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Summary 11 

In direct lineage reprogramming, transcription factor (TF) overexpression reconfigures Gene 12 

Regulatory Networks (GRNs) to convert cell identities between fully differentiated cell types. We 13 

previously developed CellOracle, a computational pipeline that integrates single-cell 14 

transcriptome and epigenome profiles to infer GRNs. CellOracle leverages these inferred GRNs 15 

to simulate gene expression changes in response to TF perturbation, enabling network re-16 

configuration during reprogramming to be interrogated in silico. Here, we integrate CellOracle 17 

analysis with lineage tracing of fibroblast to induced endoderm progenitor (iEP) conversion, a 18 

prototypical direct lineage reprogramming paradigm. By linking early network state to 19 

reprogramming success or failure, we reveal distinct network configurations underlying different 20 

reprogramming outcomes. Using these network analyses and in silico simulation of TF 21 

perturbation, we identify new factors to coax cells into successfully converting cell identity, 22 

uncovering a central role for the AP-1 subunit Fos with the Hippo signaling effector, Yap1. 23 

Together, these results demonstrate the efficacy of CellOracle to infer and interpret cell-type-24 

specific GRN configurations at high resolution, providing new mechanistic insights into the 25 

regulation and reprogramming of cell identity. 26 

 27 

Keywords: Gene perturbation simulation; cell fate prediction; gene regulatory networks; 28 
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 30 

Introduction 31 

 Advances over the past half-century, such as nuclear transfer (Gurdon et al., 1958) and 32 

factor-mediated reprogramming (Takahashi and Yamanaka, 2006), have revealed the remarkable 33 

plasticity of cell identity. Cells reprogrammed to pluripotency can be directed to differentiate 34 
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toward desired target populations by recapitulating embryonic development in vitro, although this 35 

approach is inefficient and produces heterogeneous populations of developmentally immature 36 

cells. “Direct lineage reprogramming” aims to directly transform cell identity between fully 37 

differentiated somatic states via the forced expression of select transcription factors (TFs). Using 38 

this approach, fibroblasts have been directly converted into many clinically valuable cell types 39 

(Cohen and Melton, 2011). These protocols are currently limited because only a fraction of cells 40 

convert to the target cell type and remain developmentally immature or incompletely specified 41 

(Morris and Daley, 2013). Therefore, the resulting cells are generally unsuitable for therapeutic 42 

application and have limited utility for disease modeling and drug screening in vitro, where fully 43 

differentiated and functional cells are highly sought-after.  44 

 Gene Regulatory Networks (GRNs) represent the complex, dynamic molecular 45 

interactions that act as critical determinants of cell identity. These networks describe the intricate 46 

interplay between transcriptional regulators and multiple cis-regulatory DNA sequences, resulting 47 

in the precise spatial and temporal regulation of gene expression (Davidson and Erwin, 2006). 48 

Systematically delineating GRN structures enables a logic map of regulatory factor cause-effect 49 

relationships to be mapped (Materna and Davidson, 2007). In turn, this knowledge supports a 50 

better understanding of how cell identity is determined and maintained, informing new strategies 51 

for cellular reprogramming to support disease modeling or cell-based therapeutic approaches.  52 

We previously described CellOracle, a computational pipeline for GRN inference via the 53 

integration of different single-cell data modalities (Kamimoto et al., 2020). CellOracle overcomes 54 

current challenges in GRN inference by using single-cell transcriptomic and chromatin 55 

accessibility profiles, integrating prior biological knowledge via regulatory sequence analysis to 56 

infer transcription factor (TF)-target gene interactions. Moreover, we designed CellOracle to apply 57 

inferred GRNs to simulate gene expression changes in response to TF perturbation. This unique 58 

feature enables inferred GRN configurations to be interrogated in silico, facilitating their 59 

interpretation. We have benchmarked CellOracle against ground-truth TF-gene interactions, 60 

demonstrating its efficacy to recapitulate known regulatory changes across hematopoiesis 61 

(Kamimoto et al., 2020). Further, we have applied CellOracle to predict TFs regulating medium 62 

spiny neuron maturation in human fetal striatum development (Bocchi et al., 2021). Other groups 63 

have successfully used the method to investigate mouse and human T-cell differentiation (Chopp 64 

et al., 2020; Nie et al., 2022), T-cell dysfunction in glioblastoma (Ravi et al., 2022), and pharyngeal 65 

organ development (Magaletta et al., 2022). 66 

 Here, we apply CellOracle to interrogate GRN reconfiguration during the direct lineage 67 

reprogramming of fibroblasts to induced endoderm progenitors (iEPs), a prototypical TF-mediated 68 
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fate conversion protocol. Via single-cell resolution lineage tracing, we previously demonstrated 69 

that this protocol comprises two distinct trajectories leading to reprogrammed and dead-end 70 

states (Biddy et al., 2018). In this study, we expand on this lineage tracing strategy to 71 

experimentally define state-fate relationships, supporting the inference of early network states 72 

associated with defined reprogramming outcomes. These analyses reveal the early GRN 73 

configurations associated with the successful conversion of cell identity. Using principles of graph 74 

theory to identify critical nodes in conjunction with in silico simulation predicts several novel 75 

regulators of reprogramming. We experimentally validate these predictions via experimental TF 76 

perturbation: knockdown, overexpression, and Perturb-seq-based knockout. We also 77 

demonstrate that one of these TFs, Fos, plays roles in both iEP reprogramming and maintenance, 78 

where interrogation of inferred Fos targets reveals a putative role for AP1-Yap1 in fibroblast to 79 

iEP conversion. We experimentally validate these findings to demonstrate that Fos and Yap1 80 

overexpression significantly enhances reprogramming efficiency. Together, these results 81 

demonstrate the efficacy of CellOracle to infer and interpret cell-type-specific GRN configurations 82 

at high resolution, enabling new mechanistic insights into the regulation and reprogramming of 83 

cell identity. CellOracle code and documentation are available at  84 

https://github.com/morris-lab/CellOracle. 85 

 86 

Results 87 

CellOracle GRN Inference applied to direct lineage reprogramming 88 

 CellOracle is designed to infer GRN configurations to reveal how networks are rewired 89 

during the establishment of defined cellular identities and states, highlighting known and putative 90 

regulatory factors of fate commitment. CellOracle overcomes population heterogeneity by 91 

leveraging single-cell genomic data, enabling accurate inference of the GRN dynamics underlying 92 

complex biological processes (Kamimoto et al., 2020). In the first step of the CellOracle pipeline, 93 

single-cell chromatin accessibility data (scATAC-seq) is used to assemble a 'base' GRN structure, 94 

representing a list of all potential regulatory genes associated with each defined DNA sequence. 95 

This step leverages the transcriptional start site (TSS) database 96 

(http://homer.ucsd.edu/homer/ngs/annotation.html) and Cicero, an algorithm that identifies co-97 

accessible scATAC-seq peaks (Pliner et al., 2018), to identify accessible promoters/enhancers. 98 

The DNA sequence of these regulatory elements is then scanned for TF binding motifs, repeating 99 

this task for all regulatory sequences, to generate a base GRN structure of all potential regulatory 100 

interactions (Figure 1A, B). 101 
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 The second step in the CellOracle pipeline uses scRNA-seq data to convert the base GRN 102 

into context-dependent GRN configurations for each defined cell cluster. Removal of inactive 103 

connections refines the base GRN structure, selecting the active edges representing regulatory 104 

connections associated with a specific cell type or state (Figure 1C). For this process, we 105 

leverage regularized machine learning regression models (Camacho et al., 2018), primarily to 106 

select active regulatory genes and to obtain their connection strength (Figure S1A). CellOracle 107 

builds a machine learning model that predicts target gene expression from the expression levels 108 

of the regulatory genes identified in the prior base GRN refinement step. After fitting models to 109 

sample data, CellOracle extracts gene-gene connection information by analyzing model 110 

variables. With these values, CellOracle prunes insignificant or weak connections, resulting in a 111 

cell-type/state-specific GRN configuration (Figure 1D). Here, we apply CellOracle to infer GRN 112 

reconfiguration during TF-mediated direct lineage reprogramming. 113 

We previously investigated mouse embryonic fibroblast (MEF) to induced endoderm 114 

progenitor (iEP) reprogramming, induced via the forced expression of two TFs: Hnf4 and Foxa1 115 

(Figure 1E; (Biddy et al., 2018; Morris et al., 2014)). iEP generation represents a prototypical 116 

lineage reprogramming protocol, which, like most conversion strategies, is inefficient and lacks 117 

fidelity. Initially reported as hepatocyte-like cells, the resulting cells can functionally engraft the 118 

liver (Sekiya and Suzuki, 2011). However, we demonstrated that these cells also harbor intestinal 119 

identity and can functionally engraft the colon in a mouse model of acute colitis, prompting their 120 

re-designation as iEPs (Guo et al., 2019; Morris et al., 2014). More recently, we have shown that 121 

iEPs transcriptionally resemble injured biliary epithelial cells (BECs) and exhibit BEC-like behavior 122 

in 3D-culture models (Kong et al., 2022). Building on these studies, our single-cell lineage tracing 123 

of this protocol revealed two distinct trajectories arising during MEF to iEP conversion: one to a 124 

successfully reprogrammed state, and one to a dead-end state, where cells fail to fully convert to 125 

iEPs (Biddy et al., 2018). Although we identified factors to improve the efficiency of 126 

reprogramming, mechanisms of cell fate conversion from the viewpoint of GRN reconfiguration 127 

remain unknown. 128 

Our previously published MEF to iEP reprogramming scRNA-seq dataset consists of eight 129 

time points collected over 28 days (n = 27,663 cells) (Biddy et al., 2018). We reprocessed this 130 

dataset using partition-based graph abstraction (PAGA; (Wolf et al., 2019)), manually annotating 131 

15 clusters based on marker gene expression and PAGA connectivity (Figure 1F; S1B-D). After 132 

successfully initiating conversion, cells diverge down one of two trajectories: one leading to a 133 

successfully reprogrammed state, and one to a dead-end state. Relative to reprogrammed cells, 134 

dead-end cells only weakly express iEP markers, Cdh1, and Apoa1, accompanied by higher 135 
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expression levels of fibroblast marker genes, such as Col1a2 (Figure 1F; S1B, C). Using 136 

CellOracle, we inferred GRN configurations for each cluster, calculating network connectivity 137 

scores to analyze GRN dynamics during lineage reprogramming. 138 

 139 

Analysis of network reconfiguration during reprogramming  140 

We initially assess the network configuration associated with the exogenous 141 

reprogramming TFs, Hnf4 and Foxa1, focusing on the strength of their connections to target 142 

genes. Hnf4 and Foxa1 receive a combined score in these analyses since they are expressed 143 

as a single transcript that produces two independent factors via 2A-peptide-mediated cleavage 144 

(Liu et al., 2017). Network strength scores show significantly stronger connectivity of Hnf4-Foxa1 145 

to its inferred target genes in the early stages of reprogramming, followed by decreasing 146 

connection strength in later conversion stages (Early_2 vs. iEP_2: P < 0.001, Wilcoxon Test; 147 

Figure 1G). We next evaluated the inferred GRN structures using traditional graph theory 148 

methods. We examined: 1) Degree centrality of each gene, a straightforward measure reporting 149 

how many edges are connected to a node directly; 2) Eigenvector centrality, a measure of 150 

influence via connectivity to other well-connected genes (Klein et al., 2012). Hnf4-Foxa1 151 

receives high degree centrality and eigenvector centrality scores in the early phases of lineage 152 

conversion, gradually decreasing as reprogramming progresses (Figure 1H). In agreement with 153 

a central role for the transgenes early in reprogramming, network cartography analysis (Guimerà 154 

and Amaral, 2005) classified Hnf4-Foxa1 as a prominent "connector hub" in the early_2 cluster 155 

network configuration (Figure 1I; S1E). Together, these analyses reveal that Hnf4-Foxa1 156 

network configuration connectivity and strength peak in early reprogramming phases. 157 

