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Abstract 

Local adaptation is pervasive. It occurs whenever selection favors different phenotypes in 

different environments, provided that there is genetic variation for the corresponding traits and 

that the effect of selection is greater than the effect of drift and migration. In many cases, 

ecologically relevant traits are quantitative and controlled by many genes. It has been 

repeatedly proposed that the within genome localization of these genes may not be random, but 

could be an evolved feature. In particular, the clustering of local adaptation genes may be 

theoretically expected and has been observed in several situations.  Previous theory has focused 

on two-patches or island-continent models to investigate this phenomenon, reaching the 

conclusion that such clustering could evolve, but in relatively limited conditions. In particular, 

it required that migration rate was neither too low nor too large and that the full optimization 

of trait values could not be eventually achieved by a mutation at a single locus. Here, we 

investigate this question in spatially continuous space with distance-limited dispersal. We find 

that clustering of local-adaptation genes is pervasive within clines during both the 

establishment phase of local adaptation and the subsequent “reconfiguration” phase where 

different architectures compete with each other. We also show that different fitness functions 

relating trait to fitness have a strong impact on the overall dynamics and resulting architecture.    
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Introduction 

Recombination is a key trait for sexual eukaryotes. Genome wide recombination rates are 

thought to evolve to limit selective interference and increase the efficacy of natural selection 

(Otto and Lenormand 2002; Otto 2009). Beyond this global pattern, it has been suggested that 

low recombination rate within genome could evolve locally to preserve particularly favorable 

genetic associations. This type of argument applies to sex differences in recombination 

(Lenormand 2003; Sardell and Kirkpatrick 2020), to inversions capturing loci with strong 

epistasis (Schwander et al. 2014; Charlesworth 2016), or to loci involved in local adaptation 

(Pylkov et al. 1998; Lenormand and Otto 2000; Kirkpatrick and Barton 2006). The latter in 

particular has received a lot of attention, as local adaptation is a ubiquitous phenomenon, and 

as “genomic islands” of divergence are sometimes, but not always, observed among 

differentiated populations (reviewed in Nosil et al. 2009; Strasburg et al. 2012). These 

“genomic islands” may however not result from the evolution of linkage. Instead, they can be 

relicts of a divergence built by independent evolutionary history of populations. In this case 

they appear simply because of the erosion of this divergence around selected loci (Barton and 

Hewitt 1989). Because of these different scenarios, the interpretation and evolutionary 

significance of such genomic islands are difficult to empirically establish. In addition to this 

empirical difficulty, the theory has not considered the case of spatially explicit models, where 

dispersal may be distance limited. Yet, in many situations, local adaptation may take place in 

a continuous space with a mosaic of different habitats. We investigate this case in this paper.  

Local adaptation generally favors lower recombination because migration between 

habitats leads to positive genetic associations among loci involved in adaptation to these 

habitats. In this circumstance, lowering recombination rates preserves combinations of alleles 

that are locally beneficial, improves the response to selection, and reduces the migration load. 

Modifier models have been used to make this formal argument (Pylkov et al. 1998; Lenormand 

and Otto 2000; Lenormand 2012), however these general models do not investigate specific 

mechanisms by which local adaptation loci could evolve to be in tighter linkage. This could 

occur for several proximal reasons: (1) a local reduction in recombination rate, for instance 

through the occurrence of a chromosomal rearrangement (Kirkpatrick and Barton 2006; 

Yeaman 2013), (2) an aggregated recruitment of locally adapted alleles during adaptation to a 

new environment (Flaxman et al. 2013; Yeaman et al. 2016), (3) or competition between more 

or less aggregated genetic architectures conferring the same trait values (Yeaman and Whitlock 

2011). 
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We focus here on mechanisms (2) and (3). We term mechanism 2 “emergence” and 

mechanism 3 “reconfiguration”, and we refer to them collectively as “the evolution of 

aggregate genetic architecture”. Aggregation emergence has been studied using either two-

patch (Flaxman et al. 2013) or continent-island (Yeaman et al. 2016) models. These models 

suppose that many loci can contribute to local adaptation to a new environment and they 

evaluate whether the first mutations contributing to this local adaptation tend to cluster. They 

conclude that this mechanism is unlikely to strongly bias towards aggregated architecture. This 

is essentially due to two reasons (Yeaman et al. 2016): first, there is a narrow range of migration 

where there is a substantial difference between the establishment probability of a new mutation 

linked or unlinked to an existing polymorphism. Second, this difference in establishment 

probability is greatest for new mutations of small effects that could not establish alone (being 

swamped by migration), but could establish if tightly linked to a large effect mutation. 

However, if a distribution of effects of new mutations is considered, local adaptation occurs 

mostly through large effect mutations and this phenomenon plays therefore a minor role. The 

authors note that this conclusion should also hold in spatially explicit models, such as stepping 

stone, because the region where migration constrains local adaptation is, in addition, 

geographically limited.  

Aggregation reconfiguration has also been studied in a two-patch model (Yeaman and 

Whitlock 2011), where a trait is under stabilizing selection around different optima in different 

environments. Many loci are assumed to contribute to this trait, but only a handful of mutations 

are sufficient to achieve local adaptation in the new environment. Hence, the same phenotypic 

change can be achieved by very different combinations of mutations at different loci. This 

allows different genetic architecture to compete, and eventually evolve on the long term. 

Simulation results show that indeed, aggregated architectures evolve in this model, but like for 

emergence, it occurs in a limited range of migration. There is a threshold migration rate below 

which locally favored alleles can increase in frequency and contribute to local adaptation 

(hereafter, swamping limit). In the two patch models, aggregated architecture evolves roughly 

between the smallest and largest swamping limits of plausible mutations. In other words, only 

for migration rates allowing for polymorphism to persist at local adaptation loci, while 

maintaining substantial gene flow. Like for emergence, aggregation also depends on the 

distribution of phenotypic effect of mutations. In particular, if mutation effects can “stack up” 

on a single locus, the system can evolve to just one single locus, i.e. a concentrated, rather than 

aggregated architecture (Yeaman and Whitlock 2011). 
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Here, we reconsider the evolution of aggregated architecture for three reasons. First, as 

noted above, it has been suggested that aggregation should be less favored in spatially explicit 

models with distance-limited migration (at least through the reconfiguration phase). However, 

this general conclusion is unclear. In particular, the opposite may be true if the condition for 

local adaptation are less restrictive in spatially explicit models compared to two patch-models. 

With distance-limited migration, clines form between habitats, irrespective of the relative 

intensity of migration and selection, provided the geographical scale of habitats is larger than 

the scale of migration (Nagylaki 1975; Slatkin 1978). Hence, aggregated genetic architecture 

might evolve within these clines, for a broad range of migration values.  

