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Abstract

The majority of gene expression studies focus on the search for genes whose mean
expression is different between two or more populations of samples in the so-called
“differential expression analysis” approach. However, a difference in variance in gene
expression may also be biologically and physiologically relevant. In the classical
statistical model used to analyze RNA-sequencing (RNA-seq) data, the dispersion,
which defines the variance, is only considered as a parameter to be estimated prior to
identifying a difference in mean expression between conditions of interest. Here, we
propose to evaluate two recent methods, MDSeq and DiPhiSeq, which detect differences
in both the mean and dispersion in RNA-seq data. We thoroughly investigated the
performance of these methods on simulated datasets and characterized parameter
settings to reliably detect genes with a differential expression dispersion. We applied
both methods to The Cancer Genome Atlas datasets. Interestingly, among the genes
with an increased expression dispersion in tumors and without a change in mean
expression, we identified some key cellular functions, most of which were related to
catabolism and were overrepresented in most of the analyzed cancers. In particular, our
results highlight autophagy, whose role in cancerogenesis is context-dependent,
illustrating the potential of the differential dispersion approach to gain new insights into
biological processes.

Author summary

Gene expression is the process by which genetic information is translated into functional
molecules. Transcription is the first step of this process, consisting of synthesizing
messenger RNAs. During recent decades, genome-wide transcriptional profiling
technologies have made it possible to assess the expression levels of thousands of genes
in parallel in a variety of biological contexts. In statistical analyses, the expression of a
gene is estimated by counting sequencing reads over a set of samples and is defined by
two dimensions: mean and variance. The overwhelming majority of gene expression
studies focus on identifying genes whose mean expression significantly changes when
comparing samples of different conditions of interest to gain knowledge of biological
processes. In this classical approach, the variance is usually considered only as a noise
parameter to be estimated before assessing the mean expression. However, finely
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estimating the variance of expression may be biologically relevant since a modification
of this parameter may reflect a change in gene expression regulation. Here, we propose
to evaluate the performance of statistical methods that identify such differentially
variant genes. We highlighted the potential of this approach by analyzing cancer
datasets, thus identifying key cellular functions in tumor progression.

Introduction 1

Variability in gene expression in cancer 2

Genome-wide transcriptional profiling technologies have made it possible to assess the 3

level of expression of thousands of genes in parallel in a variety of biological contexts [1]. 4

Cells or organs are commonly characterized by the mean expression of some key 5

genes [2]. As a consequence, phenotypes are defined to be driven by a change in the 6

mean expression of some genes between sets of samples that represent conditions of 7

biological interest, e.g. diseased and healthy status [3]. Several methods have thus been 8

developed to identify these genes, called “differentially expressed” (DE) genes. This has 9

led to numerous insights into a variety of biological processes [4, 5]. Differentially 10

expressed genes may also serve as biomarkers [6]. In this type of analysis, the variability 11

is often reduced to “noise” that one must remove. Consequently, variability is 12

considered to be a parameter that must be estimated prior to searching for a difference 13

in mean expression. However, in the same manner that the level of expression of a gene 14

has biological meaning, the variability of its expression is another trait of its biological 15

function [7, 8]. For example, low gene expression variability defines housekeeping 16

genes [9, 10] and is a desirable property when identifying reliable biomarkers [11]. 17

The fluctuations in gene expression may indeed be driven by a variety of intrinsic 18

sources, e.g. the stochastic nature of gene transcription [12], the cell cycle [13], 19

stochastic regulation [14], chromatin modification [15] or mRNA degradation [16], as 20

well as extrinsic causes, which refer to all environmental perturbations [17,18]. In cancer, 21

the overall increase in gene expression variability [19] is a way for tumors to resist 22

therapy [20,21]. In addition, it may reveal a lack of precision in gene expression, which 23

tends to be highly controlled in healthy conditions [22, 23]. For these reasons, variability 24

is a relevant trait in gene expression to gain better knowledge of cancer development. 25

Statistical analysis of gene expression variability 26

The terms “variability” and “variation” are often used to describe how much the 27

expression of a gene fluctuates when comparing different samples. These terms may be 28

confusing when analyzing samples from different biological conditions, since they are 29

commonly used to refer to a change of mean expression between conditions. In addition, 30

they are not statistical terms and should therefore be replaced by the metric used to 31

estimate the variability in the analyzed data. A myriad of measures may be used to 32

estimate gene expression variability, e.g. the variance, the standard deviation, the 33

coefficient of variation (CV), the median absolute deviation, the expression 34

variability [10], the Shannon entropy [24] or the expression change [22]. 35

Genes having a difference of variance in expression between biological conditions of 36

interest are called “differentially variant” (DV) genes and are identified using basic 37

statistical approaches: F-test to compare variances [8, 25], Wilcoxon rank-sum test to 38

compare CVs [26,27], differences of entropy tests [24] or comparison of CV distributions 39

to random distributions using Wilcoxon’s signed rank test [28]. A few studies have 40

focused on analyzing gene expression variability and identified genes with differential 41

variance in different biological contexts: cancer progression [8, 25], neurologic diseases 42
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such as Parkinson’s disease and schizophrenia [26,29] or between cell populations in 43

development [27]. Most of these studies used microarrays and log-transformed the 44

expression data prior to measuring gene expression variability. This transformation 45

affects the mean-variance relationship [30] and therefore appears to be suboptimal for 46

estimating gene expression variability. 47

High-throughput sequencing of the transcriptome (RNA-seq) has become the 48

gold-standard technology to estimate genome-wise gene expression [31]. Contrary to 49

microarray data, RNA-seq count data are integer values, which makes 50

log-transformation, usually performed with microarray data, not appropriate for this 51

type of data [32]. Therefore, dedicated methods based on discrete probability 52

distributions were developed to analyze these data [33]. The negative binomial (NB) 53

distribution has become the ubiquitous distribution to model RNA-seq read count data 54

by providing the best fit for the extra-variance commonly observed in datasets 55

composed of biological replicates [34]. In this model, the random variable describing the 56

count of reads mapped to gene i in sample j is denoted as Yij ∼ NB(µij , φi), where µij 57

is the expected value and φi is the dispersion parameter. The variance is given by 58

Var(Yij) = µij + φi µ
2
ij . Analyzing the variance independently with respect to the mean 59

expression can therefore be achieved by analyzing the dispersion parameter φi. 60