 Next, we analyzed the Hnf4-Foxa1 network configuration in later conversion stages, 158 

following bifurcation into reprogrammed and dead-end trajectories (Figure 1F; S1B-D). The 159 

reprogrammed clusters (iEP_0, iEP_1, iEP_2) exhibit stronger network connectivity scores, 160 

relative to the dead-end clusters 1 and 2 (Figure 1G; iEP vs. Dead-end; P < 0.001, Wilcoxon 161 

Test). We also identify a smaller dead-end cluster (Dead-end_0); cells within this cluster only 162 

weakly initiate reprogramming, retaining robust fibroblast gene expression signatures and 163 

expressing significantly lower levels of reprogramming initiation markers such as Apoa1 (Figure 164 

S1C; P < 0.001, permutation test). This cluster also exhibits significantly lower Hnf4-Foxa1 165 

connectivity scores relative to Dead-end_1 and 2 (Figure 1G; P < 0.001, Wilcoxon Test;), 166 

accompanied by lower degree centrality and eigenvector centrality scores (Figure 1H). However, 167 

CellTag lineage data reveals that the majority of the cells (93% of tracked cells) on this unique 168 
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path derive from a single clone, representing a rare reprogramming event captured due to clonal 169 

expansion (Figure S1F). 170 

We next turned to global GRN reconfiguration to identify candidate TFs reprogramming 171 

initiation. Comparing degree centrality scores between fibroblast and early reprogramming 172 

clusters reveals differential connectivity of a handful of key TFs. For example, Hes1, Eno1, Fos, 173 

Foxq1, and Zfp57 receive relatively high degree centrality scores in the early reprogramming 174 

clusters, whereas Klf2 and Egr1 degree centrality increases in later transition stages (Figure 1J). 175 

These factors remain highly connected on the reprogramming trajectory relative to the dead-end 176 

(Figure 1K), suggesting that the GRN configurations controlling reprogramming outcome are 177 

remodeled at initiation. 178 

Altogether, the MEF to iEP reprogramming network analysis presented here suggests that 179 

Hnf4-Foxa1 function peaks at conversion initiation. These early, critical changes in GRN 180 

configuration determine reprogramming outcome, with dysregulation or loss of this program 181 

leading to dead-ends, where cells either do not successfully initiate or complete reprogramming. 182 

This hypothesis is consistent with our previous CellTag lineage tracing, showing the 183 

establishment of reprogramming outcomes from early stages of the conversion process (Biddy et 184 

al., 2018). We next performed new experimental lineage tracing to capture cells at reprogramming 185 

initiation to investigate further how early GRN configuration relates to the successful generation 186 

of iEPs. 187 

 188 

Clonal tracing links early network state to reprogramming fate 189 

Barcoding and tracking cells via scRNA-seq represents a powerful method to investigate 190 

how the early molecular state of a cell relates to its eventual fate (Biddy et al., 2018; Weinreb et 191 

al., 2020). Cells are labeled with combinations of heritable random barcodes, CellTags, delivered 192 

using lentivirus, enabling cells to be uniquely labeled and tracked over time; cells sharing identical 193 

barcodes are identified as clonal relatives; thus, early cell state can be directly linked to 194 

reprogramming outcome (Biddy et al., 2018; Kong et al., 2020; Figure 2A). However, our previous 195 

lineage tracing study was not designed to maximize the capture of clones early in reprogramming; 196 

thus, the 30-cell minimum requirement of CellOracle for GRN inference was not met. Here, we 197 

performed new lineage tracing experiments to associate early-stage cells with reprogramming 198 

outcome. 199 

Cells were reprogrammed with Hnf4-Foxa1, as above, and CellTagged at the end of the 200 

reprogramming TF transduction period. After four days of expansion (reprogramming day 4), we 201 

collected 25% of the cell population for scRNA-seq, reseeding the remaining cells. A total of 202 
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24,799 cells were sequenced: 8,440 at day 4, 4,836 at day 10, and 11,523 at day 28 (Figure 2B, 203 

C). Using our previous method to score cell identity along with established marker gene 204 

expression (Biddy et al., 2018), we identify reprogrammed and dead-end reprogramming 205 

outcomes (reprogrammed n = 1,895; dead-end n = 6,492; Figure 2D; S2A, B). Next, using clonal 206 

information, we identify the day 4 clones whose day 10 and day 28 descendants are significantly 207 

enriched or depleted of successfully reprogrammed cells. From CellTag processing (Methods), 208 

we recovered 1,158 clones, containing a total of 10,927 cells across all time points. Using 209 

randomized testing, we identified two groups of day 4 iEPs: iEP-enriched (64 cells in 7 clones) 210 

and iEP depleted (59 cells in 39 clones), from which reprogramming and dead-end trajectories 211 

stem (Figure 2F), reproducing our earlier observations (Biddy et al., 2018).  212 

Pooling the day 4 clones by outcome, we meet the minimum number of cells required for 213 

GRN inference (Figure S2C). We first compared the global GRN configurations for each of these 214 

states relative to MEFs, to assess early GRN reconfiguration on each trajectory. For example, 215 

comparing degree centrality between day 4 cells destined to reprogram and native fibroblasts 216 

agrees with our above analysis comparing early transition to fibroblast states (Figure 1J), 217 

showing high connectivity of similar factors, such as Klf6, Klf9, and Mef2a, in fibroblasts and Fos, 218 

Egr1, and Foxq1 in day 4 reprogrammed destined clones (Figure 2G, left). Additional highly-219 

connected TFs, receiving relatively high degree centrality scores, also emerge in this 220 

reprogramming group, including the known induced pluripotency factor, Klf4 (Takahashi and 221 

Yamanaka, 2006) in addition to Klf5, Cebpb, Mybl2, and Foxk2, amongst other TFs. The 222 

appearance of several additional factors here is likely due to assessing the early cells with known 223 

reprogramming descendants rather than the early reprogramming cluster as a whole, in which 224 

many cells will not successfully reprogram, highlighting how these state-fate experiments can 225 

further dissect population heterogeneity.  226 

Indeed, the state-fate experimental design allows us to compare those early cells destined 227 

to reprogram vs. early cells that fail to reprogram, for which clonal information is essential. A 228 

comparison of these two groups reveals subtle differences in GRN configuration that lead to 229 

different reprogramming outcomes, with Klf6, Egr3, Tfapb2, and Foxs1 demonstrating higher 230 

connectivity in cells failing to fully reprogram, in contrast to Fos, Cebpb, Klf5, and Junb in cells 231 

destined to attain full iEP identity (Figure 2G, right). Overall, the new experimental state-fate 232 

analysis presented here supports the network analysis of our previous time course, revealing the 233 

highly connected fibroblasts TFs that are decoupled upon reprogramming initiation. These factors 234 

represent potential targets to extinguish fibroblast identity. Further, we identify many TFs that are 235 

highly connected from early stages on the successful reprogramming trajectory, representing 236 
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potential candidates to improve iEP yield and understand how cell identity is maintained and 237 

respecified more broadly. We next use CellOracle’s in silico perturbation function to identify 238 

putative regulators of reprogramming in a systematic, unbiased manner. 239 

 240 

Systematic in silico simulation of TF knockout to identify novel regulators of iEP 241 

reprogramming 242 

While network structure can point to how gene regulation changes during reprogramming, 243 

it offers a static picture that does not necessarily provide functional insight. CellOracle bridges 244 

this gap by using its unique GRN inference model to interrogate networks to gain mechanistic 245 

insight into how specific TFs regulate cell identity (Kamimoto et al., 2020). CellOracle simulates 246 

the transition of cell identity following candidate TF perturbation (knockout or overexpression), 247 

using cluster-specific GRNs to model subsequent expression changes in regulated genes. The 248 

simulated values are then converted into a transition vector map and visualized in the dimensional 249 

reduction space, enabling an intuitive interpretation of how a candidate TF regulates cell identity 250 

(Kamimoto et al., 2020); Figure 3A-C; S3A-C; Methods). This approach allows factors to be 251 

ranked for further experimental investigation, as detailed below. 252 

In silico TF perturbation comprises four steps: 1) GRN configurations are constructed (as 253 

in Figure 1A); 2) Using these GRN models, shifts in target gene expression in response to TF 254 

perturbation are calculated. This step applies the GRN model as a function to propagate the shift 255 

in gene expression rather than the absolute gene expression value, representing TF-to-target 256 

gene signal flow. This signal is propagated iteratively to calculate the broad, downstream effects 257 

of TF perturbation, allowing the global transcriptional ‘shift’ to be estimated (Figure S3A, B); 3) 258 

The probability of a cell identity transition is estimated by comparing this gene expression shift to 259 

the gene expression of local neighbors (Figure S3C); 4) The transition probability is converted 260 

into a weighted local average vector to represent the simulated directionality of cell state transition 261 

for each cell upon candidate TF perturbation. This final step converts the simulation results into a 262 

2D vector map, enabling robust predictions by mitigating the effect of errors or noise derived from 263 

scRNA-seq data and the preceding simulation (Figure 3B middle; S3C). The resulting small-264 

length vectors allow the directionality of cell identity transitions to be feasibly predicted, rather 265 

than interpreting long-ranging terminal effects from initial states. 266 

To enable the simulation results to be assessed in a systematic and unbiased manner, we 267 

consider the changes in cell identity induced by reprogramming, together with the predicted 268 

effects from the perturbation. Taking the relatively densely sampled time course from Biddy et al., 269 

2018, we use semi-supervised Monocle analysis (Trapnell et al., 2014) to order cells in 270 
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pseudotime based on the expression of the fibroblast marker Col1a2 and the iEP marker Apoa1, 271 

capturing the distinctive reprogramming and dead-end trajectories as distinguished by their 272 

respective lineage restricted-clones (n = 48,515 cells, 2 independent biological replicates; Figure 273 

3A; S3D). We use the pseudotime information to calculate a vector gradient, representing the 274 

direction of reprogramming as a vector field (Figure 3B, left; S3E; Methods). We then quantify 275 

the similarity between the reprogramming and perturbation simulation vector fields by calculating 276 

their inner-product value, which we term ‘perturbation score’ (Figure 3B). A negative perturbation 277 

score implies that the TF perturbation blocks reprogramming (Figure 3C, shown in magenta). 278 

Conversely, a positive perturbation score indicates that reprogramming is promoted following TF 279 

perturbation (Figure 3C, shown in green). By calculating the sum of the negative perturbation 280 

scores, we can rank TFs by their potential to regulate the reprogramming process, where a greater 281 

negative score indicates that reprogramming is impaired upon perturbation of the candidate TF. 282 

Using these metrics, we can interpret perturbation effects on cell fate quantitatively and 283 

objectively.  284 

 Via this approach, we performed a systematic in silico simulation of TF knockouts (KOs) 285 

during iEP generation to identify novel regulators of reprogramming, specifically along the 286 

reprogramming trajectory (Figure S3F). Following GRN inference for each of the 7 Monocle 287 

states identified (Figure S3D), we performed KO simulations for all TFs with inferred connections 288 

to at least one other gene (‘active’ TFs, n = 180; Methods), calculating the sum of the negative 289 

perturbation scores to rank TFs by the predicted inhibition of reprogramming following their KO. 290 

This in silico screen allows us to quickly screen 180 candidate TFs, prioritizing factors for 291 

experimental validation. In the top-ranked TFs, many factors are shared between independent 292 

biological replicates, demonstrating the consistency of reprogramming and our analysis ((Figure 293 

3D; Pearson’s, r = 0.72). The Hnf4-Foxa1 transgene is ranked top, as expected, since these 294 

factors are driving the reprogramming process. Of the remaining top-ranked factors, only half are 295 

differentially expressed in reprogrammed cells (Table S1), highlighting the utility of CellOracle to 296 

recover novel candidate regulators. 297 

 For experimental validation, we further prioritized candidate genes based on GRN degree 298 

centrality, enrichment of gene expression along the entire reprogramming trajectory, and ranking 299 

agreement across biological replicates. Following this selection step, eight TFs remained: Eno1, 300 