Second, the distribution of mutational effects seems to play a significant role during the 

emergence or reconfiguration of aggregation, but several contradictory effects are at play. If 

mutations of large effects are frequent compared to those of small effects, aggregation is less 

likely to evolve since fewer loci will be involved in local adaptation and indirect selection will 

likely play a weaker role in their establishment. At one extreme, if a single mutation can occur 

that confer perfect adaptation, indirect selection for tight linkage will necessarily play a limited 

role. Hence, studying aggregation requires imposing some constraint on the maximum effect 

of mutations, which prevents full ‘stacking’ to occur. Such constraint may also be more 

representative of the type of genetic variants observed for quantitative traits. Similarly, it would 

be interesting to clarify the role of small and large effect mutations during the reconfiguration 

phase. In particular, the opportunity for mutations of large effects could have antagonistic 

effects on aggregation evolution. They may initially favor aggregation by attracting small effect 

mutations around them. However, changing a given genetic architecture around a phenotypic 

optimum involves crossing a fitness valley, which is expected to be deeper when it involves 

swapping alleles with larger phenotypic effects. Aggregation during the reconfiguration phase 

may therefore be slower with mutations of large effects.  Third, the condition of polymorphism 

tightly depends on the shape of fitness trade-off between habitats. In formal one-locus 

population genetics model, a general case can be considered, where the selection coefficient of 

alleles in each habitat are free parameters (Nagylaki 1975). Models of polymorphism based on 

mutations of small effect can consider various fitness trade-off (Ravigne et al. 2009; Débarre 

and Gandon 2010). Models investigating the evolution of genetic architecture made however 

more specific assumptions. In continent-island models (Yeaman et al. 2016), no trade-off needs 

to be considered (only effects in the island), but this is a rather specific and drastic 

simplification. In multilocus models where the fitness effect of mutations is directly considered 
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(instead of their phenotypic effect), a linear trade-off is often assumed (Flaxman et al. 2013). 

The fitness effect of alleles simply switch sign across habitats, irrespective of their magnitude. 

In models using stabilizing selection on a trait, the underlying shape of fitness trade-off is 

implicit, and depends on the specific fitness function considered. This is for instance left as a 

flexible parameter in Yeaman and Whitlock 2011, but not investigated in details (parameter  

in their eq. 1). With some fitness functions, the ratio of selection coefficient of alleles across 

habitats depend on the magnitude of the phenotypic effect of the mutation and on the current 

mean trait value of the population (compare Gaussian and Laplace fitness function sketched on 

Figs. 1 and 2). Hence, different fitness functions may initially change the relative contribution 

to local adaptation of mutation of large or small phenotypic effects, as they will exhibit different 

fitness asymmetries across habitats. Furthermore, these contributions may also change 

dynamically during the process of adaptation, especially when those fitness asymmetries 

depend on the current mean trait values in the population. Hence, assuming different fitness 

function will likely influence the relative contribution to local adaptation of mutations of large 

or small phenotypic effects, and therefore, as explained above, influence the initial and long-

term dynamics of aggregation. 

To address these issues, we investigate how genetic architecture evolves in a spatially 

continuous model with a small “pocket of adaptation”. This spatial settings stands as the 

simplest extension of the continent-island model of adaptation considered in previous studies 

(Yeaman et al. 2016)  to a spatially explicit context. We consider a two habitats model, in a 1-

dimensional circular stepping stone. We consider stabilizing selection on a trait, and we 

consider that only two kinds of mutations can occur, either of small or large phenotypic effects. 

These effects are fixed and therefore full stacking of effects is not possible. This allows us to 

clearly isolate the role of mutations with different effect sizes on the evolution of aggregated 

architectures. Last, we consider two types of fitness functions (Gaussian and Laplace) to 

investigate whether the fitness function and the shape of trade-off matters for the evolution of 

aggregated architectures. 

Methods 

Model 

We model the process of adaptation to a “pocket” (i.e. a finite, contiguous area) of habitat. We 

use a model with discrete time and space. We consider a one-dimensional landscape made of 

n patches regularly positioned on a circle, each with a constant number of individuals N. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.30.498280doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498280
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Without loss of generality, we assume that the distance between two consecutive patches is one 

distance unit. This landscape is made of two habitats : n-l contiguous patches correspond to 

habitat 1, and l patches to habitat 2. Individuals express a phenotype z, which is under 

stabilizing selection around a different optimum value zopt in the two habitats. We denote zopt(i) 

the optimum in patch i. We assume that zopt(i) = 0 if patch i is in habitat 1 and zopt(i) = 1 if patch 

i is in habitat 2 (Fig. 3A). We suppose that an individual fitness in patch i, denoted wi(z), 

declines with the deviation of the trait z from zopt(i) : 

 

𝑤𝑖(𝑧) = 𝑒−(𝛺|𝑧−𝑧𝑜𝑝𝑡(𝑖)|)𝛾
 (1) 

 

where Ω measures the intensity of stabilizing selection (which we will assume constant across 

all patches), and where γ controls the shape of this fitness function (following Yeaman and 

Whitlock 2011). We will focus on two cases: γ = 2, which is the widely used Gauss function 

and γ = 1, which we will refer to as the Laplace function (Fig. 1). An important difference 

between these two cases is that a phenotypic change ε around zopt has a negligible effect on 

fitness at first order in the Gaussian case (where w(z)=1 + O(ε2)), but not in the Laplace case 

(where w(z)=1 - Ω|ε| + O(ε2)). These fitness functions also implicitly determine the shape of 

fitness trade-off across environments (Fig. 2). We will see below why it matters. 

Each generation, migration occurs according to the kernel Π illustrated on Fig. 3B. Π is a n×n 

matrix, whose elements Πij give the proportion of individuals from patch j that reach patch i 

after migration. This kernel depends on two parameters: the proportion of migrants leaving a 

patch (m) and the maximal migration distance (d). Among migrants, the variance of this kernel 

is σ2 = d(d+1)/3). The total variance of this kernel is therefore mσ2, with a kurtosis in the range 

[9/(10m), 9/(5m)] for increasing values of d. 

Individuals are hermaphroditic and they randomly mate within their patch. They are diploid 

and carry two chromosomes with L uniformly spaced loci determining the trait z (Fig. 3C). We 

suppose that the number of cross-over at meiosis follows a Poisson distribution of parameter r, 

the map length. Cross-over are then uniformly distributed on the chromosome. Each locus is 

tri-allelic, with effect 0, a or A on z, with 0 < a < A. Effects of alleles and loci are additive on 

z. Small effect mutations (of effect a) reversibly occur at rate μa (mutation events 0→a, a→0 

occur with probability μa). Large effect mutations (of effect A) reversibly occur at rate μA. 
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Mutation events a→A, A→a do not occur, and we consider that large effect mutations occur 

less frequently than small effect mutations (typically μA = μa /1000; see Table 1). 

We consider a population initially fixed for the wild type alleles 0, and we follow adaptation to 

a new pocket of habitat 2 which requires the occurrence and spread of these small or large 

effect alleles a or A.  We consider the case where there are more loci available than required to 

reach the new optimum zopt = 1 in habitat 2. For instance with a = 0.01, A = 0.1, the optimal 

phenotype can be reached by either 5 loci fixed for large effect alleles or 50 loci fixed for small 

effect alleles (or any intermediate combination). If L = 100, as we typically use, there are thus 

2- and 20-times as many available than required loci if optimal phenotype is achieved by only 

large or small effect alleles, respectively. We can therefore study whether the genetic 

architecture tends to evolve to be “aggregated”, i.e. whether contributing loci to the phenotypic 

change in habitat 2 tend to be closer from each other on the chromosome than expected by 

chance. 