In the classical RNA-seq data analysis workflow, differential expression detection 61

methods based on the NB distribution consider the dispersion as a noise parameter to 62

be estimated prior to identifying a difference of mean expression [35]. The generally low 63

sample sizes of RNA-seq datasets at the time when the first versions of these methods 64

were published made per-gene dispersion estimation unreliable. In addition, the very 65

high number of genes made estimation difficult. Thus, Robinson et al. proposed an 66

accurate shared estimator based on the expression of sets of genes across all samples, 67

independent of biological condition [34]. Per-gene estimators were then shrunk towards 68

this shared estimator using different levels of shrinkage [36–39]. Aggregating all the 69

samples that compose the dataset implies that no difference of dispersion in the 70

expression of genes between the conditions of interest can be modeled, which is not 71

biologically realistic. 72

Recently, two new methods based on the NB distribution, MDSeq [40] and 73

DiPhiSeq [41], have been introduced to identify differences in both mean and dispersion 74

in RNA-seq data within the same statistical framework. MDSeq extends the use of a 75

generalized linear model (GLM) to identify both mean and dispersion differences by 76

reparameterizing the NB distribution with a linear mean-variance relationship: 77

Var(Yij) = φij µij . Since the NB distribution with a varying dispersion parameter does 78

not belong to the exponential family, the usual closed-form estimates for the GLM 79

parameters cannot be used. Instead, the minimization of the log-likelihood of the model 80

is formulated as an optimization problem with linear inequality constraints that can be 81

solved using an adaptive barrier algorithm combined with the BFGS algorithm. Wald 82

tests were then performed to identify differential expression mean and dispersion. 83

DiPhiSeq does not implement a GLM but, unlike the classical differential expression 84

methods, estimates the dispersion for each gene and for the two compared conditions. 85

Because of the high sensitivity of the likelihood ratio test to outliers, the authors of 86

DiPhiSeq used robust M-estimators to estimate both the mean and the dispersion in 87

both conditions. In this approach, the Tukey’s biweight function is used as the function 88

to minimize. Differences in the mean and dispersion are finally compared to a standard 89

distribution under the null hypothesis of no difference and p-values for differential 90

expression and differential dispersion are deduced. 91
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Objectives 92

The performances of methods identifying differences in mean expression in the so-called 93

“differential expression analysis” using RNA-seq data have been extensively 94

studied [42–45]. The large amount of publicly available RNA-seq data opens new 95

perspectives for researchers in the search for genes whose expression exhibits a 96

difference of dispersion between samples from different conditions. Here, we propose to 97

evaluate the performances of two NB-based methods, MDSeq and DiPhiSeq, to identify 98

differentially dispersed (DD) genes using simulated RNA-seq datasets. In their 99

respective articles, these methods were not compared to each other, but rather to 100

non-NB-based differential variance methods for MDSeq and to NB-based differential 101

expression methods for DiPhiSeq to highlight the biological interest of identifying DD 102

genes. Based on our simulation study results, we reliably applied these methods to The 103

Cancer Genome Atlas datasets and identified DD genes that could not be identified by 104

classical differential expression analysis. We showed that these genes may serve to 105

better understand tumor progression and thus have demonstrated the potential of the 106

differential dispersion approach in RNA-seq studies. 107

Results 108

DiPhiSeq and MDSeq performance evaluation 109

Differential dispersion detection for genes with unconstrained differences 110

in mean expression 111

We simulated RNA-seq datasets to evaluate the performances of DiPhiSeq and MDSeq 112

to identify differential dispersion between two sets of samples of equal size that 113

represent two conditions of interest. Differences in the mean and dispersion between the 114

two sets of samples were introduced and defined for DE and DD genes, respectively (see 115

the Methods section for more details). DiPhiSeq achieves a better overall performance 116

for differential dispersion detection than MDSeq regardless of the number of samples 117

per condition (red boxplots in Fig 1). 118

Fig 1. DiPhiSeq and MDSeq ability to identify differentially dispersed
genes. DiPhiSeq has a better ability to identify differentially dispersed genes, as
measured by the area under the ROC curve (AUC), than MDSeq, whose performance
declines when the genes are also differentially expressed.

This noticeable difference may be explained by the difference in false discovery rate 119

(FDR) controlling procedures used by the two methods: the Benjamini-Hochberg 120

procedure for DiPhiSeq and the Benjamini-Yekutieli procedure for MDSeq, as 121

recommended by the authors of the two methods. The Benjamini-Yekutieli procedure is 122

more conservative than the former [46] and thus may explain the lower area under the 123

ROC curve (AUC) and sensitivity values obtained with MDSeq. We note, however, that 124

in our evaluation (see S2 Fig), the Benjamini-Hochberg procedure was not sufficient to 125

control for FDR. 126

As expected, increasing the number of samples available per condition increases the 127

ability to detect differential dispersion. Nevertheless, these sample sizes are much larger 128

than those usually required to achieve similar performances in classical differential 129

expression analysis [42–44]. For example, 40 samples per condition are required for 130

DiPhiSeq to obtain an AUC higher than 0.8, and sets of 50 samples are required for 131

MDSeq to obtain an AUC close to this value among lowly DE genes, while only 5 132
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samples may suffice to identify differences in mean expression with this 133

performance [44]. 134

The other main result of our simulation study is that a fold-change in the mean 135

sharply reduces the performance of MDSeq for differential dispersion detection. By 136

contrast, DiPhiSeq is not sensitive to the presence of a difference in mean expression 137

between the two compared sets of samples. The AUC obtained with MDSeq can indeed 138

be as much as 20% lower when the genes are also highly DE (green vs. blue boxplots in 139

Fig 1). The application of MDSeq to identify differential dispersion must therefore be 140

restricted to non- or lowly DE genes. 141

Differential dispersion detection for lowly DE genes 142

The maximum difference in means of gene expression according to the number of 143

samples in the two compared conditions while maintaining the reliability of the 144

differential dispersion detection with MDSeq must therefore be identified. Given the 145

results in Fig 1, this number is expected to depend on the number of samples. Fig 2 146

shows the performances of MDSeq and DiPheSeq on simulated datasets stratified by the 147

maximum tolerated mean expression fold-change value and the number of samples per 148

condition. 149

Fig 2. DiPhiSeq and MDSeq ability to detect differential dispersion for
lowly differentially expressed genes. (A) False discovery rate (FDR). (B) True
positive rate (TPR). The performances of DiPhiSeq and MDSeq for differential
dispersion detection in gene expression data were assessed using simulated datasets
composed of lowly differentially expressed genes between two sample populations of
equal size.