Fos, Fosb, Foxd2, Id1, Klf2, Klf4, Klf15 (Figure 3E). For all TFs, CellOracle predicts impaired 301 

reprogramming following their KO. We performed an initial screen for all eight TFs, using a short 302 

hairpin RNA (shRNA)-based strategy to knock down each TF during reprogramming (Confirmed 303 

by qRT-PCR; Figure S3G), followed by colony formation assay to quantify clusters of successfully 304 
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reprogrammed cells based on E-Cadherin expression. From this initial screen, reprogramming 305 

was impaired following the knockdown of 6 of the 8 TFs, with 25-50% fewer colonies formed 306 

(Figure S3H, I). We selected Eno1, Fos, Fosb, Id1, and Klf4 for additional colony formation 307 

assays, confirming that their knockdown significantly reduces reprogramming efficiency (n = 5 308 

independent biological replicates for scramble shRNA control, Fosb, Id1; n = 4 for Eno1, Klf4; n 309 

= 3 for Fos; paired t-test, two-tailed; * = p<0.05; ** = p <0.01; Figure 3F, G). 310 

Overall, our systematic perturbation simulation and experimental validation revealed 311 

several novel regulators of MEF to iEP reprogramming. Of these TFs, Fos appears across 312 

orthogonal analyses and independent datasets as a putative regulator of iEP reprogramming. 313 

Indeed, we noted an enrichment of genes associated with the activator protein-1 TF (AP-1), a 314 

dimeric complex primarily containing members of the Fos and Jun factor families (Eferl and 315 

Wagner, 2003). AP-1 functions to establish cell-type-specific enhancers and gene expression 316 

programs (Heinz et al., 2010; Vierbuchen et al., 2017) and to reconfigure enhancers during 317 

reprogramming to pluripotency (Knaupp et al., 2017; Madrigal and Alasoo, 2018). As part of the 318 

AP-1 complex, Fos plays broad roles in proliferation, differentiation, and apoptosis, both in 319 

development and tumorigenesis (Eferl and Wagner, 2003; Jochum et al., 2001; Velazquez et al., 320 

2015). We next focused on further in silico simulation and experimental validation of Fos, a core 321 

component of AP-1. 322 

 323 

The AP-1 transcription factor subunit Fos is central to reprogramming initiation and 324 

maintenance of iEP identity 325 

 Comparing degree centrality scores between fibroblast and early reprogramming 326 

clusters, Fos receives relatively high degree and eigenvector centrality scores, along with 327 

connector hub classification in the early reprogramming clusters (Figure 1A; 4A, B; S4A). Clonal 328 

analysis of early ancestors destined to reprogram successfully agrees with a central role for Fos 329 

(Figure 2; S2). Indeed, perturbation simulation and reduced reprogramming efficiency following 330 

experimental knockdown (Figure 3; S3) lead us to select Fos for deeper mechanistic investigation 331 

as a candidate gene playing a critical role in initiating iEP conversion. 332 

During MEF to iEP reprogramming, Fos is gradually and significantly upregulated (Figure 333 

4C, D; P < 0.001, permutation test, one-sided). Several Jun AP-1 subunits are also expressed in 334 

iEPs, classifying as connectors and connector hubs across various reprogramming stages 335 

(Figure S4C-E). Fos and Jun are among a battery of genes reported to be upregulated in a cell-336 

subpopulation-specific manner in response to cell dissociation-induced stress, potentially leading 337 

to experimental artifacts (van den Brink et al., 2017). Considering this report, we performed qPCR 338 
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for Fos on dissociated and undissociated cells. This orthogonal validation confirms an 8-fold 339 

upregulation (P <0.01, t-test, one-sided) of Fos in iEPs, relative to MEFs, revealing no significant 340 

changes in gene expression in cells that are dissociated and lysed versus cells lysed directly on 341 

the plate (Figure S4F). Furthermore, analysis of unspliced and spliced Fos mRNA levels reveals 342 

an accumulation of spliced Fos transcripts in reprogrammed cells. This observation suggests that 343 

these transcripts accumulated over time rather than by rapid induction of expression in the five-344 

minute cell dissociation and methanol fixation in our single-cell preparation protocol (Figure S4G) 345 

(la Manno et al., 2018). 346 

 To further investigate the role of Fos across reprogramming, we simulated its 347 

overexpression, using MEF to iEP reprogramming time course GRN configurations inferred by 348 

CellOracle (Figure 1). In these analyses, to assess the in silico perturbation of a specific 349 

candidate, we use a Markov simulation to predict how cell identity shifts within the overall cell 350 

population, visualizing the results as a Sankey diagram (Methods). Overexpression simulation 351 

for Fos predicts a major cell state shift from the early transition to transition clusters, in addition 352 

to predicting shifts in identity from dead-end to reprogrammed clusters (Figure 4E). In contrast, 353 

the simulation of Fos KO produces the opposite results. (Figure 4F). We experimentally validated 354 

this simulation by adding Fos to the iEP reprogramming cocktail. As expected, we see a significant 355 

increase in the number of iEP colonies formed (n = 10, P < 0.001, t-test, one-sided; Figure 4G), 356 

increasing reprogramming efficiency more than two-fold, accompanied by significant increases in 357 

iEP marker expression as measured by qPCR (n = 3, P < 0.001, t-test, one-sided; Figure 4H). 358 

 Turning our attention to the later stages of reprogramming, Fos continues to receive 359 

relatively high network scores, particularly for betweenness centrality, in the iEP GRN 360 

configurations (Figure 4A). Fos also classifies as a Connector Hub (Figure 4B) in iEPs, 361 

suggesting a role for Fos in the stabilization and maintenance of the reprogrammed state. To test 362 

this hypothesis, we use CellOracle to perform knockout simulations, followed by experimental 363 

knockout validation in an established iEP cell line. Here, we leverage the ability to culture iEPs, 364 

long-term, where they retain a range of phenotypes (from fibroblast-like to iEP states; Figure 365 

S4H) and functional engraftment potential (Guo et al., 2019; Morris et al., 2014). Simulation of 366 

Fos knockout using these long-term cultured iEP GRN configurations predicts the loss of iEP 367 

identity upon factor knockout (Figure 4I). To test this prediction, we used a CRISPR-Cas9 based 368 

approach to knock out Fos in established iEPs. Quantitative comparison of the cell proportions 369 

between control and knockout groups confirms that fully reprogrammed iEPs regress toward an 370 

intermediate state upon Fos knockout, confirming a role for this factor in maintaining iEP identity 371 
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(Figure 4J), in addition to the establishment of iEPs, as we demonstrate in our systematic 372 

simulation and experimental validation, in Figure 3. 373 

 374 

Fos target inference uncovers a role for the hippo signaling effector Yap1 in 375 

reprogramming 376 

 To gain further insight into the mechanism of how Fos regulates reprogramming, we 377 

interrogated a list of the top 50 inferred Fos targets across all stages of reprogramming (Figure 378 

5A; Table S2). We also assembled a list of genes predicted to be downregulated following Fos 379 

knockout simulation for the reprogramming time course (Figure S5A). From this analysis, we 380 

noted the presence of direct targets of YAP1, a central downstream transducer of the Hippo 381 

signaling pathway (Galli et al., 2015; Ramos and Camargo, 2012; Stein et al., 2015). These 382 

targets include Cyr61, Amotl2, Gadd45g, and Ctgf. Previous associations between Yap1 and Fos 383 

support these observations; for example, YAP1 is recruited to the same genomic regions as FOS 384 

via complex formation with AP-1 (Zanconato et al., 2015). Moreover, AP-1 is required for YAP1-385 

regulated gene expression and the liver overgrowth caused by Yap overexpression, where FOS 386 

induction contributes to the expression of YAP/TAZ downstream target genes (Koo et al., 2020).  387 

 Together, this evidence suggests that Fos may play a role in reprogramming via an AP-1-388 

Yap1-mediated mechanism. Since Yap1 does not directly bind to DNA, we cannot deploy 389 

CellOracle here to perform network analysis or perturbation simulations, highlighting a limitation 390 

of our approach. However, in lieu of these analyses, we again turn to our rich single-cell time 391 

course of iEP reprogramming (Biddy et al., 2018). Using a well-established active signature of 392 

Yap1 (Dong et al., 2007), we find significant enrichment of this signature as reprogramming 393 

progresses (Figure S5B, C; P < 0.001, permutation test, one-sided). Together, these results 394 

suggest a role for the Hippo signaling component Yap1 in reprogramming, potentially effected via 395 

its interactions with Fos/AP-1. Indeed, the hippo signaling axis plays a role in liver regeneration 396 

(Pepe-Mooney et al., 2019; Yimlamai et al., 2014) and regeneration of the colonic epithelium (Yui 397 

et al., 2018), in line with the known potential of iEPs to functionally engraft the liver and intestine 398 

(Guo et al., 2019; Morris et al., 2014; Sekiya and Suzuki, 2011). Further, we have recently 399 

demonstrated that iEPs transcriptionally resemble injured biliary epithelial cells (BECs) (Kong et 400 

al., 2022), the target of YAP signaling in the context of liver regeneration (Pepe-Mooney et al., 401 

2019). 402 

 To test the role of Yap1 in iEP reprogramming, we first performed colony formation assays. 403 

We find that the addition of Yap1 to the Hnf4-Foxa1 cocktail significantly enhances 404 

reprogramming efficiency, where the addition of Fos and Yap1 together increase colony formation 405 
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by almost three-fold, accompanied by significant increases in iEP marker expression (Figure 5B; 406 

Figure S5D, E, P < 0.001, t-test, one-sided). Further, we note the emergence of a unique cell 407 

morphology when Fos and Yap1 are added to the reprogramming cocktail, characterized by the 408 

formation of extremely dense colonies (Figure 5C). To further characterize this distinctive 409 

phenotype, we performed scRNA-seq on cells reprogrammed with Hnf4-Foxa1 (n= 7,414 cells), 410 

Hnf4-Foxa1-Yap1 (n= 8,549 cells), Hnf4-Foxa1-Fos (n= 8,771 cells), Hnf4-Foxa1-Yap1-Fos 411 

(n= 10,507 cells) and collected at day 20. Cells were clustered using the Leiden clustering 412 

algorithm. Integration was performed using Seurat, and cells were visualized in 2D using UMAP 413 

(Figure S5F). 414 

We scored cells using established markers of MEFs and iEPs (Biddy et al., 2018), 415 

revealing a significant increase in reprogramming efficiency, particularly following the addition of 416 

Yap1 (p<0.0001, Wilcoxon test, Figure 5F; S5F), which is also accompanied by a reduction in 417 

fibroblast marker expression (Figure S5G). We further classify cell identity using our 418 

unsupervised method for cell-type classification, Capybara (Kong et al., 2022). In agreement with 419 

our previous reports, using a healthy and regenerating liver atlas, iEPs generated with Hnf4-420 