Analyses and simulations 

We first analytically investigate the condition for polymorphism in this model. This step is 

important to identify swamping limits for alleles with small or large effects. For simulations, 

we use Wright-Fisher approach, drawing each new individual from the previous generation. 

First, we determine the patch of origin of the parents of the focal individual (according to the 

migration kernel). Each parent is then sampled with replacement from this patch weighted by 

its fitness. One (possibly) recombinant gamete is sampled from each parent to form the new 

individual and this is repeated to reach N individuals in each patch. The corresponding code is 

written in Java programming language and source code is available at 

10.5281/zenodo.6602165. 

Simulations are initialized with all individuals having phenotype z = 0. We focus on two 

timescales, one corresponding to the initial phase of adaptation (to follow the emergence of 

aggregation), the other considering adaptation in the long term (to follow the reconfiguration 

phase). The initial phase of adaptation is defined as the period between initialization and the 

first time when the average phenotype in the patch located at the middle of habitat 2 reaches 

90% of its long term average stationary value. This initial phase lasted typically less than 

50’000 generations in our simulations. The long term phase extends beyond this initial phase, 

generally up to 400’000 generations, which was sufficient to visually observe a stationary 

regime in average phenotype at the middle of habitat 2 over the last 75% of the simulation time. 
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The time step at which the state of the system was recorded differed between our simulations 

of long term (one record every 4000 generations) and initial phase of adaptation (one record 

every 500 generations). Table 1 gives the parameter values used in the simulations. 

Measure of aggregation 

Many possible metrics can be used to measure aggregation. We opt for a measure based on 

spectral analysis. We use the vector vi = (vi1,vi2,…,viL) giving the population frequency of (say) 

small alleles for the L loci along the chromosome, in a given patch i. If 50 loci are fixed for 

small alleles, and that all these contributing loci are next to each other, this vector would look 

like a “square signal” (i.e. to a signal characterized by a very low frequency), whereas if the 50 

loci are randomly scattered along the chromosome, this vector will look like “white noise”. 

Hence, aggregation can be measured by the bias of the spectral density towards low signal 

frequencies. To do so, we first compute the spectral density sf at signal frequency f using a 

discrete Fourier transform of vi. We then measure a weighed signal frequency: 

 

𝐹0 = ∑ 𝑠𝑓𝑓

𝐿/2

𝑓=1

 (2) 

 

which we scale between the maximal (Fmax) and minimal (Fmin) values possible to achieve for 

a vector carrying the same elements than vi, but in a different order. Low F0 indicate that the 

spectral density is biased toward low signal frequencies. Fmax measures white noise and is 

computed as an average over random permutation of vi . Fmin measures the maximal aggregation 

that could be reached, and is computed on a vector where all values in vi  are sorted. Hence the 

scaled measure of aggregation : 

 

𝐹 =
𝐹𝑚𝑎𝑥 − 𝐹0

𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛
 (3) 

 

is close to 0 when there is no aggregation (the weighed signal frequency is close to the value 

obtained on random permutations), whereas it is close to one when aggregation is maximal 
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(close to a square signal). Whether this aggregation significantly differs from zero can also be 

assessed by obtaining its distribution under the null hypothesis (i.e. over the different 

permutations of vi ). This metric can be computed on the population frequency vector of only 

small alleles, only large alleles, or both combined. 

Results 

Condition for polymorphism 

We first consider the deterministic condition for the existence of a cline for an allele introduced 

in a monomorphic population where individuals have trait value z. We consider a mutation at 

one locus creating a new phenotype zmut. When rare, the mutant gamete frequency within the n 

patches x(t)=(x1(t), x2(t), …, xn(t)) follows the linear recursion: 

 

𝑥(𝑡 + 1) = 𝐷Π𝑥(𝑡) (4) 

 

where D is a n×n diagonal matrix such that Dii = wi(zmut)/wi(z). Denoting λ(z,zmut) the dominant 

eigenvalue of DΠ, the mutant can invade the population if and only if λ(z,zmut) > 1.  Linearizing 

for small phenotypic effects of mutants (i.e. with zmut = z + ζε with ε → 0+ and ζ = ±1), then, 

for 0 < z < 1, we have 

 

𝜆(𝑧, 𝑧𝑚𝑢𝑡) = 1 + 𝜁𝜕2𝜆(𝑧, 𝑧)𝜖 + 𝜕2
2𝜆(𝑧, 𝑧)

𝜖2

2
+ 𝑂(𝜖2) (5) 

 

In appendix A, we give a general expression of this dominant eigenvalue in terms of the 

parameters of the model. For simplicity, here, we only focus on the ‘semi-infinite’ limit, when 

habitat 2 is kept at a constant size, while the size of habitat 1 is considered infinitely large 

(n→+∞, Nagylaki 1975). Define s1 (resp. s2) the value of wi’(z)/wi(z) in patches within habitat 

1 (resp. 2), and t1 the value of wi’’(z)/wi(z) in patches within habitat 1, we obtain: 
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𝜕2𝜆(𝑧, 𝑧) → 𝑠1 (6a) 

𝜕2
2𝜆(𝑧, 𝑧) →

(𝑠2 − 𝑠1)2𝑙2

3𝑚𝜎2
+ 𝑡1 (6b) 

 

We derive the condition for the existence of a cline in this model, taking Nagylaki’s 1975 results 

as a comparison. In Nagylaki’s model, space is continuous and migration described by 

diffusion. The key result is that the condition for the existence of a cline is determined by two 

combined dimensionless parameters (see box 2, fig. II in Lenormand 2002). The first, noted k, 

measures the relative scales of the spatial heterogeneity (the size of the pocket) and of the 

‘characteristic length’ (sensu Slatkin 1973) of the system, which weighs the strength of 

selection relative to gene flow. The second, noted 𝛼, measures the fitness asymmetry between 

habitats. It is defined as the ratio of minus the “outer” (in habitat 1, the allele is selected against) 

and “inner” (in habitat 2, the allele is selected for) selection coefficients of the allele. This 

parameter must be positive, as the model only concerns alleles with a trade-off among habitats. 

The existence of a cline is not relevant in other cases. Results for the Laplace and Gauss fitness 

functions are detailed below, and summarized in fig. 4. 

Laplace trade-off - When γ = 1, (6a) simplifies to ∂2λ(z,z) = - Ω irrespective of z value in ]0,1[. 

We therefore expect z to converge towards z* = 0. Because ∂2λ(0,0+) = - Ω, z* = 0 cannot be 

invaded by small mutations (Fig. 4). Equation (6b) becomes: 

 

𝜕2
2𝜆(0,0) → Ω2(

4𝑙2

3𝑚𝜎2
+ 1) > 0 (7) 

 

Combining this result with equation (5) and assuming that l2/(mσ2) is large yields that a small 

but non infinitesimal mutant could invade z* = 0 when: 

 

𝑘 > √3/2 (8) 
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where 𝑘 = 𝑙√2Ω𝜖/(2𝜎√𝑚) expressed as in Nagylaki 1975. Here, the half size of the pocket 

is l/2, the additive fitness effect of the allele is Ω𝜖, and the standard deviation of the migration 

kernel is 𝜎√𝑚.  With the case of a Laplace trade-off, 𝛼, the ratio of outer and inner selection 

coefficients is 1, for any allele. The fitness advantage gained in one habitat is lost in the other. 