For MDSeq, increasing the maximum tolerated mean fold-change value increases the 150

FDR for the detection of differential dispersion. However, the FDR remained under 0.05 151

for datasets composed of 30 to 50 samples with maximum tolerated mean fold-changes 152

up to 1.5 (Fig 2A). When only 20 samples are available, the maximum tolerated mean 153

fold-change value must be at most 1.3 to keep the FDR below 0.05. 154

As already shown in Fig 1, the performance of DiPhiSeq is not affected by the 155

maximum tolerated mean fold-change value (Fig 2A and B). However, DiPhiSeq is less 156

sensitive than MDSeq for low sample sizes (under 40 samples). DiPhiSeq is indeed 157

unable to detect any DD genes with fewer than 30 samples (Fig 2B). In contrast, 158

regarding larger sample sizes, i.e. populations of at least 50 samples, DiPhiSeq has a 159

better sensitivity than MDSeq, with an even larger gain in sensitivity as the sample size 160

increases. Overall, DiPhiSeq and MDSeq exhibit close and complementary performances 161

for the differential dispersion detection of lowly DE genes. 162

This limitation in the application of MDSeq is not prohibitive since the purpose of 163

our approach is to identify genes that would not be detected by the classical differential 164

expression analysis or, at least, that would not appear in the top results of these 165

analyses. Thus, in our approach, lowly DE genes represent the set of genes of primary 166

interest among which to search for differential dispersion in expression. To apply 167

MDSeq, highly DE genes must therefore be filtered out by using a fold-change threshold 168

prior to detecting differential dispersion among the genes that have passed this filter. 169

MDSeq provides the possibility to use specific threshold values to identify both DE and 170

DD genes. We therefore used a range of different mean fold-change threshold values to 171

filter highly DE genes and evaluated MDSeq differential dispersion performance with 172

respect to the genes that passed the filter. The maximum mean fold-change threshold 173

values that enable an increase in the sensitivity of the differential dispersion detection 174

while maintaining the FDR below 0.05 were identified according to several sample sizes 175
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(S3 Fig). For example, when comparing two populations of samples of equal size from 176

30 to 50 samples, a maximum mean fold-change threshold of 1.30 should be used to 177

filter highly DE genes, whereas this maximum threshold should be lowered to 1.15 and 178

1.25 for populations of 20 and 100 samples, respectively. 179

The analysis of the true DD genes identified with DiPhiSeq and MDSeq among lowly 180

DE genes when comparing populations of 50 samples revealed that approximately half 181

(54%) of true positive results were identified by both methods, which represents 67.9% 182

and 72.5% of the overall true positives identified by DiPhiSeq or MDSeq, respectively 183

(Fig 3A). 184

Fig 3. True DD genes identified by either DiPhiSeq, MDSeq, or both
among lowly differentially expressed genes. (A) Numbers of true differentially
dispersed (DD) genes identified by DiPhiSeq, MDSeq, or both (Venn diagram), as well
as histograms of mean expression and absolute values of true dispersion and mean
log2-fold-changes, over 10 replicates of simulated datasets composed of two populations
of 50 samples. Two-sample Wilcoxon tests were performed to evaluate whether these
statistics were greater for MDSeq-specific DD genes (mean expression and absolute
values of true mean log2-fold-changes) or for DiPhiSeq-specific DD genes (absolute
values of true dispersion log2-fold-changes). P-values of these tests are indicated in
panel titles. (B): Numbers of true DD genes identified by DiPhiSeq, MDSeq, or both
over 10 replicates of simulated datasets of 20 to 100 samples.

Nevertheless, the numbers of true DD genes identified by only DiPhiSeq or MDSeq, 185

442 and 355 on average for the datasets in Fig 3A, represent substantial gene sets that 186

cannot be neglected. Since the FDR is guaranteed to be lower than 0.05 for both 187

methods according to our simulation study, the DD genes identified by at least one of 188

the two methods should be kept for subsequent analysis, in addition to those identified 189

by both methods, to gain more biological insight. In addition, specific characteristics of 190

each method can be determined from the DD genes that are identified by one and only 191

one of them. DiPhiSeq-specific DD genes have lower mean expression than 192

MDSeq-specific DD genes, revealing a higher sensitivity of DiPhiSeq for differential 193

dispersion detection among lowly expressed genes (Fig 3A). MDSeq detects lower 194

differences in dispersion in comparison with DiPhiSeq and tends to detect DD genes 195

among genes having a mean fold-change close to the tolerated maximum value (Fig 3A). 196

When 50 or fewer samples are available per set, combining the results of the two 197

methods is relevant since the DD genes detected by both methods only represent at 198

most 54% of the overall DD genes (Fig 3B). As the number of samples per condition 199

increases, the proportion of DD genes specifically detected with MDSeq decreases, 200

whereas the proportion of DiPhiSeq-specific DD genes increases. Regarding larger 201

populations composed of 100 samples, most of the DD genes were detected by both 202

methods (67.4%), while the maximum proportion of DD genes detected with DiPhiSeq 203

reached 26.4%. 204

Differential dispersion in gene expression in cancer 205

Having defined the optimal conditions of utilization, we applied DiPhiSeq and MDSeq 206

to The Cancer Genome Atlas (TCGA) datasets [47] to identify DD genes when 207

comparing normal and tumor samples. We used RNA-seq data from patients for whom 208

tumor tissue and adjacent normal tissue samples were available. In agreement with the 209

results of our simulation study, only the datasets with more than 30 samples for both 210

conditions were analyzed, in order to maintain FDR below 0.05 with MDSeq and to 211

ensure sufficient power with DiPhiSeq. We list these datasets in Table 1. 212
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Table 1. Numbers of normal and tumor samples for the analyzed TCGA
datasets.

Dataset
Samples

normal tumor
TCGA-BRCA 112 117
TCGA-COAD 41 46
TCGA-HNSC 43 43
TCGA-KIRC 72 72
TCGA-KIRP 31 31
TCGA-LIHC 50 50
TCGA-LUAD 57 67
TCGA-LUSC 49 49
TCGA-PRAD 52 54
TCGA-THCA 58 58

The samples originate from patients for whom samples of tumor tissues and adjacent
normal tissues are available. Only the datasets with at least 30 samples for both
conditions are analyzed: BRCA (BReast invasive CArcinoma), COAD (COlon
ADenocarcinoma), HNSC (Head and Neck Squamous cell Carcinoma), KIRC (KIdney
Renal Clear cell carcinoma), KIRP (KIdney Renal Papillary cell carcinoma), LIHC
(LIver Hepatocellular Carcinoma), LUAD: (LUng ADenocarcinoma), LUSC (LUng
Squamous cell Carcinoma), PRAD (PRostate ADenocarcinoma), and THCA (THyroid
CArcinoma). For some datasets, the numbers of samples from normal and tumor tissues
are different because several samples from tumors are available and are integrated in the
analysis.

Identification of DD genes 213

A fold-change threshold of 1 was used to filter DE genes and identify DD genes among 214

non-DE genes with DiPhiSeq and MDSeq. Fig 4 shows the number of DE and DD genes 215

identified for each dataset among non-DE genes. The numbers of DD genes detected 216

irrespective of DE status are reported in S4 Fig and S5 Fig. 217

Fig 4. Differentially expressed and differentially dispersed genes according
to DiPhiSeq and MDSeq for each TCGA dataset. (A) Number of differentially
expressed (DE) genes separated between those upregulated in tumors (DE+) and those
downregulated in tumors (DE-), as detected by DiPhiSeq and MDSeq, per TCGA
dataset. (B) Number of differentially dispersed (DD) genes among non-DE genes
separated between those overdispersed in tumors (DD+) and those underdispersed in
tumors (DD-), as detected by DiPhiSeq and MDSeq, per TCGA dataset.