Foxa1 alone classify mainly as stromal cells (Figure 5G). However, following the addition of Fos 421 

and Yap1, a significant population (p<0.0001, randomized test) of injured BECs emerges, in 422 

similar proportions as observed in long-term cultured iEPs (Kong et al., 2022). In addition to 423 

several hybrid cell types that we previously reported, we also observe a significant expansion of 424 

a normal BEC population, from ~4% to ~12-35%, particularly upon the addition of Yap1 to the 425 

reprogramming cocktail (p<0.0001, randomized test), where endogenous Fos expression is also 426 

upregulated (Figure S5G). We observed a similar expansion of the normal BEC population when 427 

long-term iEPs were cultured in a 3D matrigel sandwich culture (Kong et al., 2022). Here, our 428 

results are consistent with these previous observations and point to the molecular regulation 429 

driving changes in cell identity. In summary, CellOracle analysis and in silico prediction, combined 430 

with experimental validation, have revealed several new factors and putative regulatory 431 

mechanisms to enhance the efficiency and fidelity of reprogramming. 432 

 433 

Discussion 434 

 Here, our application of CellOracle to the direct reprogramming of MEF to iEPs revealed 435 

many new insights into this lineage conversion paradigm. Using CellTag-based lineage tracing, 436 

we had previously demonstrated the existence of distinct conversion trajectories: one path leading 437 

to successfully reprogrammed cells and a route to a dead-end state, accompanied by fibroblast 438 

gene re-expression (Biddy et al., 2018). From lineage analysis, we found that sister cells follow 439 
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the same reprogramming trajectories, suggesting that conversion outcome is established shortly 440 

after overexpression of the reprogramming TFs. The network analysis we present in this study, 441 

powered by CellOracle, supports these earlier observations, revealing GRN reconfiguration within 442 

the first few days of reprogramming. Further, the new clonal tracking we present here confirms 443 

this early GRN configuration and that key wiring differences between reprogrammed and dead-444 

end outcomes can be identified from early stages. 445 

 From our analysis of early GRN reconfiguration, we find that Mef2a and Klf6 are highly 446 

connected in fibroblasts and that these connections are largely decommissioned in successfully 447 

converting cells. Although better known as a cardiac factor (Filomena and Bang, 2018), Mef2a 448 

expression is enriched in the dead-end population, whereas Klf6 is enriched in early transition 449 

states, followed by its downregulation as reprogramming progresses (Supplemental data; Biddy 450 

et al., 2018). Considering that relatively few iEPs successfully reprogram, a broad hallmark of 451 

many lineage conversion protocols, targeting such TFs that are highly connected in the starting 452 

population may represent one approach to enhance reprogramming efficiency by promoting the 453 

erasure of starting cell identity. 454 

 In this study, we have focused on the TFs associated with installing new cell identity. From 455 

our clonal analysis of GRN reconfiguration in reprogrammed-destined cells, we find many 456 

previously unreported regulators of iEP reprogramming. Indeed, our previous time-course 457 

analysis did not identify many candidate regulators in the early stages, as the gene expression 458 

differences were relatively subtle. Here, our network-based analysis recovers several novel early 459 

factors, such as Klf5, Cebpb, Mybl2, Foxk2, Fos, and Junb. The recovery of additional factors is 460 

also likely due to the clonal analysis, which further breaks down population heterogeneity to target 461 

those rare cells that successfully reprogram. 462 

 Indeed, from our GRN network configuration analysis, we identify several factors that may 463 

regulate the reprogramming process. At this point, we would typically prioritize these factors for 464 

further experimental validation, often basing the prioritization on previous literature, gene 465 

expression patterns, or other available data. Here, we leverage the unique feature of CellOracle: 466 

simulation of cell identity transition following candidate TF perturbation (knockout or 467 

overexpression), using cluster-specific GRNs to model subsequent expression changes in 468 

regulated genes. In a series of analyses complementary to the network analyses, we perform a 469 

systematic in silico simulation of 180 TF knockouts to test which factors are required for successful 470 

iEP reprogramming. This analysis revealed many putative reprogramming regulators, and from a 471 

shortlist of eight candidates, we experimentally validated a role for six. Future in silico studies 472 
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could be designed to identify factors to block the entry of cells onto the dead-end trajectory or 473 

factors to accelerate cells down the reprogramming trajectory. 474 

 From the systematic in silico knockout simulation and experimental validation, we 475 

identified five new regulators of iEP reprogramming: Id1, Fosb, Fos, Eno1, and Klf4. Klf4 is one 476 

of the previously described core pluripotency reprogramming factors (Takahashi and Yamanaka, 477 

2006). The reduction of iEP reprogramming efficiency following its knockdown also suggests that 478 

Klf4 plays a role in this direct lineage conversion paradigm. Similarly, Id1 has also been shown to 479 

play a positive role in reprogramming to pluripotency (Hayashi et al., 2016), suggesting parallels 480 

with direct lineage conversion. We also noted the involvement of several AP-1 factors, both from 481 

our network analyses and in silico simulations, including Fos, Fosb, Fosl2, and Junb. The FOS-482 

JUN-AP1 complex has been reported to regulate reprogramming to pluripotency (Xing et al., 483 

2020) and direct reprogramming to cardiomyocytes (Wang et al., 2022); thus, we selected Fos 484 

for further investigation. 485 

 The CellOracle analyses presented here provide new mechanistic insight into the 486 

reprogramming process. Network connectivity scores and cartography analyses support a role 487 

for the AP-1 subunit Fos as a putative reprogramming regulator. Indeed, our simulated 488 

perturbations of Fos support its role in generating and maintaining iEPs. We confirmed these 489 

simulations experimentally, where the addition of Fos to the reprogramming cocktail significantly 490 

increases the yield of iEPs. Conversely, iEP identity is attenuated upon Fos knockout. Further 491 

investigation of inferred Fos targets implicates a role for Yap1, a Hippo signaling effector, in 492 

reprogramming. This observation is supported by our finding that a well-established signature of 493 

active Yap1 is enriched as reprogramming progresses, which suggested a role for Yap1, 494 

potentially effected via its interactions with Fos/AP-1. Indeed, the addition of Fos or Yap1 to the 495 

reprogramming cocktail resulted in a significant increase in reprogramming efficiency, where the 496 

addition of both factors yielded a three-fold increase in iEP colony formation. 497 

In a parallel study, we have found that iEPs resemble post-injury biliary epithelial cells 498 

(BECs) (Kong et al., 2022). Considering that Yap1 plays a central role in liver regeneration (Pepe-499 

Mooney et al., 2019; Yimlamai et al., 2014), these results raise the possibility that iEPs represent 500 

a regenerative cell type, explaining their Yap1 activity, self-renewal in vitro, and capacity to 501 

functionally engraft liver (Sekiya and Suzuki, 2011), and intestine (Guo et al., 2019; Morris et al., 502 

2014). Indeed, our unsupervised cell type classification of iEPs reprogrammed with the addition 503 

of Fos and Yap to the Hnf4-Foxa1 reprogramming cocktail suggests that these factors can 504 

directly expand both the injured and normal BEC population, supporting the notion that iEPs may 505 

resemble a regenerative population. Altogether, these new mechanistic insights have been 506 
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enabled by CellOracle analysis, placing it as a powerful tool for the dissection of cell identity, 507 

aiding improvements in reprogramming efficiency and fidelity. 508 

 509 

Limitations of the study 510 

Here, we have presented an analysis of network reconfiguration during fibroblast to iEP 511 

reprogramming, revealing several novel regulators of direct conversion that we further investigate 512 

via in silico perturbation and experimental validation. As we have demonstrated, these factors can 513 

be used to increase reprogramming efficiency and fidelity. One limitation of CellOracle is that it 514 

cannot be used to make ‘out-of-network’ predictions and, due to its use of a linear model, is not 515 

suited to simulating the effects of perturbing several factors in parallel. Moreover, the model is not 516 

designed to simulate the effects of non-physiological levels of factor expression. For these 517 

reasons, CellOracle is not designed to discover de novo reprogramming cocktails. Instead, it is 518 

best applied to dissecting the mechanisms of existing reprogramming strategies to enhance their 519 

fidelity and efficiency. Finally, based on the GRN model used for in silico simulation, only TF 520 

perturbation can be simulated at present. However, as we have demonstrated with Yap1, the 521 

inferred gene targets of TFs can be scrutinized to provide mechanistic insight. 522 

 523 

Code availability 524 

CellOracle code, documentation, and tutorials are available on GitHub 525 

(https://github.com/morris-lab/CellOracle). 526 

 527 

Data availability 528 

All source data, including sequencing reads and single-cell expression matrices, are available 529 

from the Gene Expression Omnibus (GEO) under accession codes GSE99915 (Biddy et al., 2018) 530 

and GSE145298 for the new scRNA-seq data presented in this manuscript. 531 
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 552 

Figure Legends 553 

Figure 1. Application of CellOracle to assess GRN dynamics direct lineage reprogramming. 554 

Overview of the CellOracle pipeline to infer cell type- and state-specific GRN configurations. (A) 555 

First, CellOracle uses scATAC-seq data to identify accessible promoter/enhancer DNA 556 

sequences. The DNA sequence of regulatory elements is scanned for TF binding motifs, 557 

generating a list of potential regulatory connections between a TF and its target genes to generate 558 

a ‘Base GRN’  (B). (C) Using single-cell expression data, active connections are identified from 559 

all potential connections in the base GRN. (D) Cell type- and state-specific GRN configurations 560 

are constructed by pruning insignificant or weak connections. (E) Schematic of Hnf4 and Foxa1-561 

mediated fibroblast to iEP reprogramming. Our previous CellTag lineage tracing revealed two 562 

conversion trajectories; reprogramming and dead-end (Biddy et al., 2018). (F) Left panel: Force-563 

directed graph of fibroblast to iEP reprogramming: from Louvain clustering, 15 clusters of cells 564 

were annotated manually, using marker gene expression, and grouped into five cell types; 565 

Fibroblasts, Early_Transition, Transition, Dead-end, and Reprogrammed iEPs. Right panels: 566 

Projection of Apoa1 (iEP marker) and Col1a2 (fibroblast marker) expression onto the force-567 

directed graph. (G) CellOracle analysis: The strength of network edges between Hnf4-Foxa1 568 

and its target genes, visualized as a heatmap (left panel), and plotted as a boxplot (right panel). 569 

(H) Degree and Eigenvector centrality scores for the Hnf4-Foxa1 transgene. (I) Hnf4-Foxa1 570 

network cartography terms for each cluster. (J, K) Scatter plots showing a comparison of degree 571 

centrality scores between specific clusters. (J) Comparison of degree centrality scores between 572 
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the Fib_1 cluster GRN configuration and the GRN configurations of other clusters in relatively 573 

early stages of reprogramming. (K) Comparison of degree centrality scores between iEP_1 and 574 

Dead-end_0 cluster GRN configurations. 575 

 576 

Figure 2. Lineage tracing reveals how early network state shapes reprogramming outcome 577 

(A) Overview of CellTag-based clonal tracking. The CellTag construct contains a random 578 

‘CellTag’ barcode in the 3′ UTR of GFP, followed by an SV40 polyadenylation signal. Cells are 579 

transduced with the CellTag lentiviral library (produced via transfection of HEK293T cells with the 580 

complex plasmid library) so that each cell expresses ~3–4 CellTags, resulting in a unique, 581 

heritable signature. CellTags are transcribed and captured during single-cell profiling, enabling 582 

clonally related cells to be tracked throughout an experiment. (B) Experimental strategy to capture 583 

‘state-fate’ relationships. MEFs are first transduced with Hnf4-Foxa1, delivered via four rounds 584 

of retrovirus in a 48 hr period. The complex CellTag lentivirus library is introduced on the last 585 

round of transduction. The end of this period, with transgene expression at a maximum, is 586 

considered reprogramming day 0. Cells are expanded, and 25% of the population is profiled at 587 

day 4, to maximize the capture of clones in early stages – this is referred to as the ‘state’ 588 

population. The remaining population is reseeded and profiled again on days 10 and 28 to capture 589 

reprogramming outcome, referred to as ‘fate’. (C) Cells captured in the state-fate experiment. 590 

Timepoint information is projected onto the UMAP embedding. A total of 24,799 cells were 591 

sequenced: 8,440 on day 4, 4,836 on day 10, and 11,523 on day 28. (D) Projection of fibroblast, 592 

iEP, and dead-end identity scores onto the UMAP embedding to reveal reprogrammed and dead-593 

end cell fates (E). (F) A randomized test identified day 4 state clones whose day 10 and 28 fate 594 

sisters were iEP enriched or iEP depleted. Top: Kernel density estimation of iEP-enriched day 4 595 

state clones and their day 10 and 28 fates, outlining the ‘reprogramming’ trajectory (n = 879 cells). 596 

Bottom: Kernel density estimation of iEP-depleted day 4 state clones and their day 10 and 28 597 

fates, outlining the ‘dead-end’ trajectory (n = 4,955 cells). (H) Comparison of degree centrality 598 

scores between native fibroblasts and day 4 reprogrammed-destined cells (left) and day 4 599 

reprogrammed- and dead-end-destined cells (right). 600 

 601 

Figure 3. Systematic in silico simulation of TF knockout to identify novel regulators of iEP 602 

reprogramming. (A) Monocle-based pseudotemporal ordering of 48,515 cells from the Biddy 603 