The threshold value for the existence of a cline √3/2 = 0.87 is close to Nagylaki’s value 

corresponding to this case (𝑘 = 𝜋/4 = 0.79). The accuracy of this result depends on k being 

sufficiently large for the threshold √3/2 to be attained with reasonably small mutation ε. Hence, 

with a Laplace fitness function, large effect mutations invade more easily. They have a smaller 

swamping limit than small effect mutations, as they are exposed to stronger selection (larger 

k), but have the same ratio of outer/inner selection coefficients (𝛼 = 1).  

Gauss trade-off - When γ = 2, (6a) simplifies to ∂2λ(z,z) = - 2Ω2z. We therefore expect z to 

converge towards z* = 0 . However, contrary to the previous case, ∂2λ(0,0+) = 0, which entails 

that z* can be invaded by small mutations if ∂2
2λ(0,0+) > 0 (evolutionary branching point). 

From (6b), this condition simplifies to: 

 

𝑘 > √3 2⁄ √𝛼 (9) 

 

where, here, the combined parameters are k = lΩ√ε/(σ√(2m)) and  = ε/2 . This result is also 

close to Nagylaki’s 1975 result (Eq 38 and 40a), where the swamping limit is approximately 

√𝛼 for small  (compared to ~1.22√𝛼 in Eq. 9). An important difference with the Laplace case 

is that the intensity of selection scales with the asymmetry between habitats ( = ε/2). 

Mutations of smaller phenotypic effects are exposed to weaker selection but they enjoy a more 

favorable outer/inner ratio of selection coefficients compared to mutations of larger phenotypic 

effects. At the limit, for mutations of very small phenotypic effect, this ratio tends towards zero, 

meaning that mutations of very small effect enjoy an advantage in habitat 2, while suffering 

from virtually zero fitness decrease in habitat 1. This is caused by the fact that the Gaussian 

fitness function is flat around the optimum. The consequence is that swamping limits do not 

depend on the phenotypic effects of mutations: either all mutations can invade, or none 

(depending on whether 𝑙𝛺/(𝜎√𝑚) is greater or lower than √3 2⁄ , respectively).  
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Contribution to local adaptation of small vs. large effect mutations  

In both the Laplace and Gauss case, polymorphism cannot arise when the size of habitat 2 (l) 

drops below a critical threshold. However, a qualitative difference exists between the two cases 

regarding mutations of small vs. large phenotypic effects: with the Laplace trade-off, 

polymorphism requires mutations of large (i.e. non-infinitesimal) effect, but not with Gauss 

trade-off. Again, the key explanation for this difference is that with Gauss trade-off, the 

asymmetry of selection between habitats drops to 0 as mutant effect size decreases (Fig. 4), 

while it stays constant in the Laplace case Hence, we expect that mutations of smaller effects 

should contribute much more to local adaptation in the Gauss vs. Laplace case. This difference 

should be reinforced by the fact that mutations of small effects (of effect a) occur more 

frequently than mutations of large effects (of effect A).  However, this prediction is mitigated 

by the fact that the invasion criteria computed above do not account for stochastic loss of 

beneficial mutations that occur when mutations are present in few copies. This last effect 

should particularly penalize mutations of small effects that are initially predicted to invade in 

the Gauss case and reduce the difference between  Gauss and Laplace cases.  To quantify these 

antagonistic effects, we can compare the rate of establishment of small versus large mutations 

in the two cases. A branching process approximation predicts that a mutant allele of phenotypic 

effect ε has a probability of establishment that is approximately 2(λ(z*,z*+ ε) - 1). Therefore, 

after a period of t generations, when neglecting interactions among alleles and the global shift 

of background phenotype (i.e. all the alleles are still rare), we expect the number of established 

small and large effect alleles to be proportional to μa(λ(z*,z*+a) - 1)t and μA(λ(z*,z*+A) - 1)t, 

respectively. Among established alleles, the proportion PA of large effect mutations should then 

be approximately 

 

𝑃𝐴 = 1/ [1 +
𝜇𝑎

𝜇𝐴
 
𝜆(0, 𝑎) − 1

𝜆(0, 𝐴) − 1
] (10) 

 

and the part of the phenotype caused by these large alleles QA should be approximately 
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𝑄𝐴 = 1/ [1 +
𝑎

𝐴
 
𝜇𝑎

𝜇𝐴
 
𝜆(0, 𝑎) − 1

𝜆(0, 𝐴) − 1
] (11) 

 

The gross phenotypic contribution of mutations of large effect is then given by 𝑧̅𝑄𝐴.  

Gauss trade-off - In this case,  

 

𝜆(0, 𝜀) − 1 = 𝜕2
2𝜆(0, 0+) 𝜀2/2 (12) 

 

Hence, when a polymorphism is possible, the contribution of large alleles to the current 

phenotype should be approximately  

 

𝑄𝐴 = 1/ [1 + (
𝑎

𝐴
)

3

 
𝜇𝑎

𝜇𝐴
 ] (13) 

 

which is constant and equal to 0.5 with the parameter values used in our simulations (where 

small effect mutations have a 10-times smaller phenotypic effect, but a thousand time higher 

mutation rate).  

Laplace trade-off - In this case, 

 

𝜆(0, 𝜀) − 1 = −Ω𝜀 + 𝜕2
2𝜆(0, 0+) 𝜀2/2 (14) 

 

Hence, the contribution of large alleles to the current phenotype should be approximately 

 

𝑄𝐴 = 1/ [1 + (
𝑎

𝐴
)

2

 
𝜇𝑎

𝜇𝐴
  

2Ω − 𝜕2
2𝜆(0, 0+) 𝑎

2Ω − 𝜕2
2𝜆(0, 0+) 𝐴

] (15) 

 

with 𝜕2
2𝜆(0, 0+) given by Eq. 7. When the size of habitat 2 is between the swamping limits of 

large and small effect mutations, the phenotype should initially be exclusively made of large 
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effect mutations. For sizes of habitat 2 larger than the swamping limit of small effects 

mutations, the contribution of large effect mutations should decrease when the size of habitat 

2 increases (in Eq 15, 𝑄𝐴 decreases as ∂2
2λ(0,0+) increases, for instance with increasing l).  

Effect of “background trait value” - These relative contributions of mutations of small and 

large effects are computed initially, when the average phenotype in habitat 2 just begins to 

evolve towards its optimal value. However, during this process, a cline builds up, and the 

average trait value increases in habitat 2, but also in habitat 1, at least close to the boundary 

between habitats. In the Laplace case, this is not strongly consequential, as the fitness function 

is linear and its local slope does not depend on average trait values, at least until adding one 

mutation causes a phenotypic overshoot in habitat 2. However, this is more consequential in 

the Gauss case: the slope of the Gauss fitness function gets steeper as trait value increases 

(instead of being flat initially, see fig. 1). When the average trait value increases in the Gauss 

case, mutations of small effect no longer enjoy the benefit of having more favorable outer/inner 

ratio of selection coefficients. As we detail in appendix B, this favors the establishment of 

mutations of larger effects compared to the initial expectation, during the adaptation process . 