Many more genes are identified as DE by DiPhiSeq than by MDSeq, which 218

dramatically reduces the set of genes of interest among which to search for DD genes. 219

More specifically, there were between 3 445 and 7 008 non-DE genes according to 220

DiPhiSeq and between 5 631 and 10 021 non-DE genes according to MDSeq, depending 221

on the dataset. Nevertheless, there are several thousand genes among which DD genes 222

can be searched for in any dataset. Among non-DE genes, the majority of DD genes are 223

overdispersed in tumors (DD+). Both methods generate consistent results: some cancers 224

are characterized by a high number of DD+ genes (breast, colon, kidney, liver and lung), 225

and others only contain very few DD genes (head and neck, prostate and thyroid). 226

To use the same gene sets of comparison and because MDSeq cannot identify a 227

differential dispersion in the expression data of highly DE genes while maintaining the 228
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FDR below 0.05 according to our simulation study, we compared the DD+ genes 229

identified with DiPhiSeq and MDSeq among the genes that are non-DE according to 230

MDSeq. We observed the same trend as in the simulation study with TCGA datasets: 231

the sets of DD+ genes identified with DiPhiSeq and MDSeq were quite consistent 232

(Fig 5). 233

Fig 5. DD+ genes identified by either DiPhiSeq, MDSeq, or both among
non-differentially expressed genes. Overdispersed genes in tumors (DD+) were
identified by DiPhiSeq and MDSeq among non-differentially expressed genes for each
TCGA dataset. Non-differentially expressed genes were identified by MDSeq.

For most of the analyzed datasets, the majority of the genes identified as DD+ are 234

labeled as such by both methods (from 48.7% to 73.4%). DiPhiSeq identified most of 235

the DD+ genes for the lung adenocarcinoma (TCGA-LUAD) and thyroid 236

(TCGA-THCA) datasets (65.3% and 64.8%, respectively). Regarding the head and neck 237

(TCGA-HNSC) and prostate (TCGA-PRAD) datasets, which are the two datasets for 238

which only a few DD+ genes are detected, most of the DD+ genes are only identified 239

with DiPhiSeq (45.5%) and MDSeq (69.4%), respectively. Overall, DiPhiSeq identifies 240

more DD+ genes that are not detected by MDSeq than the other way around. This 241

trend may be explained by the higher sensitivity of DiPhiSeq in detecting differential 242

dispersion in expression data with large datasets, i.e. datasets composed of sets of at 243

least 50 samples. 244

GO term enrichment analysis 245

To gain biological insight, an analysis of enrichment in Gene Ontology (GO) terms 246

among DD+ genes for each TCGA dataset was conducted. To obtain the largest 247

possible set of DD+ genes, we filtered highly DE genes with MDSeq using the 248

maximum mean fold-change threshold values that maintain the FDR of the differential 249

dispersion detection below 0.05 according to our simulation study, that is, 1.25 for the 250

breast cancer dataset (TCGA-BRCA) and 1.30 for the others. Since these thresholds for 251

the mean fold-change are quite low, we consider the genes that pass these filters to be 252

lowly DE genes. Henceforth, DD+ genes refer to lowly DE, rather than non-DE, genes 253

whose expression exhibits an increase of dispersion among tumor samples. The numbers 254

of lowly DE genes and DD genes according to DiPhiSeq and MDSeq are displayed in S6 255

Fig, and the overlaps of the sets of DD+ genes are displayed in S7 Fig. Since DD+ 256

genes are identified with an FDR below 0.05 with both methods according to our 257

simulation study, the entire set of DD+ genes identified either by both methods or only 258

one of them is taken into account to gain the most biological knowledge in the GO term 259

enrichment analysis for each dataset. We used redundancy reduction methods to ease 260

the comparison of enriched GO terms across all the analyzed datasets (see Methods for 261

more details). The top 40 representative terms and the p-values of their enrichment in 262

each dataset are shown in Figure 6. The full list of enriched representative GO terms is 263

available in S1 File, and an overview is displayed in S8 Fig. 264

Fig 6. Enriched GO terms among DD+ genes according to DiPhiSeq
and/or MDSeq for each TCGA dataset. Top 40 representative enriched Gene
Ontology (GO) terms among overdispersed genes in tumors (DD+), ordered first by the
number of datasets for which they are enriched (decreasing order) and second by the
mean p-values of enrichment across all datasets (increasing order). Highly differentially
expressed genes were filtered out using MDSeq, and DD+ genes were identified among
lowly differentially expressed genes.
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Interestingly, among DD+ genes, the most significantly enriched GO terms were the 265

most widespread across all the analyzed tissues and focused on some key cellular 266

functions, such as catabolism. In contrast, GO terms that were found to be significantly 267

enriched for only a few datasets tended to have higher p-values than the most widely 268

enriched GO terms (S8 Fig and S1 File). This striking result suggests some common 269

features in tumoral development and progression, regardless of the tissue of origin, 270

whose involved gene expression is characterized more by an increase in dispersion than 271

by a change in the mean in tumors. 272

Discussion 273

To our knowledge, our work is the first study to thoroughly assess the performance of 274

methods to detect differential dispersion in RNA-seq data and, more generally, 275

differential variance in gene expression data. We characterized DiPhiSeq and MDSeq 276

performances based on simulated datasets. In particular, we identified key parameters 277

to use to increase the sensitivity and to control the FDR. These simulations enabled us 278

to propose recommendations to reliably apply these methods to real datasets. 279

Gene expression dispersion in cancer 280

Overall increase of dispersion and robustness 281

By applying DiPhiSeq and MDSeq to TCGA datasets, we identified an overall increase 282

in the dispersion in the expression of many lowly DE genes in tumors in comparison 283

with normal tissues. Also analyzing TCGA datasets, Han et al. have already revealed 284

an increase in the coefficient of variation of gene expression in tumors of breast, colon, 285

lung and liver cancers [28]. In addition, using microarray data, Ho et al. [8] also noticed 286

that an increase in gene expression variance in a disease condition such as cancer is 287

more common than a decrease. Our work confirms these results, extends them to other 288

cancers and increases their reliability by using RNA-seq data and methods based on a 289

more appropriate statistical framework, and rigorously validates them in a simulation 290

study. This increase in the dispersion in gene expression in tumors may reflect the huge 291

variety of genetic perturbations occurring in their development and their polyclonal 292

origin [48]. It may result from a loss of control of gene expression in cancer cells, e.g. 293

loss of specificity in signaling cascades, transcriptional activity (cis and trans factors) or 294

post-transcriptional regulation, e.g. splicing events or translation inhibition by 295

microRNAs [49,50]. Whatever its origin, this high variability in gene expression in 296

cancer cells may be considered as a gain of robustness, as defined by Kitano [51]. The 297

increase in the dispersion in the expression of hundreds of genes in tumors may enable 298

them to adapt quickly and effectively to any perturbation of their environment. This 299

may explain the resistance to treatment often observed, in particular to treatments that 300

were effective during the first years of application [48]. These genes, whose mean 301

expression does not vary significantly but whose dispersion of expression increases in 302

cancer, form de facto a new space for the discovery of potential biomarkers. 303

Overrepresented functions among DD+ genes 304

We revealed that the biological processes that were the most significantly enriched 305

among DD+ genes were also the most widespread across the different analyzed cancers. 306