2018 reprogramming dataset, 2 independent biological replicates. (B) Schematic for perturbation 604 

score calculations. CellOracle calculates a perturbation score by comparing the direction of the 605 

simulated cell state transition with the direction of cell differentiation.  First, the pseudotime data 606 
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is summarized by grid points and converted into a 2D gradient vector field. The results of the 607 

perturbation simulation are converted into the same vector field format, and the inner product of 608 

these vectors is calculated to produce a perturbation score. (C) A positive perturbation score 609 

(green suggests the perturbation is predicted to promote differentiation. In contrast, the negative 610 

perturbation score (magenta) represents impaired differentiation. (D) Ranked list of TFs based on 611 

the sum of the negative perturbation score. (E) Representative example of a TF KO simulation. 612 

(F) Experimental validation of candidate TFs: Colony formation assay. (G) Colony quantification. 613 

n = 5 indpendent biological replicates for scramble shRNA control, Fosb, Id1; n = 4 indpendent 614 

biological replicates for Eno1, Klf4; n = 3 indpendent biological replicates for Fos; paired t-test, 615 

two-tailed; * = p<0.05; ** = p <0.01 616 

 617 

Figure 4. CellOracle analysis and experimental validation of Fos in the establishment and 618 

maintenance of iEP identity. (A) Degree centrality, betweenness centrality, and eigenvector 619 

centrality of Fos for each cluster. (B) Network cartography terms of Fos for each cluster. (C) Fos 620 

expression projected onto the force-directed graph of the 2018 reprogramming time course. (D) 621 

Violin plot of Fos expression across reprogramming stages. (E) Fos gene overexpression 622 

simulation with reprogramming GRN configurations. The left panel is the projection of simulated 623 

cell transitions onto the force-directed graph. The Sankey diagram summarizes the simulation of 624 

cell transitions between cell clusters. For overexpression simulation, Fos expression was set to a 625 

value of 1.476, representing its maximum value in the imputed gene expression matrix (F) Fos 626 

gene knockout simulation. (G) Colony formation assay with addition of Fos to the Hnf4-Foxa1 627 

reprogramming cocktail. Left panel: E-cadherin immunohistochemistry. Right panel: box plot of 628 

colony numbers (n = 6 technical replicates, 2 independent biological replicates; *** = P < 0.001, 629 

t-test, one-sided). (H) qPCR assay for Fos and iEP marker expression (Apoa1 and Chd1) 630 

following addition of Fos to the Hnf4-Foxa1 reprogramming cocktail (n = 3 independent biological 631 

replicates; *** = P < 0.001, ** = P < 0.01, t-test, one-sided). (I) Fos gene knockout simulation in 632 

expanded, long-term cultured iEPs. (J) CRISPR/Cas9 knockout of Fos using CRISPR/Cas9 in 633 

expanded iEP cells. We designed 3 guide RNAs to target Fos, and transduced Cas9-expressing 634 

iEP cells with this guide RNA lentivirus pool. Left panels: Kernel density estimation method was 635 

applied with the t-SNE embedding to compare cell density between control guide RNAs and guide 636 

RNAs targeting Fos. Right panels: Quantification of changes in cell ratio following Fos knockout. 637 

 638 

Figure 5. Inferred Fos targets reveal a role for the Hippo signaling effector, Yap1, in 639 

reprogramming. (A) Heatmap of expression of the top 50 inferred Fos targets across all stages 640 
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of reprogramming. Established targets of YAP1 are highlighted in red. (B) Colony formation assay 641 

with the addition of Yap1 and Fos to the Hnf4-Foxa1 reprogramming cocktail. Left panels: E-642 

cadherin immunohistochemistry. Right panel: box plot of colony numbers (n = 6 independent 643 

biological replicates; *** = P < 0.001, t-test, one-sided). (C) Brightfield and epifluorescence images 644 

of cells reprogrammed with Hnf4-Foxa1 or Hnf4-Foxa1-Fos-Yap1 cocktails. Scale bar = 500 645 

M. (D) scRNA-seq analysis of cells reprogrammed with Hnf4-Foxa1 (n= 7,414 cells), Hnf4-646 

Foxa1-Fos (n= 8,771 cells), Hnf4-Foxa1-Yap1 (n= 8,549 cells), and Hnf4-Foxa1-Fos-Yap1 (n= 647 

10,507 cells) cocktails and collected at day 20. Projection of fibroblast and iEP identity scores 648 

onto the UMAP embedding. (E) Kernel density estimation of cell density for each reprogramming 649 

cocktail from (D). (F) Violin plot of iEP identity scores for each reprogramming cocktail. **** = 650 

p<0.0001, Wilcoxon test. (G) Unsupervised cell type classification for each reprogramming 651 

cocktail, using normal and injured mouse liver as a reference. BEC: Biliary epithelial cells. * = p = 652 

0, randomized test. 653 

 654 

Materials and Methods 655 

CellOracle. CellOracle is an integrative tool for GRN inference and network analysis. It consists 656 

of several steps: (1) base GRN construction using scATAC-seq data, (2) context-dependent GRN 657 

inference using scRNA-seq data, (3) network analysis, and (4) simulation of cell identity after 658 

perturbation. We created the algorithm in Python and designed it for use in the Jupyter notebook 659 

environment. CellOracle code is open source and available on GitHub  660 

(https://github.com/morris-lab/CellOracle), along with detailed function descriptions and tutorials. 661 

Further details can be found in the original preprint (Kamimoto et al., 2020). 662 

  663 

10x alignment, digital gene expression matrix generation. The Cell Ranger v6.0.1 pipeline 664 

(https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest) was 665 

used to process data generated using the 10x Chromium platform. Cell Ranger processes, filters, 666 

and aligns reads generated with the Chromium single-cell RNA sequencing platform. This pipeline 667 

was used in conjunction with a custom reference genome, created by concatenating the 668 

sequences corresponding to the Hnf4-t2a-Foxa1 transgene as a new chromosome to the mm10 669 

genome. The unique UTRs in the Hnf4-t2a-Foxa1 transgene construct allowed us to monitor 670 

transgene expression. To create Cell Ranger compatible reference genomes, the references were 671 

rebuilt according to instructions from 10x (https://support.10xgenomics.com/single-cell-gene-672 

expression/software/pipelines/latest/advanced/references). To achieve this, we first created a 673 

custom gene transfer format (GTF) file, containing our transgenes, followed by indexing of the 674 
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FASTA and GTF files, using Cell Ranger ‘mkgtf’ and ‘mkref’ functions. Following this step, the 675 

default Cell Ranger pipeline was implemented, then the filtered output data was used for 676 

downstream analyses. 677 

 678 

CellTag clone calling 679 

Reads containing the CellTag sequence were extracted from the processed and filtered BAM files 680 

produced by the 10x Genomics pipeline, using our CellTagR pipeline:  681 

https://github.com/morris-lab/CellTagR. The resulting filtered CellTag UMI count matrix was then 682 

used for all downstream clone and lineage analysis. The CellTag matrix was initially filtered by 683 

removing CellTags that do not appear on the allowlist generated for each CellTag plasmid library 684 

Cells expressing more than 20 CellTags (likely corresponding to cell multiplets) and less than 2 685 

CellTags per cell were filtered out. To identify clonally related cells, Jaccard analysis using the R 686 

package Proxy was used to calculate the similarity of CellTag signatures between cells. Clones 687 

were defined as groups of 2 or more related cells. Clones were called on cells pre-filtered for 688 

numbers of genes, UMIs, and mitochondrial RNA content. 689 

 690 

Cell type classification with Capybara 691 

Cells reprogramed with Hnf4-Foxa1, Hnf4-Foxa1-Fos, Hnf4-Foxa1-Yap1, and Hnf4-Foxa1-692 

Fos-Yap1 were classified using Capybara (Kong et al., 2022). Briefly, the single-cell datasets 693 

were processed, filtered, and clustered using Seurat, resulting in 35,241 cells (7,414 HF, 8,771 694 

HF-Fos, 8,549 HF-Yap, 10,507 HF-Fos-Yap1). To construct a reference for cell-type 695 

classification, we obtained scRNA-seq data of biliary epithelial cells (BECs) and hepatocytes, 696 

before and after injury, from GSE125688 (Pepe-Mooney et al., 2019). We built a custom high-697 

resolution reference by incorporating additional tissues from the MCA: fetal liver, MEFs, and 698 

embryonic mesenchyme. Following the construction of a high-resolution reference, we performed 699 

preprocessing on the reference and the samples, on which we then applied quadratic 700 

programming to generate the identity score matrices. Further, we categorized cells into discrete, 701 

hybrid, and unknown, calculated the empirical p-value matrices, and performed binarization and 702 

classification. We calculated the percent composition of each cell type. Cells with hybrid identities 703 

were filtered and refined based on their identity scores as well as representation by more than 704 

0.5% cells of the population. Code and documentation are available at:  705 

https://github.com/morris-lab/Capybara. 706 

 707 

Experimental Methods 708 
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Mice and derivation of mouse embryonic fibroblasts. Mouse Embryonic Fibroblasts were 709 

derived from E13.5 C57BL/6J embryos. (The Jackson laboratory: 000664). Heads and visceral 710 

organs were removed from E13.5 embryos. The remaining tissue was minced with a razor blade 711 

and then dissociated in a mixture of 0.05% Trypsin and 0.25% Collagenase IV (Life Technologies) 712 

at 37C for 15 minutes. After passing the cell slurry through a 70M filter to remove debris, cells 713 

were washed and then plated on 0.1% gelatin-coated plates, in DMEM supplemented with 10% 714 

FBS (Sigma-Aldrich), 2mM L-glutamine, and 50mM -mercaptoethanol (Life Technologies). All 715 

animal procedures were based on animal care guidelines approved by the Institutional Animal 716 

Care and Use Committee. 717 

 718 

Retrovirus Production. Retroviral particles were produced by transfecting 293T-17 cells (ATCC: 719 

CRL-11268) with the pGCDN-Sam construct containing Hnf4-t2a-Foxa1/Fos/Yap1, along with 720 

packaging construct pCL-Eco (Imgenex). Virus was harvested 48hr and 72hr after transfection 721 

and applied to cells immediately following filtering through a low-protein binding 0.45M filter. 722 

 723 

Lentiviral constructs and lentivirus production. Lentiviral particles were produced by 724 

transfecting 293T-17 cells (ATCC: CRL-11268) with the envelope construct pCMV-VSV-G 725 

(Addgene plasmid 8454), the packaging construct pCMV-dR8.2 dvpr (Addgene plasmid 8455), 726 

and the shRNA expression vector for the respective candidate TF to be knocked down. The 727 

shRNA expression vectors (with the TRC2 pLKO.5 backbone) were obtained directly from 728 

Millipore-Sigma or cloned into the empty backbone using oligonucleotides (Integrated DNA 729 

Technologies). Sequences of shRNA used: SHC202 (non-target shRNA control) 730 

CAACAAGATGAAGAGCACCAA; Eno1 GGCACAGAGAATAAATCTAAA; Fos 731 

ATCCGAAGGGAACGGAATAAG; FosB ATGACGGAAGGACCTCCTTTG; Foxd2 732 

AGATCATGTCCTCCGAGAGCT Id1 GAGCTGAACTCGGAGTCTGAA; Klf2 733 

GACCGATTGTATTTCTATAAG Klf4 CATGTTCTAACAGCCTAAATG; Klf15 734 

CTACCCTGGAGGAGATTGAAG. Virus was harvested 48hr and 72hr after transfection and 735 

applied to cells following filtering through a low-protein binding 0.45m filter. 736 

 For generation of the complex CellTag library, lentiviral particles were produced by 737 

transfecting 293T-17 cells (ATCC: CRL-11268) with the pSMAL-CellTag construct, along with 738 

packaging constructs pCMV-dR8.2 dvpr (Addgene plasmid 8455), and pCMV-VSVG (Addgene 739 

plasmid 8454). 740 

 741 
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Generation and collection of iEPs. Mouse embryonic fibroblasts (< passage 6) were converted 742 

to iEPs as in (Biddy et al., 2018), modified from (Sekiya and Suzuki, 2011). Briefly, we transduced 743 

cells every 12hr for 3 days, with fresh Hnf4-t2a-Foxa1 retrovirus, in the presence of 4mg/ml 744 