In particular, when the average trait value becomes larger than a threshold value, small alleles 

cannot invade anymore and only large alleles can pursue the adaptation process (until the 

phenotype becomes close to the optimum so that overshooting becomes a problem).  Overall, 

this effect of “background trait value” leads to an underestimation, in eq. 13, of the contribution 

of large effect mutations in the Gauss case. This bias becomes lower when the size of habitat 

2 increases, as counterselection outside habitat 2 becomes less and less important in this case.  

Effect of “aggregation” - Last, the establishment rates computed above do not account for 

indirect selection and linkage disequilibria among several alleles. In the Laplace case, for a 

given pocket size, only mutations exceeding a given effect size can form a cline and contribute 

to local adaptation. However, we also expect that during the establishment of local adaptation, 

some small effect mutations that occur in close linkage (to one another or to large effect 

mutations) could also invade. At small timescales, this effect will mostly concern small effect 

mutations, that co-occur much more frequently than large effect mutations (assuming, as we 

do, that 𝜇𝑎 ≫ 𝜇𝐴). For instance, for a pair of mutations, cases of co-occurrence will scale with 

the square of mutation rate, which can be limiting at short time scales (Yeaman 2013). This 

aggregation bias should be particularly strong below the swamping limit of small effect 

mutations, where mutations of small effect can establish only if they are aggregated. This effect 

will also favor small effect mutations in the Gauss case by increasing the establishment 
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probability of co-occuring small-effect mutations that happen to be in close linkage. Overall, 

this effect of “aggregation” favors small effect mutations in both the Laplace and Gauss cases. 

It should lead to cluster of small effect mutations, possibly grouped around a large-effect 

mutations. Here too, this bias should decrease with increasing size of habitat 2, as indirect 

selection only matters within clines at the boundary between habitats, i.e. in a fraction of the 

landscape that becomes relatively less important when the size of habitat 2 increases.  

Simulations of the initial phase of adaptation 

Laplace trade-off - Our analytical computation of the invasion threshold for large alleles 

derived from equation (7) proved remarkably accurate (Fig. 5A). Below this critical threshold, 

there was no adaptation in our simulations. As predicted, large effect mutations dominate when 

the size of habitat 2 is below the swamping limit of small-effect mutations, but their 

contribution declines above this limit. Nevertheless, we observe that small-effect mutations 

contribute significantly to the establishment of local adaptation even below this limit. As 

expected, they show a clear signal of aggregation in this case, and this signal is stronger when 

computed on small and large effect mutations combined (Fig 5B). In fact, small-effect 

mutations form clusters grouped around large effect mutations that establish first. Fig 6A shows 

a typical example of this dynamics. This aggregation bias is maximal close to the swamping 

limit of large-effect mutations and declines with increasing size of habitat 2, as predicted. 

Because of this aggregation bias, the gross contribution of large effect mutations to the 

phenotype given by eq. 15 is largely overestimated.  

Gauss trade-off – In the simulations shown on Fig. 5, the swamping limit of both small and 

large effect mutations is l = 5.2. However, we do not observe a clear swamping effect. Contrary 

to the Laplace case, the average trait value start to increase smoothly below this threshold (fig 

5C). With the gauss fitness function, mutations initially enjoy an advantage in habitat 2, while 

suffering very limited fitness reduction in habitat 1. Hence, many alleles can persist long 

enough to generate a weak pattern of local adaptation. Large effect alleles at l=5 showed also 

a weak but significant aggregation (Fig. 5D), which may also contribute to this phenomenon. 

The contribution of large effect mutations from eq. 13 agrees well with the simulation results. 

The “background trait value” bias (which favor large effect mutations) tend to cancel the 

“aggregation” bias (which favor small effect mutations). The aggregation bias is particularly 

significant for intermediate sizes of habitat 2 above the swamping limit (fig. 5D). Fig 6B shows 

a typical example of this dynamics. 
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Simulation of long term adaptation 

Laplace trade-off – We confirmed that our prediction of swamping limit is accurate (Fig. 7A). 

We do not observe a marked change in the contribution of small vs large effects to the adaptive 

phenotype compared to the initial phase. There is still an excess of large effect alleles compared 

to the control (where habitat 1 is absent), especially for sizes of habitat 2 close to the swamping 

limits. These large effect mutations do not show a significant pattern of aggregation at the end 

of this long-term adaptation phase (Fig. 7B). In contrast, the aggregation of small effect 

mutations, which was already present in the initial phase, reinforces in the long term and 

reaches extreme values. This strong aggregation patterns occur for all sizes of habitat 2, even 

if it tends, like in the initial phase, to be stronger for sizes of habitat 2 close to the swamping 

limits. 

Gauss trade-off – We still observed weak local adaptation for sizes of habitat 2 below the 

swamping limit, with similar magnitude than during the initial phase of adaptation (Fig. 7C). 

For all the habitat 2 sizes above swamping limit, the proportion of adaptive phenotype due to 

large alleles markedly increased compared to the initial phase of adaptation (and became much 

higher than in control where habitat 1 is absent). On the long run, small effects mutations are 

replaced by large effect mutations. For intermediate sizes of habitat above the swamping limit, 

these large effect mutations become aggregated (fig. 7D). For larger habitat 2 sizes, this 

aggregation of large effect mutations disappears, and is replaced by a pattern of aggregation of 

the residual small effect alleles. These residual small effect mutations strongly cluster around 

large effect mutations (the combined measure of aggregation on small and large effect 

mutations is much larger than each taken separately, fig. 7D). 
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Discussion 

Local adaptation and aggregation in spatially explicit model 

Spatially explicit model with limited dispersal allow to maintain polymorphism for a broad 

range of parameter values. Provided the environment is “coarse-grained” compared to the scale 

of gene flow (i.e. the sizes of the different habitats is sufficiently large), habitats’ cores are 

more preserved from gene flow compared to peripheral zones and clines form at the boundary 

between habitats.  This phenomenon is not present in spatially implicit (two-patches or 

mainland-island) models of adaptation. Here, for a given migration rate, local adaptation to a 

given habitat is always possible if the spatial extension of this habitat is large enough. Of 

course, a direct one-to-one comparison is not possible between spatially implicit and spatially 

explicit models, since the spatially explicit model introduces the effect of distance and extra-

parameters. However, the spatially explicit model does not lead to the qualitative appreciation 

that the conditions of polymorphism, and aggregation, are restricted to a small range of 

migration rate. As long as clines form at the boundary between habitats, recombination is 

selected against among alleles forming these clines in the few patches around the habitat 

boundary with alleles at intermediate frequency. Away from these clines, recombination is 

neutral since no polymorphism is present. Hence, these clines provide a stable context favoring 

recombination suppression (or equivalently aggregated architecture) on the long-term. We 

indeed observe the emergence of aggregated genetic architecture on the long term in these 

conditions. We observed this both through the initial recruitment of linked alleles (during the 

“emergence” of local adaptation), and through the long-term competition between 

differentially aggregated genetic architectures (in the “reconfiguration” phase). 