This striking result suggests common traits in tumoral development and progression 307

pertaining to some key biological processes. It is worth noting that many of them are 308

related to catabolism, e.g. “proteasomal protein catabolic process”, “mRNA catabolic 309

process” or “protein targeting”, as previously shown by Han et al. [28]. In particular, 310
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several processes related to the ubiquitin-proteasome system, which is a major controller 311

of the protein degradation process and is highly involved in cancer [52], are found 312

among the most significant results (“protein polyubiquitination”, “proteasomal 313

ubiquitin-independent protein catabolic process”). In contrast, no process related to 314

anabolism was found among the most frequently enriched processes among DD+ genes, 315

suggesting that catabolic processes are much more affected by the dysregulation of gene 316

expression than are anabolic processes. 317

Autophagy was also found among the biological processes significantly enriched 318

among DD+ genes for all the analyzed datasets. Similar to the proteasome, it is a main 319

recycling system for biological molecules that enables cells to survive critical situations 320

such as nutrient starvation and the degradation of damaged organelles or pathogens. In 321

pre-malignant cells, autophagy actively acts to preserve the physiological homeostasis of 322

multiple functions, e.g. elimination of mutagenic entities, decrease local inflammation, 323

and thus aid the struggle against tumor development. In malignant cells, autophagy 324

affects the tumor progession and the response to treatment in multiple ways, some of 325

which act in opposition. Autophagy desensitizes cells to programmed cell death 326

mediated by different treatment strategies but is also involved in danger signal emission 327

which triggers an immune response through antigen presentation. Thus, the overall 328

effect of autophagy on tumor progression and response to treatment is 329

context-dependent [53]. The increase in the dispersion in the expression of genes 330

involved in autophagic processes reveals the complexity of these processes in tumor 331

progression and may lead one to wonder whether they should be induced or, on the 332

contrary, inhibited as a cancer treatment [54]. Some treatments indeed aim to stimulate 333

these processes, while others aim to inhibit them [55]. 334

Our results revealed that the expression of the genes involved in these processes is 335

mainly affected by an increase in dispersion in tumors rather than a change in the mean. 336

Although DD genes are the main focus of interest in our approach, we also identified 337

biological processes enriched among highly upregulated (S2 File) and highly 338

downregulated genes (S3 File) in tumors with respect to healthy samples. Among all 339

the previously discussed catabolic GO terms enriched among DD+ genes, the GO term 340

“proteasomal ubiquitin-independent protein catabolic process” is the only one to also be 341

enriched among highly upregulated genes (S2 File) for the single breast cancer dataset. 342

Thus, these previously discussed catabolic GO terms are specifically enriched among 343

DD+ genes for a large number of different tissues, which highlights the interest in 344

searching for changes in dispersion, in addition to changes in the mean, to yield new 345

insights into tumoral development and cancer treatment efficacy. 346

Evaluation of DiPhiSeq and MDSeq differential dispersion 347

detection performances 348

Based on our simulation study, we demonstrated that MDSeq must only be applied to 349

lowly DE genes to reliably identify differential dispersion. In contrast, the detection of 350

dispersion differences in gene expression data with DiPhiSeq is not affected by the 351

presence of a difference in mean. 352

Dispersion and variance estimation 353

We showed that MDSeq tends to falsely identify differential dispersion among highly DE 354

genes. The ability of MDSeq to predict differential dispersion for genes with opposite 355

differential means is indeed poor, with a high level of false positives (S9 FigA). The 356

GLM implemented in MDSeq is based on a reparameterization of the NB distribution, 357

which has the advantage of explicitly modeling the variance of the random variable Yig 358

describing the read counts but does not allow us to directly estimate the dispersion 359
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parameter of the classical NB distribution. Under this canonical model, the 360

mean-variance relationship is defined by a quadratic function Var(Yig) = µig + φig µ
2
ig. 361

Thus, a change in variance may be due only to a change in mean, which explains why 362

MDSeq achieves poor differential dispersion performance among highly DE genes but 363

can still be reliably applied to identify differential dispersion among lowly DE genes, 364

based on a nonsignificant p-value for the difference of mean test and a significant 365

p-value for the difference of variance test (S9 FigB). In contrast, DiPhiSeq is based on 366

the classical definition of the NB distribution and therefore allows us to estimate 367

changes in dispersion. Our evaluations demonstrated that the detection of differential 368

dispersion with DiPhiSeq is not sensitive to the presence of a mean fold-change and thus 369

confirmed the claim of the DiPhiSeq authors: their methods effectively handle 370

negatively associated mean and dispersion values [41]. Even if the main interest of 371

searching for DD genes is to identify genes which are not detected by the classical 372

differential expression analysis, i.e. non- or lowly DE genes, estimating differences in 373

dispersion may help avoid misinterpreting a difference in dispersion as a difference in 374

mean, and eventually bring new biological insights [56]. 375

Specific features 376

One limitation of DiPhiSeq is that it does not allow the inclusion of any additional 377

covariate in its statistical model to prevent some sources of bias from confounding the 378

comparison of interest. This limitation is partly mitigated by the use of a Tukey’s 379

biweight function that removes any aberrant value regardless of its source, either 380

biological or technical. In contrast, similar to most differential expression analysis 381

methods based on the NB distribution [37,57], MDSeq implements a GLM that may 382

take into account classical sources of bias, such as batch effects, in the detection of DD 383

genes (see, for example, LMAN2 expression in the lung adenocarcinoma dataset in S10 384

Fig) and therefore appears to better handle technical biases. Moreover, MDSeq also 385

implements a zero-inflated model for which the goal is to control the statistical bias that 386

may be introduced by an excess of null values in the analysis of gene expression data, 387

which is particularly relevant for the analysis of single-cell expression data. 388