Protamine Sulfate (Sigma-Aldrich), followed by culture on 0.1% gelatin-treated plates for 1 week 745 

in hepato-medium (DMEM:F-12, supplemented with 10% FBS, 1 mg/ml insulin (Sigma-Aldrich), 746 

dexamethasone (Sigma-Aldrich), 10mM nicotinamide (Sigma-Aldrich), 2mM L-glutamine, 50mM 747 

-mercaptoethanol (Life Technologies), and penicillin/streptomycin, containing 20 ng/ml 748 

hepatocyte growth factor (Sigma-Aldrich), and 20 ng/ml epidermal growth factor (Sigma-Aldrich). 749 

After the seven days of culture, the cells were transferred onto plates coated with 5g/cm2 Type 750 

I rat collagen (Gibco, A1048301). For single-cell processing, 30,000 reprogrammed, expanded 751 

iEPs were collected and fixed in methanol, as previously described in (Alles et al., 2017). Briefly, 752 

cells were collected and washed in Phosphate Buffered Saline (PBS), followed by resuspension 753 

in ice-cold 80% Methanol in PBS, with gentle vortexing. These cells were stored at -80C for up 754 

to three months, and processed on the 10x platform (below). 755 

 For the state-fate experiments, we followed the above protocol with some slight 756 

modifications. We transduced cells every 12hr for 2 days, with fresh Hnf4-t2a-Foxa1 retrovirus, 757 

and added CellTagging lentivirus on the final round of transduction. After 12hr, cells were washed 758 

and expanded in hepato-medium for 4 days, at which point the cells were dissociated and 25% 759 

of the population profiled by scRNA-seq. The remaining population was replated and additional 760 

samples were profiled at days 10 and 28. 761 

 762 

Colony formation assays. Mouse Fos and Yap1 were cloned from iEPs into the retroviral vector, 763 

pGCDNSam (Sekiya and Suzuki, 2011), and retrovirus produced as above. For comparative 764 

reprogramming experiments, mouse embryonic fibroblasts (2x105/well of a 6-well plate) were 765 

serially transduced over 72hr (as above). In control experiments, virus produced from an empty 766 

vector control expressing only GFP was added to the Hnf4-Foxa1 reprogramming cocktail. Virus 767 

produced from the Fos and Yap1 IRES-GFP constructs was added to the standard Hnf4 and 768 

Foxa1 cocktail. Cells underwent reprogramming for two weeks and were processed for colony 769 

formation assays: cells were fixed on the plate with 4% PFA, permeabilized in 0.1% Triton-X100 770 

then blocked with Mouse on Mouse Elite Peroxidase Kit (Vector PK-2200). Primary antibody, 771 

mouse anti-E-Cadherin (1:100, BD Biosciences) was applied for 30 min before washing and 772 

processing with the VECTOR VIP Peroxidase Substrate Kit (Vector SK-4600). Colonies were 773 

visualized on a flatbed scanner, adding heavy cream to each well in order to increase image 774 

contrast. Colonies were counted, using our automated colony counting tool: 775 
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https://github.com/morris-lab/Colony-counter. Fos and Yap1 overexpression was confirmed by 776 

harvesting RNA from Hnf4 -Foxa1 and Hnf4 -Foxa1-Fos/Yap1-transduced cells (RNeasy kit, 777 

Qiagen). Following cDNA synthesis (Maxima cDNA synthesis kit, Life Tech), qPCR was 778 

performed to quantify Fos/Yap1 overexpression (TaqMan Probes: Gapdh Mm99999915_g1; 779 

Cdh1 Mm01247357_m1; Apoa1 Mm00437569_m1; Fos Mm00487425_m1; Yap1 780 

Mm01143263_m1; TaqMan qPCR Mastermix, Applied Biosystems).  781 

 782 

Colony formation assays for TF knockdowns were conducted similarly, with the following 783 

modifications. To initiate reprogramming, mouse embryonic fibroblasts (75x103/well of a 6-well 784 

plate) were serially transduced over 72hr (as above). Lentivirus produced from the non-target 785 

shRNA control and the respective TF knockdown shRNA constructs was then added at 84hr and 786 

96 hr (only added at 96hr for initial screen). At 120hr, cells were seeded for colony formation 787 

assays (40x103cells/well of a 6-well plate), which were then processed for colony formation on  788 

day 14 as above. Remaining cells from each sample were seeded for harvesting RNA for qPCR 789 

on day 14 as above. In the initial screen, cells from each sample were split equally, and seeded 790 

in 6 well plates for colony formation and RNA extraction at D15 from reprogramming initiation.  791 

For Fos and FosB knockdowns, mouse embryonic fibroblasts (120x103 in a 6-cm dish) were 792 

transduced with the respective shRNA lentivirus at 24hr and 36hr post-seeding. qPCR 793 

confirmation was done on RNA harvested from cells at 72hr post-seeding. TaqMan Probes used: 794 

Actb Mm02619580_g1; Eno1 Mm01619597_g1; Fos Mm00487425_m1; Fosb Mm00500401_m1; 795 

Foxd2 Mm00500529_s1; Id1 Mm00775963_g1; Klf2 Mm00500486_g1; Klf4 Mm00516104_m1; 796 

Klf15 Mm00517792_m1. 797 

 798 

CRISPR/Cas9 Fos Knockout 799 

The Fos knockouts were performed as part of a larger screen, using Perturb-seq as previously 800 

described (Adamson et al., 2016). The protocol was modified, as outlined below, to apply the 801 

strategy to our experimental system: 802 

 803 

(1) Vector backbone and gene barcode pool construction: For Perturb-seq experiments, we used 804 

a lentivirus vector to express guide RNAs and gene barcodes (GBC). The lentivirus vector 805 

backbone contains an antiparallel cassette containing a guide RNA and GBC. In the original 806 

perturb-seq paper, the authors used pPS and pBA439 to construct the guide RNA-GBC vector 807 

pool. Here, we modified pPS and pBA439 to generate the pPS2 vector, in which the Puromycin-808 

t2a-BFP gene was replaced by the Blasticidin-t2a-BFP gene. We constructed the guide RNA-809 
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GBC vector using a multi-step cloning strategy: First, we synthesized dsDNA, via PCR, for a 810 

random GBC pool. We purified the PCR product with AMPure XP SPRI beads. We then inserted 811 

the purified GBC pool into the pPS2 vector at the EcoRI site in the 3’ UTR of the Blasticidn-t2a-812 

BFP gene. We used the product of Gibson assembly for transformation into DH5 competent 813 

cells (NEB: C2987H). Transformed cells were cultured directly in LB liquid. We extracted plasmid 814 

DNA to yield the pPS2-GBC pool. 815 

 816 

(2) Guide RNA cloning. We designed guide RNAs using https://zlab.bio/guide-design-resources. 817 

We synthesized oligo DNA for each guide RNA. Oligo DNA pairs were annealed and inserted into 818 

the pPS2-GBC vector, following BsmB1 digestion. After isolation and growth of single colonies, 819 

plasmid DNA was extracted and sanger DNA sequenced; sequences of the guide RNA inserted 820 

site and GBC site were used to construct a gRNA/GBC reference table: 821 

 822 

Fos_sg0 CAGCCGACTGAACGCGTTATTC 823 

Fos_sg1 CATATATCAAAGATGAACATTG 824 

Fos_sg2 TCAAGGCTGTAATTTCTTGGGC 825 

empty0 TTGATGAACTGCGCTAGCGAGG 826 

empty1 AAGAGCGGCTCGCAAGGGAAAA 827 

empty2 AGTAGGATACGTGGAGTTAATA 828 

 829 

(3) Lentivirus guide RNA pool generation. An equal amount of DNA for each pPS2-guide RNA 830 

vector was mixed together to generate the plasmid pool. Three control vectors were also mixed 831 

with this plasmid vector pool; the weight ratio of each pPS2-guide vector to each control vector 832 

was 1:4. We used this mixed DNA pool for lentivirus production. Lentiviral particles were produced 833 

by transfecting 293T-17 cells (ATT: CRL-11268) with the pPS-guide RNA-GBC constructs, along 834 

with the packaging plasmid, psPAX2 (https://www.addgene.org/12260/), and pMD2.G 835 

(https://www.addgene.org/12259/). 836 

 837 

(4) Cell culture for Perturb-seq. We transduced reprogrammed iEP cells with retrovirus carrying 838 

Cas9 (MSCV-Cas9-Puro). The cells were treated with Puromycin (4 g/ml) for four days to 839 

eliminate non-transduced cells. iEP-Cas9 cells were transduced with the lentivirus guide RNA 840 

pool for 24 hours. The concentration of lentivirus was pre-determined to target 10~20% 841 

transduction efficiency. After four days of cell culturing, we sorted BFP positive cells to purify 842 
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transduced cells. Cells were cultured for a further 72 hours and fixed with methanol as previously 843 

described (Alles et al., 2017). 844 

 845 

(5) GBC amplification and sequencing. Following library preparation on the 10x chromium 846 

platform (below), we PCR amplified the GBC. The amplification was performed largely according 847 

the original perturb-seq paper (Adamson et al., 2016), but we modified the PCR primer sequence 848 

for the Chromium single cell library v2 kit: 849 

 850 

P7_ind_R2_BFP_primer: 851 

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAGACGTGTGCTCTTC852 

CGATCTTAGCAAACTGGGGCACAAGC 853 

P5_partial_primer: AATGATACGGCGACCACCGA 854 

GBG_Amp_F: GCTGATCAGCGGGTTTAAACGGGCCCTCTAGG 855 

GBG_Amp_R: CGCGTCGTGACTGGGAAAACCCTGGCGAATTG 856 

GBC_Oligo: 857 

TTAAACGGGCCCTCTAGGNNNNNNNNNNNNNNNNNNNNNNCAATTCGCCAGGGTTTTCCC 858 

 Following amplification, we purified the PCR product with AMPure XP SPRI beads. The 859 

purified sample was sequenced on the Illumina Mi-seq platform. 860 

 861 

(6) Alignment of cell barcode/GBC. For preprocessing of Perturb-seq metadata, we used 862 

MIMOSCA, a computational pipeline for the analysis of perturb-seq data 863 

(https://github.com/asncd/MIMOSCA). First, the reference table for the cell barcode/GBC pair was 864 

generated from Fastq files. The data table was converted into the guide RNA/cell barcode table 865 

using the guide RNA-GBC reference table. This metadata was integrated into the scRNA-seq 866 

data. The guide metadata was processed with an EM-like algorithm in MIMOSCA to filter out 867 

unperturbed cells computationally, as previously described (Adamson et al., 2016). 868 

  869 

10x procedure. For single-cell library preparation on the 10x Genomics platform, we used: the 870 

Chromium Single Cell 3′ Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell 3′ Chip 871 

kit v2 (PN-120236), and Chromium i7 Multiplex Kit (PN-120262), according to the manufacturer’s 872 

instructions in the Chromium Single Cell 3′ Reagents Kits V2 User Guide. Prior to cell capture, 873 

methanol-fixed cells were placed on ice, then spun at 3000rpm for 5 minutes at 4C, followed by 874 

resuspension and rehydration in PBS, according to (Alles et al., 2017). 17,000 cells were loaded 875 
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per lane of the chip, aiming to capture 10,000 single-cell transcriptomes. The resulting cDNA 876 

libraries were quantified on an Agilent Tapestation and sequenced on an Illumina HiSeq 2500. 877 

 878 

Supplemental Figure Legends 879 

Supplemental Figure 1 (Related to Figure 1). GRN analysis of fibroblast to iEP 880 

reprogramming. (A) After base GRN construction (left panel) using single-cell expression data, 881 

an active connection between the TF and the target gene is identified for defined cell identities 882 

and states by building a machine learning (ML) model that predicts the relationship between the 883 