Condition for the existence of clines 

The condition of polymorphism in a spatially explicit model have been precisely worked out 

for a single locus using a diffusion approximation (Nagylaki 1975). In this population genetic 

model, the fitness effect of alleles in the different habitats are constant parameters. The local 

adaptation allele has a fixed positive selection coefficient in one habitat and a fixed negative 

selection coefficient in the other. The effect of the fitness trade-off (the ratio of selection 

coefficients outside versus inside the focal habitat) can be distinguished from the effect of the 

intensity of selection (the selection coefficient within the focal habitat): the effect of each 

parameter can be kept constant while the other one is varying. In this context, and for a given 
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fixed trade-off, the condition for the existence of cline differ between weakly and strongly 

selected alleles. Allele of large effect can more easily escape swamping and form clines. 

In a quantitative genetic type of model, selection is parameterized differently. We use 

stabilizing selection on a trait with different optima in the different habitats. Selection is 

therefore determined by the difference in optimal phenotype across habitats, the intensity of 

stabilizing selection around each of these optima and the precise shape of the fitness function 

around them. The treatment of such models remains similar to population genetic models 

regarding the existence of a first cline at a single locus, without the complication of linkage 

and indirect selection (Fig 4). However, the use of a fitness function relating the trait value to 

the fitness allows combining the effect of several loci in a parsimonious way. With stabilizing 

selection, the fitness effect of an allele with a given phenotypic effect depends on other alleles, 

contrary to simple population genetic models. For instance, if the population is at the optimum 

trait value, a mutation increasing the trait value is deleterious. It would be beneficial if the 

population had a trait value well below the optimal value. In addition to this background effect, 

the precise shape of the fitness function also matters. There are indeed many possible functions 

that can be used to describe stabilizing selection. It is necessary to scale them in some ways to 

compare results with different functions. A natural way to scale them is to assume that the 

overall fitness difference between habitats is kept constant (i.e., such that irrespectively of the 

function used, the fitness drop of having, in one habitat, the phenotypic value optimal in another 

is the same). This scaling necessarily entails that alleles with a given phenotypic effect on the 

trait do not necessarily have the same fitness effect with the different functions, for a given 

average trait value in the population. This complicates the direct comparison for the conditions 

of polymorphism for given alleles in the different cases. However, beyond this scaling issue, 

we observe that the choice of this fitness function has a large qualitative impact on the condition 

of polymorphism. This qualitative difference arises because the fitness function makes a 

particular assumption on the way that the trade-off (the ratio of selection coefficients across 

habitats) varies with the intensity of selection (Fig. 2). In the Laplace fitness function, the trade-

off is constant for alleles of small and large phenotypic effects, as long as the phenotypic effect 

does not overshoot the optimum, and the results are therefore very similar to the population 

genetic model where selection coefficients of alleles are constant parameters. There are 

conditions (of migration intensity and habitat size) where large effect alleles can form clines 

while small effect alleles cannot (Fig. 4). In the Gaussian fitness function, however, the fitness 

trade-off varies with the phenotypic effect of alleles and the intensity of selection. Intuitively, 
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we see that when the population mean phenotype is close to the value optimal outside the 

pocket, an allele of small effect has an advantage in the pocket, but very little deleterious effect 

outside (since the fitness function is flat near the optimum outside the pocket). It can therefore 

invade very easily. For an allele with a larger effect, the trade-off is less favorable (it starts 

having a deleterious effect outside the pocket), but it enjoys a stronger intensity of selection. 

These two effects cancel each other, with the consequence that it is an all-or-nothing 

phenomenon: either all alleles can form clines or none. This Gaussian case is equivalent to a 

population genetic model where the trade-off would vary with the intensity of selection (Fig 

4).  

Overall, the choice of the fitness function has a qualitative effect on the dynamic of local 

adaptation, especially regarding the relative contribution of alleles of small and large effects 

and their temporal dynamics (see section “Patterns of aggregation with different fitness 

functions below”). Previous models have considered various fitness function but have not 

explicitly shown that the choice of the fitness function had a qualitative effect on patterns of 

polygenic local adaptation when alleles of different phenotypic effects are considered. 

Condition to switch towards more aggregated architecture  

Once local adaptation is established, aggregation can arise by the replacement of a given 

architecture by another (a change in the effect size distribution of alleles and/or in their 

positions along the chromosome). This progress towards aggregation takes time because the 

transition between architectures involve crossing a fitness valley. Indeed, when the phenotype 

is near its optimal value in the focal habitat, introducing a new local adaptation allele is likely 

to be deleterious, as it will cause an overshoot in the mean trait value. Hence, the first step for 

switching from one configuration to another involves recruiting an allele that has a deleterious 

allele in the context in which it arises. Of course, this deleterious effect can be immediately 

compensated by a frequency change at another locus (to keep the phenotype close to its 

optimum value), but this is necessarily a two-step phenomenon, where the first step is not 

favorable. Here too, the difference between the fitness functions also has an important 

consequence on the long-term outcome. Contrary to the Laplace case, the Gauss fitness 

function is flat near the optimum, so that small deviations necessarily have small deleterious 

fitness effects in the focal habitat. Hence the fitness valley is shallower in the Gaussian case. 

A polymorphism of architecture is more easily maintained around an optimum with a flat 

fitness function. As a consequence, transition between architecture is more fluid and occurs at 

a much faster rate in the Gauss versus Laplace case. In the latter, transitions involving large 
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effect mutations are extremely difficult, and these alleles tend to be stable over very long period 

of time, even though small effect mutations can switch positions and end up forming large 

cluster around them. Again, this comparison is made scaling the overall fitness difference 

among habitats (as common in quantitative genetics models), and not the fitness effect of 

individual alleles (as common in population genetics models). When selection acts on a trait, 

the fitness effect of alleles depends on the context (the background trait value), and are 

therefore not directly scalable. 

Patterns of aggregation with different fitness functions 

The vast majority of models of selection involving an environmental shift use Gaussian fitness 

functions. This is the case for instance when studying a temporal environmental variation (e.g. 

Bürger and Lynch 1995; Gomulkiewicz and Houle 2009; Chevin et al. 2010; Matuszewski et 

al. 2015; Marshall et al. 2016; Anciaux et al. 2018). Spatial models of species range also most 

often use a Gaussian fitness function (e.g. Kirkpatrick and Barton 1997; Alleaume-Benharira 

et al. 2006; Bridle et al. 2010; Polechová and Barton 2015; Fouqueau and Roze 2021). Such 

fitness function have received various justification and validation (Lande 1976; Martin and 

Lenormand 2006a; Martin et al. 2007). This fitness function is most often used for convenience 

for maintaining a normal distribution of phenotypes within a population, or to model smooth 

stabilizing selection around an optimum. As explained above, the choice of a fitness function 

also implicitly determines the fitness effects of mutations across environments and the shape 

of fitness trade-off across environments (Martin and Lenormand 2006b, 2015). While 

comparative analysis tend to globally support Gaussian trade-off patterns around optima 

(Martin and Lenormand 2006b), it is difficult to empirically affirm that such trade-off are valid 

for all loci and alleles, especially for the small effect mutations that are difficult to study. the 

precise shape of fitness function has been shown to also be important in other circumstances. 