Computation time and large RNA-seq datasets 389

The computation time is another major difference between these two methods. The 390

runtime of DiPhiSeq required to analyze the same datasets was indeed hundreds to 391

thousand times longer than that of MDSeq (Table 2). 392

The possibility of using several CPUs and the use of optimization methods to 393

estimate the GLM coefficients may explain, at least partly, the difference in computation 394

time. Large gene expression datasets have become increasingly frequent with the 395

development of comprehensive RNA-seq datasets, such as GTEx (Genotype-Tissue 396

Expression) [58], and methods for integration of RNA-seq samples originating from 397

heterogeneous sources while controlling technical biases [59]. The differential dispersion 398

approach may therefore be applied in a variety of biological contexts. Thus, the 399

computation time of DiPhiSeq may be a burden to its wide adoption. 400

Gene expression variability at the single-cell level 401

Without any further specification, gene expression variability usually refers to cell-to-cell 402

variability. Here, we analyzed RNA-seq data of samples composed of thousands of cells, 403

i.e. bulk data coming from a population of different individuals. Some studies have 404

demonstrated the limitations of inferences from bulk data regarding gene expression 405

variability [60,61]. Such approaches are unable to capture cell-to-cell variability and 406
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Table 2. DiPhiSeq and MDSeq computation times in minutes per dataset.

Dataset Sample sizes
Computation time (min)
DiPhiSeq MDSeq

Simulated datasets:
30 30 339 2.3
40 40 451 2.6
50 50 563 3.2
100 100 1 140 5.5

TCGA datasets:
TCGA-BRCA 112 117 13 231 6.7
TCGA-COAD 41 46 4 135 4.1
TCGA-HNSC 43 43 6 372 3.5
TCGA-KIRC 72 72 9 766 4.7
TCGA-KIRP 31 31 4 422 3.3
TCGA-LIHC 50 50 6 192 3.4
TCGA-LUAD 57 67 5 427 4.9
TCGA-LUSC 49 49 7 417 3.9
TCGA-PRAD 52 54 6 528 3.7
TCGA-THCA 58 58 8 102 3.8

Computations were performed using a desktop computer with an Intel(R) Xeon(R)
E3-1220 v5 @ 3.00 GHz 4-core CPU and 16 GB RAM. The first and second columns of
the sample size part refer to samples from normal tissues and tumor tissues,
respectively, for TCGA datasets. Mean computation times over replicates and all the
evaluated maximum mean fold-change values for simulated datasets composed of lowly
DE genes are displayed. MDSeq computation times for TCGA datasets pertain to mean
and dispersion fold-changes above thresholds.

tend to average gene expression [62, 63]. Nevertheless, the estimation of gene expression 407

based on this type of data may still exhibit some variability and provide a snapshot of 408

the expression variability of a gene within populations of cells. We indeed identified a 409

large number of genes with a significant change in dispersion in their expression between 410

healthy and tumor bulk samples from different individuals. Single-cell RNA sequencing 411

technologies have emerged in the last few years, enabling the study of gene expression 412

variability at the cellular level. Their application in the differential dispersion approach 413

is promising for a wide range of biological contexts. For example, in the context of 414

cancer, the population of cells composing a tumor may exhibit a high level of gene 415

expression variability, potentially leading to therapeutic failures [64]. However, 416

analyzing the data generated with these techniques faces new methodological issues. 417

Technical null values, or dropouts, are much more present in single-cell RNA-seq data 418

than in bulk RNA-seq data due to the limited amount of mRNA material available at 419

the cellular level [65]. From the perspective of identifying DD genes using single-cell 420

RNA-seq data, MDSeq seems to be currently more appropriate thanks to the 421

development of dedicated features for managing excess technical null values or the 422

incorporation of any technical bias through covariates in a GLM. Moreover, similar to 423

comprehensive RNA-seq datasets, the high number of samples of single-cell RNA-seq 424

datasets with respect to bulk RNA-seq datasets [65] may result in excessively long 425

runtimes for DiPhiSeq, therefore hindering its application to such data. 426
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Conclusion 427

Overall, we showed that the application of the differential dispersion approach to gene 428

expression data is relevant to gain knowledge of tumor progression and cancer treatment 429

efficacy. With the emergence of comprehensive RNA-seq datasets, composed of either 430

single-cell or bulk samples in a variety of biological contexts, we believe that the 431

changes in dispersion in gene expression between samples from different conditions of 432

biological interest should now be taken into account. In the classical differential mean 433

expression analysis, it would provide a more realistic model of the data and, in the 434

explicit goal of identifying genes with a differential variance in their expression, it may 435

contribute to gaining new insights into biological processes and eventually to discovering 436

new biomarkers and therapeutic avenues. 437

Materials and methods 438

RNA-seq dataset simulation 439

We simulated RNA-seq count datasets using the compcodeR R package [66]. The 440

simulated datasets are composed of 10 000 genes and two sets of samples of equal size 441

corresponding to biological conditions of interest. Read counts for gene i and sample j 442

are generated by random sampling using a negative binomial distribution: 443

Yij ∼ NB(µiρ(j), φiρ(j)), where µiρ(j) and φiρ(j) are the mean and dispersion 444

parameters, respectively, and ρ(j) denotes the condition of sample j (ρ(j) ∈ {1; 2}). 445

The mean µi1 and dispersion φi1 values for the first condition are estimated by pairs 446

from real datasets [67,68]. The mean and dispersion parameters for the second 447

condition were generated by selecting a fraction of the genes to be subjected to a 448

fold-change in mean or dispersion. 449

The dispersion of genes chosen to be differentially dispersed (DD) was determined as 450

φi2 = FCφi × φi1, where FCφi = δφi

(
FCφ,mini + cφi

)
, with FCφ,min

i being a predefined 451

minimum fold-change, cφi an extra amount drawn from an exponential distribution of 452

parameter λ = 1, and δφi which is equally likely to be 1 or −1, so that half the genes 453

have an increase in dispersion and the other half a decrease in dispersion in the second 454

condition. We set FCφ,min
i = 1.5 to ensure at least a 50% difference in dispersion 455

between the two conditions. The non-DD genes have the same dispersion in both 456

conditions: φi2 = φi1. 457

The mean expression of genes chosen to be differentially expressed (DE) was 458

simulated according to two scenarios: 459

� Unconstrained mean expression fold-changes: Similar to what was done for the 460

dispersion parameter of DD genes, µi2 = FCµi × µi1, where 461

FCµi = δµi

(
FCµ,min

i + cµi

)
. Several differences of mean minima were evaluated 462

from 10% to 50%, i.e. FCµ,min
i ∈ {1.1; 1.2; 1.3; 1.4; 1.5}), and cµi was drawn from 463

an exponential distribution of parameter λ chosen in {0.85; 0.9; 1} depending on 464

