).  409 

 410 

Analysis, Extensions, & Applications 411 

 412 

With recent advances in imaging technology and video analysis, drone-based behavioral 413 

observation is poised to become a widely-used approach in the study of wildlife ecology. 414 

Here we expand on the potential of this approach by outlining possible data analysis 415 

approaches as well as future extensions and applications of drone-based observation. 416 

 417 

Data analysis 418 

 419 
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Our method provides a rich set of biologically-relevant features, but these data must 420 

be analyzed to address the research questions of interest. There exists a rich body of 421 

literature for exploring, visualizing, and analyzing animal trajectory data (Patterson et al., 422 

2017; Seidel et al., 2018). The sub-second and sub-meter animal positions and detailed 423 

landscape data produced by this method allows researchers to use step-selection-type 424 

approaches to evaluate movement decisions across spatial and temporal scales, from actual 425 

individual steps to movement decisions at larger-scales (Fieberg et al., 2021). Tracking body 426 

keypoint locations (Step 5) can directly provide information about behaviorally-relevant body 427 

parts, such as head direction and body orientation. Depending on the position of the 428 

animal(s) within each frame, correctly interpreting animals’ relative keypoint patterns may 429 

require taking lens geometry into account (see Supplement for details). When possible to 430 

estimate, this head and body information can be combined with the 3D landscape models 431 

(Step 4) to reconstruct estimates of each animal’s visual field (Aben et al., 2018). These can 432 

provide a valuable estimate of the social and non-social information available to animals, 433 

and how they use this information to make decisions such as whom to follow (Strandburg-434 

Peshkin et al., 2013) or how to respond to possible threats (Davies et al., 2016; Rosenthal et 435 

al., 2015; Sosna et al., 2019). 436 

 437 

Future extensions 438 

 439 
During detection (Step 2), if given sufficient image resolution, it may be possible to 440 

visually identify individual animals within and across observations. Individual recognition 441 

opens the door to studies of individual behavioral variation across time and contexts, and the 442 

role of individual behavior in driving processes at the population and community levels 443 

(Costa‐Pereira et al., 2022). Beyond laboratory settings (Walter & Couzin, 2021) individual 444 

recognition in wild populations is increasingly feasible (Norman et al., 2017; Tuia et al., 445 

2022). Alternatively, individuals could be identified using ground-level photographs or direct 446 
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observation, and then these identities could be manually linked to individuals in the aerial 447 

recordings.  448 

A further advance would be to use temporal keypoint data, or body posture 449 

trajectories (Fig. 1 - Step 5), to define finescale behavioral labels. While similar to the 450 

problem of accelerometer-based behavioral classification, a vision-based approach provides 451 

the added benefit of ground-truth videos for validation (Brown et al., 2013; Wang et al., 452 

2015). Both supervised (Bohnslav et al., 2021) and unsupervised/self-supervised (Berman et 453 

al., 2014) approaches, or a combination of both (Sun et al., 2021), could be applied to 454 

achieve automated behavioral annotations describing the behavioral states of individuals 455 

and groups.  456 

Beyond data processing, advancements with drones’ on board automated visual 457 

tracking (Islam et al., 2019) and the ability to automatically coordinate flight among multiple 458 

drones (Zhou et al., 2022) could help to streamline complex operations, reduce the risk of 459 

human error, and also facilitate further observation techniques such as multiview 3D posture 460 

tracking (Tallamraju et al., 2019). Drones could thus be deployed to autonomously find and 461 

record individuals of a target species. While these are exciting future steps, current 462 

regulations in many countries would prevent the use of these methods without special 463 

permissions or certifications. Thus, regulatory rather than technological restrictions may be 464 

the most substantial barriers to large-scale automated observation. 465 

 466 

Synergizing with other remote-sensing methods 467 

 468 
There is great potential in combining this approach with existing remote sensing 469 

methods. In the context of biologging, drones could be deployed at key times or locations of 470 

interest to provide high-resolution behavioral snapshots of tagged individuals along with their 471 

social and environmental context. Image-based data could also be used to guide biologging 472 

study design choices. For example, one could downsample the high resolution image-based 473 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.30.498251doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498251
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

data to determine the optimal sampling frequency for bio-logging studies, using the videos to 474 

verify that the resulting data capture the target behaviors. Recording and quantifying the 475 

behavior of instrumented animals could also aid in the development of behaviorally activated 476 