For instance the shape of fitness function away from optima is crucial for predicting 

demographic consequences of large departures from optimal phenotype in situation of rapid 

environmental change (Osmond and Klausmeier 2017). In any case, our results show that the 

dynamics and pattern of aggregation strongly depend on the fitness function used.  

Although both fitness trade-offs readily lead to aggregation patterns, the underlying 

configurations of alleles of small and large effects, their dynamics, and the resulting genetic 

map qualitatively differed. These qualitative differences between the Gauss and Laplace fitness 

function are caused by the conditions of polymorphism that differ for alleles of small and large 

effect, as explained above. This effect is particularly strong initially, when alleles are recruited 
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to establish local adaptation. Here the crucial point is whether the fitness function is flat or not 

outside the pocket, which determines whether small effect alleles have initially a more 

favorable trade-off than large effect alleles. The other important dynamical difference occurs 

in the longer term and depends on the ease to switch among architectures. Here, the crucial 

point is whether the fitness function is flat or not inside the pocket, such that alternative 

architectures can evolve without having to cross a deep fitness valley.  

Overall, with a Laplace trade-off, aggregation stems from the fact that small alleles tend to 

aggregate along few, non-aggregated large alleles, hence creating several small, but stable, 

chromosomal islands of adaptation around each of those large allele. This effect is exacerbated 

when the pocket size is above the swamping limit of large effect alleles but below the swamping 

limit of small effect alleles. In this case, clines of small effects alleles emerge right from the 

beginning, as long as these alleles occur near large effect ones, and enjoy strong indirect 

selection. During this emergence phase, the interplay between the probability of invasion of 

small and large alleles and the hitch-hiking effects lead to a (relatively minor) non-linear 

change in the relative proportion of small vs. large effect alleles as the size of the habitat 

increases (Fig 5A, Appendix B). Because reconfiguration is slow with a Laplace fitness 

function, this effect is still present in the long term (Fig 7A). Overall, reconfiguration of the 

genetic architecture is markedly slower than in the Gaussian case, and particularly rare 

regarding alleles with large effect sizes. As a result, the genetic architecture remains 

remarkably stable in time under this regime.  

With a Gauss trade-off, all the alleles tend to aggregate together irrespective of their effect size, 

while concentration (i.e. replacement of several small alleles by a large one) reinforces in time. 

This often leads to a single chromosomal island of adaptation in the long-term. Because of this 

concentration, effect sizes of adaptive alleles within the pocket were markedly higher with a 

Gaussian than with a Laplace fitness trade-off in the long term (Fig 7A-C). Like for the Laplace 

case, there is initially a (relatively minor) non-linear change in the relative proportion of small 

vs. large effect alleles as the size of the habitat increases (Fig 5C, Appendix B). However, this 

effect disappears in the long term since reconfiguration occurs quite rapidly (Fig 7C).   

Empirically, if the resolution of the genetic map is low, small chromosomic islands mentioned 

above may appear as single loci and aggregation may be overlooked. Therefore, chromosomal 

islands of adaptation may be more conspicuous under the Gauss trade-off, unless the 

concentration process allows for stacking all the necessary phenotypic effect on a single allele 

(Yeaman and Whitlock 2011). In contrast, under the Laplace trade-off, the local adaptation 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.30.498280doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498280
http://creativecommons.org/licenses/by-nc/4.0/


 

 

alleles may appear as scattered QTLs with large effect sizes. With a high resolution, however, 

alleles of small effect may be found surrounding these large effects loci. These expectations of 

course neglect that the architecture could also evolve because of chromosomal rearrangements 

(e.g. inversions) or local modifications of recombination rates (Lenormand and Otto 2000; 

Kirkpatrick and Barton 2006; Bürger and Akerman 2011; Lenormand 2012; Yeaman 2013; 

Charlesworth and Barton 2018). The importance of these secondary modifications of 

recombination ultimately depend on their relative rate of occurrence compared to the rate of 

architecture reconfiguration that we describe. In particular, they may play a stronger role in the 

Laplace case, where large effect alleles are stable on the long term and fail to consistently 

aggregate. However, these relative dynamics would require to be specifically investigated. 

Comparison to previous studies  

In addition to the differences associated with considering a spatially explicit model with 

distance limited dispersal, there are several points to discuss in comparison to previous studies 

on local adaptation and genetic aggregation. First, all studies do not consider both the 

emergence and the reconfiguration phases in the process of aggregation. The two combine, and 

the long term outcome depends on both. Second, all studies do not consider a fitness function 

relating trait to fitness, considering e.g. a set of loci with mutations with a constant effect. 

Stabilizing selection on a trait introduces the complication that the effect of alleles depends on 

the background and vary as local adaptation emerges. This can lead to very different outcomes. 

Third, models of local adaptation do not necessarily compare different shapes of fitness trade-

off, or do so using cases that are apparently different, yet similar where it matters most. For 

instance Débarre and Gandon (2010) explored a wide range of trade-off functions in a two 

patch model. However, these functions are all similar on a critical aspect : their derivative of 

log-fitness close to optima is always 0. In that sense, all the trade-offs considered in that study 

are comparable to the Gaussian trade-off here, which explains why they did not find a strong 

effect of the shape of the fitness trade-off on the pattern of local adaptation. Last, and this is a 

related point, the different studies have not systematically explored the effect of different 

fitness functions, even when they considered a flexible model allowing for such comparison. 

For instance, Yeaman and Whitlock (2011)considered a fitness function similar to ours in a 

two-patch model, with a flexible parameter allowing to explore Laplace and Gauss trade-offs 

considered in our study. However, the effect of this parameter is not clearly discussed in their 

study.  

Conclusion and perspective  
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We show that the process of genetic aggregation is a robust phenomenon when local adaptation 

evolves in a new environmental pocket. The detailed pattern of aggregation depends on both 

the emergence and the reconfiguration phase and vary depending on the precise shape of 

function relating trait values to fitness. The emergence of aggregation requires that several 

clines co-occur at the same spatial location. This situation may not systematically characterize 

ecological variation. For instance, it is possible that local adaptation occurs on ecological 

gradients (notably abiotic such as temperature, photoperiod etc.), rather than on “pockets” of 

habitats. In this case, staggered clines may evolve with little scope for genetic aggregation. 

However, the presence of an abiotic gradient does not necessarily translate into a gradient in 

optimal trait values in a given species. We have a limited knowledge of this variation. 

Moreover, many natural habitats may be better described as patches of different sizes rather 

than as gradients. In particular, anthropized landscapes may be characterized by  the creation 

of marked segmentation and abrupt transition in habitat quality at moderate-to-coarse spatial 

grains (typically 0.1-1000 ha, Strayer 2005) due to infrastructures (e.g. roads), spatial 

heterogeneity in land use (e.g. crops in agricultural landscapes or stands within managed 

forests) and management practices (e.g. pesticide application). This first trend may combine 

with a homogeneization process at fine grain (typically <0.1 ha; Strayer 2005) in many contexts 

like urban areas (e.g. soil artificialization) or managed forest or agricultural ecosystems(e.g. 