TF and the target gene. ML model fitting results present the certainty of connection as a 884 

distribution, enabling the identification of GRN configurations by removing inactive connections 885 

from the base GRN structure. (B) Force-directed graph of iEP reprogramming scRNA-seq data 886 

(n = 27,663 cells). Projection of: Reprogramming time point information onto the force-directed 887 

graph. There are 8 time points; day 0, 3, 6, 9, 12, 15, 21, and 28; Hnf4-t2a-Foxa1 (Hnf4-Foxa1) 888 

transgene expression levels; marker gene expression for key iEP states. Reprogrammed iEP cell 889 

cluster marker genes: Cdh1, Apoa1, and Kng1. Fibroblast marker gene: Col1a2. Transition 890 

marker gene: Mettl7a1. Dead-end marker genes: Peg3, Igf2, and Fzd1. (C) Violin plots of marker 891 

gene expression in each cluster. (D) PAGA connectivity analysis across the reprogramming time 892 

course. (E) Illustration of the cartography analysis method. The cartography method classifies 893 

genes into seven groups according to two network scores: within-module degree and participation 894 

coefficient (Guimerà and Amaral, 2005). In complex networks, high degree nodes (hubs) play the 895 

most significant roles in maintaining network structure. (F) Pie charts depicting the clonal 896 

composition of Dead-end cluster 0 and Dead-end cluster 1. Clone and trajectory information is 897 

derived from our previous CellTagging study (Biddy et al., 2018). 898 

 899 

Supplemental Figure 2 (Related to Figure 2). CellOracle network analysis of cells destined 900 

to reprogrammed or dead-end states. (A) Projection of Leiden cluster and gene expression 901 

information onto the state-fate UMAP embedding (from Figure 2C-F) to identify reprogrammed 902 

and dead-end fates. (B) Violin plots of reprogrammed (Apoa1, Cdh1), fibroblast (Col1a1, Col1a2), 903 

and dead-end (Peg3) marker expression along the iEP-enriched and iEP-depleted trajectories. 904 

(C) To assess the quality of the inferred networks, we calculated the degree distribution for each 905 

GRN configuration after pruning weak network edges, based on the p-value and strength. We 906 

counted the network degree (k), representing the number of network edges for each gene. P(k) 907 

is the frequency of network degree k, visualized in scatter plots. We also visualized the 908 
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relationship between k and P(k) after log-transformation shows that these are scale-free networks, 909 

demonstrating successful network inference from these relatively small cell populations. 910 

 911 

Supplemental Figure 3 (Related to Figure 3). Systematic in silico simulation of TF 912 

knockout. (A) Overview of signal propagation simulation. CellOracle leverages an inferred GRN 913 

model to simulate how target gene expression changes in response to the changes in regulatory 914 

gene expression. The input TF perturbation (shown in yellow) is propagated side-by-side within 915 

the network model. (B) Leveraging the linear predictive ML algorithm features, CellOracle uses 916 

the GRN model as a function to perform the signal propagation calculation. Iterative matrix 917 

multiplication steps enable the estimation of indirect and global downstream effects resulting from 918 

the perturbation of a single TF. (C) After signal propagation, the simulated gene expression shift-919 

vector is converted into a 2D vector and projected onto the dimensional reduction space. Details 920 

are described in the methods section. (D) Left: Monocle states identified and used for GRN 921 

inference. Right: Calculated pseudotime projected on the Monocle embedding and converted to 922 

a 2D gradient vector field. (E) Schematic of the method to convert pseudotime to a 2D gradient 923 

vector field: First, the pseudotime data is summarized by grid points, then CellOracle calculates 924 

a 2D gradient vector of the pseudotime data that represents the directionality of reprogramming 925 

pseudotime. (F) Outline of reprogramming and dead-end trajectories projected onto the Monocle 926 

embedding. The sum of the negative perturbation score was calculated only for reprogramming 927 

trajectory clusters in this study. (G) Quantitative RT-PCR to validate knockdown efficiency for 928 

each shRNA. * = p<0.05, ** = p<0.01, *** = p<0.001, **** = p<0.0001; unpaired t-test with Welch’s 929 

correction, two-tailed. (H) Colony formation assay (E-cadherin immunohistochemistry) to test iEP 930 

reprogramming efficiency following the knockdown of each candidate factor. (I) Quantification of 931 

colonies formed in the initial screen. Factors marked red and * were selected for further 932 

experimental validation. 933 

 934 

Supplemental Figure 4 (Related to Figure 4). CellOracle analysis of the role of Fos in 935 

fibroblast to iEP reprogramming. (A) Comparison of eigenvector centrality scores between the 936 

Fib_1 cluster GRN configuration and the GRN configurations of other clusters in relatively early 937 

stages of reprogramming. (B) Comparison of eigenvector centrality scores between iEP_1 and 938 

Dead-end_0 cluster GRN configurations. (C-E) Expression and network cartography of Jun family 939 

members, Jun, Junb, and Jund. (F) qPCR of Fos expression in fibroblasts and iEPs, with and 940 

without cell dissociation prior to the assay, ** = P < 0.01, t-test, one-sided. (G) Analysis of Fos 941 

mRNA splicing state in the scRNA-seq data of iEP reprogramming to investigate the Fos mRNA 942 
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maturation state: Violin plot for spliced Fos mRNA counts. (H) t-SNE plots of 9,914 expanded 943 

iEPs, cultured long-term, revealing fibroblast-like, intermediate, and three iEP subpopulations. 944 

Expression levels of Apoa1 (marking typical iEPs), Col4a1 (fibroblast-like cells), Cdh1, Serpina1b 945 

(hepatic-like iEPs), and Areg (intestine-like iEPs) projected onto the t-SNE plot.  946 

 947 

Supplemental Figure 5 (Related to Figure 5). The role of Fos and Yap1 in fibroblast to iEP 948 

reprogramming. (A) Top 50 decreased genes in Fos knockout simulation in the early 949 

reprogramming transition (left) and GO analysis based on these genes (right). (B) Violin plot of 950 

YAP1 target gene scores across reprogramming, which are significantly enriched as 951 

reprogramming progresses (*** = P < 0.001, permutation test, one-sided). (C) Projection of YAP1 952 

target gene scores onto the force-directed graph of reprogramming. (D) qPCR assay for Yap1 953 

expression following addition of Yap1 and Fos to the Hnf4-Foxa1 reprogramming cocktail (n = 954 

4 independent biological replicates; *** = P < 0.001, ** = P < 0.01, t-test, one-sided), confirming 955 

Yap1 overexpression. (E) qPCR assay for iEP marker expression (Apoa1 and Chd1) following 956 

addition of Yap1 and Fos to the Hnf4-Foxa1 reprogramming cocktail (n = 4 independent 957 

biological replicates; *** = P < 0.001, ** = P < 0.01, t-test, one-sided). (F) Projection of Leiden 958 

cluster, dead-end identity scores, and gene expression information onto the state-fate UMAP 959 

embedding (from Figure 5D, E). (G) Expression of key marker genes for each reprogramming 960 

cocktail. 961 

 962 

Supplemental Table 1. Differentially expressed iEP markers from (Biddy et al., 2018). Top-963 

ranked genes from CellOracle in silico perturbation are marked in red. 964 

 965 

Supplemental Table 2. Top 50 CellOracle-inferred Fos targets, across all reprogramming 966 

clusters. Confirmed YAP1 targets are highlighted in red. 967 

References 968 

Adamson, B., Norman, T.M., Jost, M., Cho, M.Y., Nuñez, J.K., Chen, Y., Villalta, J.E., Gilbert, 969 

L.A., Horlbeck, M.A., Hein, M.Y., et al. (2016). A Multiplexed Single-Cell CRISPR Screening 970 

Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell 167, 1867-971 

1882.e21. https://doi.org/10.1016/j.cell.2016.11.048. 972 

Alles, J., Karaiskos, N., Praktiknjo, S.D., Grosswendt, S., Wahle, P., Ruffault, P.-L., Ayoub, S., 973 

Schreyer, L., Boltengagen, A., Birchmeier, C., et al. (2017). Cell fixation and preservation for 974 

droplet-based single-cell transcriptomics. BMC Biology 15, 44. https://doi.org/10.1186/s12915-975 

017-0383-5. 976 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Biddy, B.A., Kong, W., Kamimoto, K., Guo, C., Waye, S.E., Sun, T., and Morris, S.A. (2018). 977 

Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219–224. 978 

https://doi.org/10.1038/s41586-018-0744-4. 979 

Bocchi, V.D., Conforti, P., Vezzoli, E., Besusso, D., Cappadona, C., Lischetti, T., Galimberti, M., 980 

Ranzani, V., Bonnal, R.J.P., Simone, M. de, et al. (2021). The coding and long noncoding single-981 

cell atlas of the developing human fetal striatum. Science (1979) 372. 982 

https://doi.org/10.1126/science.abf5759. 983 

van den Brink, S.C., Sage, F., Vértesy, Á., Spanjaard, B., Peterson-Maduro, J., Baron, C.S., 984 

Robin, C., and van Oudenaarden, A. (2017). Single-cell sequencing reveals dissociation-induced 985 

gene expression in tissue subpopulations. Nat Methods 14, 935–936. 986 

https://doi.org/10.1038/nmeth.4437. 987 

Camacho, D.M., Collins, K.M., Powers, R.K., Costello, J.C., and Collins, J.J. (2018). Next-988 

Generation Machine Learning for Biological Networks. Cell 173, 1581–1592. 989 

https://doi.org/10.1016/J.CELL.2018.05.015. 990 

Chopp, L.B., Gopalan, V., Ciucci, T., Ruchinskas, A., Rae, Z., Lagarde, M., Gao, Y., Li, C., 991 

Bosticardo, M., Pala, F., et al. (2020). An Integrated Epigenomic and Transcriptomic Map of 992 

Mouse and Human αβ T Cell Development. Immunity 53, 1182-1201.e8. 993 

https://doi.org/10.1016/J.IMMUNI.2020.10.024/ATTACHMENT/EAD3FF5E-B3B9-46C4-95E3-994 

E303CC056184/MMC8.XLSX. 995 

Cohen, D.E., and Melton, D. (2011). Turning straw into gold: directing cell fate for regenerative 996 

medicine. Nat Rev Genet 12, 243–252. https://doi.org/10.1038/nrg2938. 997 

Davidson, E.H., and Erwin, D.H. (2006). Gene regulatory networks and the evolution of animal 998 

body plans. Science 311, 796–800. https://doi.org/10.1126/science.1113832. 999 

Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, 1000 

R.A., Maitra, A., and Pan, D. (2007). Elucidation of a Universal Size-Control Mechanism in 1001 

Drosophila and Mammals. Cell 130, 1120–1133. https://doi.org/10.1016/J.CELL.2007.07.019. 1002 

Eferl, R., and Wagner, E.F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature 1003 

Reviews Cancer 3, 859–868. https://doi.org/10.1038/nrc1209. 1004 

Filomena, M.C., and Bang, M.L. (2018). In the heart of the MEF2 transcription network: novel 1005 

downstream effectors as potential targets for the treatment of cardiovascular disease. 1006 

Cardiovascular Research 114, 1425–1427. https://doi.org/10.1093/CVR/CVY123. 1007 

Galli, G.G., Carrara, M., Yuan, W.-C., Valdes-Quezada, C., Gurung, B., Pepe-Mooney, B., Zhang, 1008 

T., Geeven, G., Gray, N.S., de Laat, W., et al. (2015). YAP Drives Growth by Controlling 1009 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Transcriptional Pause Release from Dynamic Enhancers. Molecular Cell 60, 328–337. 1010 

https://doi.org/10.1016/J.MOLCEL.2015.09.001. 1011 

Guimerà, R., and Amaral, L.A.N. (2005). Cartography of complex networks: modules and 1012 

universal roles. Journal of Statistical Mechanics: Theory and Experiment 2005, P02001. 1013 

https://doi.org/10.1088/1742-5468/2005/02/P02001. 1014 

Guo, C., Kong, W., Kamimoto, K., Rivera-Gonzalez, G.C., Yang, X., Kirita, Y., and Morris, S.A. 1015 