FCµ,min
i to obtain similar highest fold-change values (S1 Fig). Since the 465

evaluation of differential mean expression detection performance is not the main 466

goal of our approach, we simulated non-DE genes in a more realistic way than 467

having the same mean expression value for both conditions. Instead, we allowed 468

slight fold-changes by random sampling using uniform distributions: 469

FCµi ∼ U(1, FCµ,min
i ), where the maximum value corresponds to the minimum 470

value of fold-change for highly DE genes. These genes are therefore called lowly 471

DE genes rather than non-DE genes. 472
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� Moderated mean expression fold-changes: Since the purpose of these datasets is 473

only to assess differential dispersion detection performance for lowly DE genes, 474

the distinction between DE and non-DE genes is not required. For all the genes of 475

these datasets, mean fold-changes were introduced using uniform distributions: 476

FCµi ∼ U(1, FCmax
i ), where FCmax

i ∈ {1.1; 1.2; 1.3; 1.4; 1.5}. 477

For all the simulated datasets, the same fractions of DD genes (or non-DD genes) 478

among highly DE genes and lowly DE genes (for the first set of simulations) were 479

ensured, as well as the same fractions of DD genes with an increase in dispersion in the 480

second condition (DD+) among upregulated genes (DE+) and downregulated genes 481

(DE-) in the second condition. Thus, simulated datasets are composed of 50% DD genes 482

and 50% non-DD genes and 50% highly DE genes and 50% lowly DE genes for the first 483

set of simulations. 484

For the sake of realism, we introduced outliers with very high counts in all the 485

simulated datasets since Li et al. [41] showed that they may have a dramatic effect on 486

differential dispersion detection. Following the recommendations of Soneson and 487

Delorenzi [44], we multiplied one read count by a value from 5 to 10 for 10% of the 488

genes. 489

RNA-seq data preprocessing 490

Before applying differential dispersion detection methods, classical RNA-seq data 491

preprocessing steps were applied to all the simulated and TCGA datasets. First, read 492

counts were normalized by the Trimmed Mean of M-values method [69,70]. Lowly 493

expressed genes were then independently filtered out using a threshold of 1 count per 494

million [71]. 495

Differential dispersion detection 496

DiPhiSeq was applied to all the simulated and TCGA datasets with the default values 497

for all the parameters, in particular the c parameter of Tukey’s biweight function set to 498

4 for both the mean and the dispersion estimation since the authors of DiPhiSeq found 499

that this value enables robust parameter estimations [41]. The p-values for both 500

differential mean and differential dispersion statistical tests were corrected by the 501

Benjamini-Hochberg procedure [72] to control the FDR as recommended by the authors 502

of DiPhiSeq. 503

The outlier removal function was applied with the minimum sample size lowered to 1 504

before applying the MDSeq main function to all the simulated and TCGA datasets. 505

Batch effects were handled when analyzing TCGA datasets by supplying the sequencing 506

runs that generated the RNA-seq samples, when available, as a covariate in the GLM 507

for both the identification of DD genes and the filtering of highly DE genes. A range of 508

threshold values from 1 to 1.5 was used to filter out highly DE genes, and DD genes 509

were identified with a fold-change threshold of 1. The default values were used for the 510

other parameters for both the outlier removal and MDSeq functions. The p-values for 511

both differential mean and differential dispersion statistical tests were corrected by the 512

Benjamini-Yekutieli procedure [73] to control the FDR as recommended by the authors 513

of MDSeq. 514

We corrected the p-values using FDR-controlling procedures. As recommended by 515

the authors of the respective methods, we corrected the p-values obtained with DiPhiSeq 516

with the Benjamini-Hochberg procedure and those obtained with MDSeq using the 517

Benjamini-Yekutieli procedure. We verified in both cases that this appropriately 518

maintained the FDR of the differential dispersion detection below 0.05 (S2 Fig). 519
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Performance evaluation 520

The performances of differential expression and differential dispersion detection 521

methods were evaluated based on the fold-changes of the mean and dispersion of 522

expression introduced in the simulated datasets. The genes that were simulated to be 523

highly DE or DD are the positive groups for the differential mean or the differential 524

dispersion performance evaluations, respectively. The genes that were simulated to be 525

lowly DE or non-DD are the corresponding negative groups. For both DiPhiSeq and 526

MDSeq, a p-value for the differential mean or differential dispersion statistical test lower 527

than 0.05 after the application of the appropriate FDR-controlling procedure was used 528

to define positive detection. The comparisons with the positive groups enabled us to 529

count true positive (TP) and false positive (FP) results for both differential expression 530

and differential dispersion. Similarly, true negative (TN) and false negative (FN) results 531

were identified thanks to a corrected p-value of differential mean or differential 532

dispersion statistical test higher than 0.05 and the comparisons with the negative 533

groups. The sensitivity (or true positive rate (TPR)), the false discovery rate (FDR) 534

and the area under the ROC curve (AUC) were then computed based on these four 535

categories of results. 536

Gene Ontology term enrichment analysis across datasets 537

For each TCGA dataset, genes of interest, e.g. DD+ genes, were identified and Gene 538

Ontology (GO) term enrichment analysis was performed using the Biological Processes 539

(BP) ontology. Enriched GO terms were identified thanks to a hypergeometric test 540

p-value after FDR control lower than 0.05 using the enrichGO function of the 541

clusterProfiler R package [74]. The list of enriched GO terms was then reduced by 542

gathering terms whose semantic similarity exceeded a threshold value. To do so, clusters 543

of closely related GO terms were generated through the relevance method [75] to 544

compute semantic similarity between GO terms. A high similarity threshold (0.8) was 545

used to gather only closely related GO terms into clusters. The GO term whose p-value 546

is the lowest among a cluster was then chosen to represent the entire cluster. 547

To facilitate comparisons across datasets, closely related GO terms were searched for 548

among the previously simplified enriched GO term lists originating from each dataset. 549