“smart” sensors (Korpela et al., 2020; Yu, 2021).  477 

The geolocated animal movement and environmental data generated by drone-478 

based methods can be combined with multi-modal remote sensing data (which is typically 479 

acquired over a broad scale, but at substantially-lower resolution) to explore the interplay 480 

between animals and important environmental features. For example, SfM models can be 481 

combined with remote sensing data to enable calculation of microclimate variability (Maclean 482 

et al. 2019; Duffy et al. 2021) or water flow and saturation (Koci et al., 2020). Higher 483 

accuracy 3D landscape models, such as those generated by lidar imaging (D’Urban Jackson 484 

et al. 2020), could enable studies of herbivore impacts on vegetation via consumption or 485 

trampling effects, or allow higher precision visual field calculations in difficult-to-model 486 

environments like tall grass. Furthermore, integrating the 3D structure of landscapes with 487 

calibrated multi- or hyperspectral measures of landscape properties can produce maps of 488 

resource quality and accessibility for foraging studies (Jennewein et al. 2021).  489 

  490 

Conclusion 491 

 492 

We present a method that allows researchers to study animal behavior in its natural social 493 

and environmental context in a non-invasive and scalable way. Our approach is independent 494 

of specific species and can be deployed across a range of study systems making this a 495 

powerful and versatile tool for many researchers across fields. Importantly, as researchers 496 

work to understand the relationship between animals and their landscapes in a changing 497 

world, this method, which simultaneously records both at high resolution, is poised to be an 498 

important new way of observing the natural world.      499 
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 500 

Term Definition 

active learning An approach related to model-assisted labeling wherein the researcher 
uses model-generated confidence scores to concentrate annotation 
effort on difficult examples. 

anchor frames The subset of video frames in our method input into the structure from 
motion software to generate the 3D landscape model and camera 
location information. 

annotation The process of labeling objects of interest in training imagery, for 
example by drawing bounding boxes around individual animals. 

bounding box A rectangle enclosing an object of interest in an image. Bounding 
boxes can be drawn by the user as a form of annotation, or can be 
generated by detection models to denote the predicted location of an 
object of interest. 

graphical user interface (GUI) A means of viewing or inputting data that relies on graphical elements 
(e.g. buttons) rather than coding inputs. 

ground control point (GCP) Locations or landmarks with known real-world geographic coordinates. 
These points are used to georeference the landscape model 
generated from the anchor frames. 

image augmentation A technique for increasing the effective size of the training set by 
modifying each training image each time it is shown to the model. 
Modifications, including blurring, rotating, and adjusting contrast, and 
are intended to mimic the diversity of images in the entire dataset. 

model-assisted labeling An iterative process where image annotation and model training are 
conducted in parallel. The user initially labels a small number of 
images and uses these to train an initial version of the model. This 
initial model is then used to generate annotations for the remaining 
images, which the user then confirms or corrects while also adding 
annotations for any animals that the model missed.  

orthomosaic Two-dimensional composite images generated by the SfM software 
that approximate the appearance of 3D structures from an overhead 
viewpoint. 

point cloud A set of 3D points often also containing a color value that can be used 
to represent landscapes or objects in space. 

pretraining A feature of many common deep learning models where the model has 
been initially trained on large datasets consisting of generic imagery of 
common scenes and objects. This allows the model to learn the basic, 
universal aspects of imagery before being fine-tuned on the user’s 
specific dataset. 

semantic segmentation The process of labeling every pixel in an image as one of a set number 
of object classes. 

structure from motion (SfM) A technique for 3D reconstruction in which two-dimensional images 
from various overlapping viewpoints are used to define the geometry of 
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the target structure (here, the landscape surrounding the observed 
animals). 

triangular mesh A 3D surface model created from a point cloud by connecting triads of 
points to create flat triangular surfaces. 

Table 1. Glossary of terms. Defined terms are bolded at first appearance in the text. 501 
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