(2019). CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics. 1016 

Genome Biology 20, 90. https://doi.org/10.1186/s13059-019-1699-y. 1017 

Gurdon, J.B., Elsdale, T.R., and Fischberg, M. (1958). Sexually mature individuals of Xenopus 1018 

laevis from the transplantation of single somatic nuclei. Nature 182, 64–65. . 1019 

Hayashi, Y., Hsiao, E.C., Sami, S., Lancero, M., Schlieve, C.R., Nguyen, T., Yano, K., Nagahashi, 1020 

A., Ikeya, M., Matsumoto, Y., et al. (2016). BMP-SMAD-ID promotes reprogramming to 1021 

pluripotency by inhibiting p16/INK4A-dependent senescence. Proc Natl Acad Sci U S A 113, 1022 

13057–13062. 1023 

https://doi.org/10.1073/PNAS.1603668113/SUPPL_FILE/PNAS.201603668SI.PDF. 1024 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, 1025 

H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors 1026 

prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576–1027 

589. https://doi.org/10.1016/j.molcel.2010.05.004. 1028 

Jochum, W., Passegué, E., and Wagner, E.F. (2001). AP-1 in mouse development and 1029 

tumorigenesis. Oncogene 20, 2401–2412. https://doi.org/10.1038/sj.onc.1204389. 1030 

Kamimoto, K., Hoffmann, C.M., and Morris, S.A. (2020). CellOracle: Dissecting cell identity via 1031 

network inference and in silico gene perturbation. BioRxiv 2020.02.17.947416. 1032 

https://doi.org/10.1101/2020.02.17.947416. 1033 

Klein, C., Marino, A., Sagot, M.-F., Vieira Milreu, P., and Brilli, M. (2012). Structural and dynamical 1034 

analysis of biological networks. Briefings in Functional Genomics 11, 420–433. 1035 

https://doi.org/10.1093/bfgp/els030. 1036 

Knaupp, A.S., Buckberry, S., Pflueger, J., Lim, S.M., Ford, E., Larcombe, M.R., Rossello, F.J., de 1037 

Mendoza, A., Alaei, S., Firas, J., et al. (2017). Transient and Permanent Reconfiguration of 1038 

Chromatin and Transcription Factor Occupancy Drive Reprogramming. Cell Stem Cell 21, 834-1039 

845.e6. https://doi.org/10.1016/J.STEM.2017.11.007. 1040 

Kong, W., Biddy, B.A., Kamimoto, K., Amrute, J.M., Butka, E.G., and Morris, S.A. (2020). 1041 

CellTagging: combinatorial indexing to simultaneously map lineage and identity at single-cell 1042 

resolution. Nature Protocols 1–23. https://doi.org/10.1038/s41596-019-0247-2. 1043 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Kong, W., Fu, Y.C., Holloway, E.M., Garipler, G., Yang, X., Mazzoni, E.O., and Morris, S.A. 1044 

(2022). Capybara: A computational tool to measure cell identity and fate transitions. Cell Stem 1045 

Cell 29, 635-649.e11. https://doi.org/10.1016/J.STEM.2022.03.001. 1046 

Koo, J.H., Plouffe, S.W., Meng, Z., Lee, D.-H., Yang, D., Lim, D.-S., Wang, C.-Y., and Guan, K.-1047 

L. (2020). Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes 1048 

& Development 34, 72–86. https://doi.org/10.1101/gad.331546.119. 1049 

Liu, Z., Chen, O., Wall, J.B.J., Zheng, M., Zhou, Y., Wang, L., Ruth Vaseghi, H., Qian, L., and Liu, 1050 

J. (2017). Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. 1051 

Sci Rep 7, 2193. https://doi.org/10.1038/s41598-017-02460-2. 1052 

Madrigal, P., and Alasoo, K. (2018). AP-1 Takes Centre Stage in Enhancer Chromatin Dynamics. 1053 

Trends Cell Biol 28, 509–511. https://doi.org/10.1016/j.tcb.2018.04.009. 1054 

Magaletta, M.E., Lobo, M., Kernfeld, E.M., Aliee, H., Huey, J.D., Parsons, T.J., Theis, F.J., and 1055 

Maehr, R. (2022). Integration of single-cell transcriptomes and chromatin landscapes reveals 1056 

regulatory programs driving pharyngeal organ development. Nature Communications 2022 13:1 1057 

13, 1–16. https://doi.org/10.1038/s41467-022-28067-4. 1058 

la Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber, K., 1059 

Kastriti, M.E., Lönnerberg, P., Furlan, A., et al. (2018). RNA velocity of single cells. Nature 560, 1060 

494–498. https://doi.org/10.1038/s41586-018-0414-6. 1061 

Materna, S.C., and Davidson, E.H. (2007). Logic of gene regulatory networks. Current Opinion in 1062 

Biotechnology 18, 351–354. https://doi.org/10.1016/J.COPBIO.2007.07.008. 1063 

Morris, S.A., and Daley, G.Q. (2013). A blueprint for engineering cell fate: current technologies to 1064 

reprogram cell identity. Cell Res 23, 33–48. https://doi.org/10.1038/cr.2013.1. 1065 

Morris, S.A., Cahan, P., Li, H., Zhao, A.M., San Roman, A.K., Shivdasani, R.A., Collins, J.J., and 1066 

Daley, G.Q. (2014). Dissecting Engineered Cell Types and Enhancing Cell Fate Conversion via 1067 

CellNet. Cell 158, 889–902. https://doi.org/10.1016/j.cell.2014.07.021. 1068 

Nie, J., Carpenter, A.C., Chopp, L.B., Chen, T., Balmaceno-Criss, M., Ciucci, T., Xiao, Q., Kelly, 1069 

M.C., McGavern, D.B., Belkaid, Y., et al. (2022). The transcription factor LRF promotes integrin 1070 

β7 expression by and gut homing of CD8αα+ intraepithelial lymphocyte precursors. Nature 1071 

Immunology 2022 23:4 23, 594–604. https://doi.org/10.1038/s41590-022-01161-x. 1072 

Pepe-Mooney, B.J., Dill, M.T., Alemany, A., Ordovas-Montanes, J., Matsushita, Y., Rao, A., Sen, 1073 

A., Miyazaki, M., Anakk, S., Dawson, P.A., et al. (2019). Single-Cell Analysis of the Liver 1074 

Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and 1075 

Regeneration. Cell Stem Cell 25, 23-38.e8. https://doi.org/10.1016/J.STEM.2019.04.004. 1076 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A., Daza, R.M., Aghamirzaie, 1077 

D., Srivatsan, S., Qiu, X., Jackson, D., Minkina, A., et al. (2018). Cicero Predicts cis-Regulatory 1078 

DNA Interactions from Single-Cell Chromatin Accessibility Data. Mol Cell 71, 858-871.e8. 1079 

https://doi.org/10.1016/j.molcel.2018.06.044. 1080 

Ramos, A., and Camargo, F.D. (2012). The Hippo signaling pathway and stem cell biology. 1081 

Trends in Cell Biology 22, 339–346. https://doi.org/10.1016/J.TCB.2012.04.006. 1082 

Ravi, V.M., Neidert, N., Will, P., Joseph, K., Maier, J.P., Kückelhaus, J., Vollmer, L., Goeldner, 1083 

J.M., Behringer, S.P., Scherer, F., et al. (2022). T-cell dysfunction in the glioblastoma 1084 

microenvironment is mediated by myeloid cells releasing interleukin-10. Nature Communications 1085 

2022 13:1 13, 1–16. https://doi.org/10.1038/s41467-022-28523-1. 1086 

Sekiya, S., and Suzuki, A. (2011). Direct conversion of mouse fibroblasts to hepatocyte-like cells 1087 

by defined factors. Nature 475, 390–393. https://doi.org/10.1038/nature10263. 1088 

Stein, C., Bardet, A.F., Roma, G., Bergling, S., Clay, I., Ruchti, A., Agarinis, C., Schmelzle, T., 1089 

Bouwmeester, T., Schübeler, D., et al. (2015). YAP1 Exerts Its Transcriptional Control via TEAD-1090 

Mediated Activation of Enhancers. PLOS Genetics 11, e1005465. 1091 

https://doi.org/10.1371/journal.pgen.1005465. 1092 

Takahashi, K., and Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse 1093 

Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676. 1094 

https://doi.org/10.1016/j.cell.2006.07.024. 1095 

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, 1096 

K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions 1097 

are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386. 1098 

https://doi.org/10.1038/nbt.2859. 1099 

Velazquez, F.N., Caputto, B.L., and Boussin, F.D. (2015). c-Fos importance for brain 1100 

development. Aging 7, 1028–1029. https://doi.org/10.18632/aging.100862. 1101 

Vierbuchen, T., Ling, E., Cowley, C.J., Couch, C.H., Wang, X., Harmin, D.A., Roberts, C.W.M., 1102 

and Greenberg, M.E. (2017). AP-1 Transcription Factors and the BAF Complex Mediate Signal-1103 

Dependent Enhancer Selection. Molecular Cell 68, 1067-1082.e12. 1104 

https://doi.org/10.1016/J.MOLCEL.2017.11.026. 1105 

Wang, H., Yang, Y., Qian, Y., Liu, J., and Qian, L. (2022). Delineating chromatin accessibility re-1106 

patterning at single cell level during early stage of direct cardiac reprogramming. Journal of 1107 

Molecular and Cellular Cardiology 162, 62–71. https://doi.org/10.1016/J.YJMCC.2021.09.002. 1108 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F.D., and Klein, A.M. (2020). Lineage tracing on 1109 

transcriptional landscapes links state to fate during differentiation. Science (1979) 367. 1110 

https://doi.org/10.1126/SCIENCE.AAW3381. 1111 

Wolf, F.A., Hamey, F.K., Plass, M., Solana, J., Dahlin, J.S., Göttgens, B., Rajewsky, N., Simon, 1112 

L., and Theis, F.J. (2019). PAGA: graph abstraction reconciles clustering with trajectory inference 1113 

through a topology preserving map of single cells. Genome Biology 20, 59. 1114 

https://doi.org/10.1186/s13059-019-1663-x. 1115 

Xing, Q.R., el Farran, C.A., Gautam, P., Chuah, Y.S., Warrier, T., Toh, C.X.D., Kang, N.Y., Sugii, 1116 

S., Chang, Y.T., Xu, J., et al. (2020). Diversification of reprogramming trajectories revealed by 1117 

parallel single-cell transcriptome and chromatin accessibility sequencing. Science Advances 6, 1118 

18. https://doi.org/10.1126/SCIADV.ABA1190/SUPPL_FILE/ABA1190_SM.PDF. 1119 

Yimlamai, D., Christodoulou, C., Galli, G.G., Yanger, K., Pepe-Mooney, B., Gurung, B., Shrestha, 1120 

K., Cahan, P., Stanger, B.Z., and Camargo, F.D. (2014). Hippo pathway activity influences liver 1121 

cell fate. Cell 157, 1324–1338. https://doi.org/10.1016/j.cell.2014.03.060. 1122 

Yui, S., Azzolin, L., Maimets, M., Pedersen, M.T., Fordham, R.P., Hansen, S.L., Larsen, H.L., 1123 

Guiu, J., Alves, M.R.P., Rundsten, C.F., et al. (2018). YAP/TAZ-Dependent Reprogramming of 1124 

Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell 22, 35-49.e7. 1125 

https://doi.org/10.1016/j.stem.2017.11.001. 1126 

Zanconato, F., Forcato, M., Battilana, G., Azzolin, L., Quaranta, E., Bodega, B., Rosato, A., 1127 

Bicciato, S., Cordenonsi, M., and Piccolo, S. (2015). Genome-wide association between 1128 

YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nature Cell Biology 17, 1218–1129 

1227. https://doi.org/10.1038/ncb3216. 1130 

  1131 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497374doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497374
http://creativecommons.org/licenses/by-nc-nd/4.0/