Fraterrigo et al. 2005 and references therein). Hence, the combination of both processes 

suggests that the rapidly growing human imprint on landscape structure should often result in 

a marked patchiness, making spatially explicit models critical to  consider when investigating 

patterns and dynamics of local adaptation in the field, and more generally adaptation and 

resilience of organisms to global changes. 
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Figures 

 

Fig. 1. Laplace and Gauss fitness functions. The red arrow represents a mutation increasing 

the trait value. With Laplace fitness function, the log-fitness gain of the mutation in 

environment 2 (gray arrow) is equal to the log-fitness loss in environment 1 (black arrow), 

irrespectively of the current phenotype (in absence of optimum overshoot). With Gauss fitness 

function, the log-fitness gains (and losses) depend on current phenotype. 
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Fig. 2. Fitness trade-off curves between environments, for different intensity of stabilizing 

selection (𝛺). Without loss of generality, delta zopt = 1. Blue: Gaussian fitness function ( = 2). 

Red: Laplace fitness function ( = 1). Left : fitness; Right: log fitness. 
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Fig 3. Model assumptions. (A) The landscape is one-dimensional and circular with n patches 

with N individuals. Habitat 1 and 2 are made of n-l and l contiguous patches with an optimal 

trait value zopt = 0 and 1, respectively. Trait z is under stabilizing selection around this optimum. 

(B) Dispersion kernel. A proportion 1-m of individuals stay in their patch, and a proportion m 

is uniformly distributed among patches within distance d of the focal patch (focal patch 

included). Hence, each non-focal patch receives m/(1+2d) migrants. (C) Individuals are diploid 

and have a pair of chromosomes with L loci determining trait z. Mutation of small or large 

effects can occur on all these loci.  
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Fig 4. Conditions for polymorphism in the semi-infinite limit of our model. The upper panel 

correspond to the condition for the existence of a cline in an habitat ‘pocket’ as predicted using 

(Nagylaki 1975). See Lenormand (2002), Box 2, Fig II. The figure shows whether a mutant 

can invade (white area) or not (blue area) the z*=0 resident phenotype as a function of two 

compound parameters k, and α (if it does, a cline establishes between the habitats). On the y-

axis k measures the relative scales of the spatial heterogeneity (width of the pocket) and of the 

‘characteristic length’ (σ/√s), which weighs the strength of selection relative to gene flow. On 

the x-axis, α1/2 measures the square root of the ratio of selection coefficients outside/inside the 

pocket. The lower panels zoom on areas of the figure where small mutants are positioned with 

a Gauss (green, left) and Laplace (red, right) fitness trade-off. In both panels, mutation with 

increasing phenotypic effects are presented using stars with increasing size. In the Gauss case, 

mutations of different effect sizes follow lines with zero intercept and slopes that depend on 

the parameters (see text). Mutants can invade if this slope is above the critical slope 

corresponding to the frontier between the blue and white areas. This is an all-or-nothing 

situation. Mutations of small and large effects can either all invade or none of them can invade. 

In the Laplace case, mutations are on a vertical line with α = 1 (symmetry between habitats). 

Infinitesimal mutations cannot invade, but large mutations can form clines if their phenotypic 

effect is sufficiently large. 
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Fig 5. Short-term genetic architecture of local adaptation after the emergence phase. 

Composition and structure of adaptive genotypes at the center of habitat 2 after the initial phase 

of adaptation (see methods) for Laplace (panels A and B) and Gauss (panels C and D) fitness 

trade-off. Panels A and C present the average phenotype (bars) at the middle of habitat 2 for 

various sizes of habitat 2 (l), averaged over 20 replicates. The average relative contribution of 

alleles with large and small effects are presented in red and blue within each bar, respectively. 

Dotted black lines show a 95% confidence interval of these relative contributions. Green 

squares show the average contribution of large alleles in the corresponding control (removing 

habitat 1), along with a 95% confidence interval (1,96 × s.e. computed over 20 replicates). The 

purple line shows the expected contribution of large versus small effects computed when rare 

at emergence. In panel A and B (Laplace fitness function), vertical black lines show the 

analytical invasion thresholds above which a small (dotted line) or a large (solid line) effect 

mutation can invade alone the z*=0 resident phenotype. In panel C and D (Gauss fitness 

function), the vertical black dashed line show the analytical invasion threshold above which a 

small or large mutation can invade alone the z*=0 resident phenotype. Panels B and D present 

the average aggregation of adaptive alleles along the genetic map at the middle of habitat 2 for 

various sizes of habitat 2 (l), averaged over 20 replicates. Aggregation of all the adaptive 

alleles, small effects only and large effects only are presented in grey, blue and red, respectively. 

Filled dots correspond to significant F values, based on Bonferroni – corrected tests with 5% 

family-wise error rate.  
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Fig 6. Typical examples of aggregation dynamics with Gauss (panel A) and Laplace (panel 

B) fitness functions. In each panel, the frequency of the dominant adaptive allele at each locus 

within the central deme of habitat 2 is presented, in blue if it is an allele with a small effect 

size, red if it is a large effect size, with darker color for larger frequency. The x-axis “loci” 

represent loci, as they are ordered on the chromosome The evolution of the genetic architecture 

through time can be observed along the y-axis (in log scale, which allows presenting 

simultaneously the emergence and long term reconfiguration phase). Right next to these maps, 

we present how the aggregation metrics of small (blue lines) and large effect size alleles (red 

shapes) change in time. In the two examples, the width of habitat 2 is set to l=19 demes (which 

is between the swamping limits for small and large effect mutations in the Laplace case, see 

Fig 5A).  
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Fig 7. Long-term genetic architecture of local adaptation after the reconfiguration phase. 

The legend of the figure is identical than on Fig 5, except that measures are taken on the long 

term, after 400 000 generations.   
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Tables 

Parameter Definition Values 

X Total number of  patches 400 

l Number of patches of habitat 2 1,5,9,…,21, 29, 37,..., 85 

N Number of individuals within patches 100 

m Proportion of migrating juveniles 0.5 

d Maximum dispersal distance of migrants 10 

γ Shape of  fitness around local optimum 1 (Laplace), 2 (Gauss) 

Ω Intensity of selection 1 

L Number of loci on the chromosome 100 

a Effect size of small mutations 0,.01 

A Effect size of large mutations 0.1 

μa, μA Mutation rates towards alleles of small and large effects 1e-5, 1e-8 

T Number of generations in a simulation <50’000 (initial phase), 400’000 

(long term) 

 

Table 1. Parameter values used in simulations.  

List of parameters values used in the simulations. We used fourteen values of l , for both long 

term and initial phase of adaptation, for both Laplace and Gauss fitness functions. We used 20 

replicates per combination of parameter values. This resulted in 14 × 2 × 2 × 20 = 1120 

simulations. For each simulation with l ≥ 21, we performed a control simulation where habitat 

1 was removed, which resulted in 9 × 2 × 2 × 20 = 720 control simulations. These control 

simulations were not performed for l < 21, because dispersal kernel with d = 10 (the value used 

throughout) was undefined in that case. 
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