The similarity of all GO term pairs was calculated with the relevance method. These 550

similarity values were then used to perform hierarchical clustering and gather closely 551

related GO terms by using a conservative threshold value (0.8). For each cluster of 552

closely related GO terms, the hierarchical structure of the BP ontology was used to 553

identify a generic term common to all the GO terms. This common generic GO term 554

was subsequently used as the representative term for the entire cluster, and its 555

enrichment p-value was retrieved for each TCGA dataset containing an enriched GO 556

term in the cluster. 557

Supporting information 558

S1 Fig. Fold-change distributions used to simulate differentially expressed 559

genes. Different minimum values b and extra amounts drawn from exponential 560

distributions using different parameter values λ to have similar maximum values across 561

all the distributions of fold-change values. 562

S2 Fig. Correction of p-values for differential dispersion by the 563

Benjamini-Hochberg and Benjamini-Yekutieli FDR-controlling procedures. 564

P-values obtained with DiPhiSeq (A) and MDSeq (B) for the detection of differential 565
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dispersion in gene expression data from a simulated dataset composed of two 566

populations of 50 samples before and after correction by the Benjamini-Hochberg (BH) 567

and Benjamini-Yekutieli (BY) procedures. All the genes are lowly DE with a mean 568

fold-change of expression between 1 and 1.3. The red dotted lines represent a p-value 569

threshold value of 0.05. 570

S3 Fig. Differential dispersion performance with MDSeq after filtering 571

highly DE genes using different fold-change threshold values. (A) False 572

discovery rate (FDR) and (B) true positive rate (TPR) values obtained with simulated 573

datasets composed of two sample populations of equal size (panels on the horizontal 574

axis). The maximum mean fold-change threshold values that enable an increase in the 575

sensitivity of the differential dispersion detection while maintaining the FDR below 0.05 576

are displayed in red. 577

S4 Fig. Differentially expressed and differentially dispersed genes 578

according to DiPhiSeq and MDSeq for each TCGA dataset. (A) Number of 579

differentially expressed (DE) genes separated between those upregulated in tumors 580

(DE+) and those downregulated in tumors (DE-), as detected by DiPhiSeq and MDSeq, 581

per TCGA dataset. (B) Number of differentially dispersed (DD) genes separated 582

between those overdispersed in tumors (DD+) and those underdispersed in tumors 583

(DD-), as detected by DiPhiSeq and MDSeq, per TCGA dataset. 584

S5 Fig. Differentially dispersed (DD) genes according to DiPhiSeq and 585

MDSeq for each TCGA dataset. (A) Number of overdispersed genes in tumors 586

(DD+) and (B) number of underdispersed genes in tumors (DD-) separated between 587

those upregulated in tumors (DE+), those downregulated in tumors (DE-) and those 588

non-differentially expressed (non-DE), as detected by DiPhiSeq and MDSeq, per TCGA 589

dataset. 590

S6 Fig. Differentially dispersed genes among lowly differentially expressed 591

genes for each TCGA dataset. (A) Number of highly differentially expressed (DE) 592

genes, separated between those upregulated in tumors (DE+) and those downregulated 593

in tumors (DE-), and lowly DE genes, as detected by MDSeq, per TCGA dataset. 594

Highly DE genes were filtered using the maximum mean fold-change threshold values, 595

enabling us to keep the false discovery rate of the differential dispersion detection below 596

0.05 with respect to the number of available samples per dataset according to our 597

simulation study. (B) Number of differentially dispersed (DD) genes among lowly DE 598

genes separated between those overdispersed in tumors (DD+) and those underdispersed 599

in tumors (DD-), as detected by DiPhiSeq and MDSeq, per TCGA dataset. 600

S7 Fig. DD+ genes identified by either DiPhiSeq, MDSeq, or both among 601

lowly differentially expressed genes. Overdispersed genes in tumors (DD+) were 602

identified by DiPhiSeq and MDSeq among the lowly differentially expressed (DE) genes 603

for each TCGA dataset. Lowly DE genes were identified by MDSeq using the maximum 604

mean fold-change threshold values, enabling us to keep the false discovery rate of the 605

differential dispersion detection below 0.05 with respect to the number of available 606

samples per dataset according to our simulation study. 607

S8 Fig. Overview of the enriched GO terms among DD+ genes according 608

to DiPhiSeq and/or MDSeq. Overview of the entire list of representative enriched 609

Gene Ontology (GO) terms among overdispersed genes in tumors (DD+), ordered first 610

by the number of datasets for which they are enriched (decreasing order) and second by 611
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the mean p-values of enrichment across all datasets (increasing order). Highly 612

differentially expressed genes were filtered out using MDSeq, and DD+ genes were 613

identified among lowly differentially expressed genes. 614

S9 Fig. Reliable identification of differentially dispersed genes among 615

lowly differentially expressed genes with MDSeq. Identification of differentially 616

dispersed (DD) genes based on (A) a significant p-value for the difference of variance 617

test or (B) a nonsignificant p-value for the difference of mean test and a significant 618

p-value for the difference of variance test. True mean and dispersion log2-fold-changes 619

(left panels) and estimated mean and variance log2-fold-changes with MDSeq (right 620

panels) of a simulated dataset composed of two populations of 50 samples are displayed. 621

Colours represent the results of the identification of differential dispersion by MDSeq 622

using a log2-fold-change threshold of 0. The red dotted line is the y = x diagonal. 623

S10 Fig. Batch effect handling by a covariate in the generalized linear 624

model implemented by MDSeq. Expression values of the LMAN2 gene (lectin, 625

mannose binding 2, ENSG00000169223) based on the TCGA dataset composed of 626

samples from patients with lung adenocarcinoma (TCGA-LUAD) for whom both a 627

tumor sample and a normal sample are available. Data are clustered according to 628

sequencing batch. In batches 0946, 1107, 1206 and A277, which enabled the sequencing 629

of only tumor samples, the dispersion of LMAN2 expression increased with respect to 630

the other batches composed of samples from both conditions. Differential dispersion 631

MDSeq p-values without the integration of batch effect by a blocking factor in the 632

generalized linear model (GLM): 3.84 10−4; with the integration of batch effect by a 633

blocking factor in the GLM: 1.36 10−1; DiPhiSeq differential dispersion p-value: 634

9.08 10−5. 635

S1 File. Enriched GO terms among DD+ genes according to DiPhiSeq 636

and/or MDSeq for each TCGA dataset. List of representative enriched Gene 637

Ontology (GO) terms among overdispersed genes in tumors (DD+), ordered first by the 638

number of datasets for which they are enriched (decreasing order) and second by the 639

mean p-values of enrichment across all datasets (increasing order). Highly differentially 640

expressed genes were filtered out using MDSeq, and DD+ genes were identified among 641

lowly differentially expressed genes. 642

S2 File. Enriched GO terms among highly upregulated genes in tumors 643

for each TCGA dataset. List of representative enriched Gene Ontology (GO) terms 644

among highly upregulated genes in tumors, ordered first by the number of datasets for 645

which they are enriched (decreasing order) and second by the mean p-values of 646

enrichment across all datasets (increasing order). Highly upregulated genes were 647

identified by MDSeq using the maximum mean fold-change threshold values, enabling 648

us to keep the FDR of the differential dispersion detection below 0.05, in agreement 649

with our simulation study and with respect to the number of available samples per 650

dataset, i.e. 1.25 for the breast cancer dataset (TCGA-BRCA) and 1.30 for the others. 651

S3 File. Enriched GO terms among highly downregulated genes in tumors 652

for each TCGA dataset. List of representative enriched Gene Ontology (GO) terms 653

among highly downregulated genes in tumors, ordered first by the number of datasets 654

for which they are enriched (decreasing order) and second by the mean p-values of 655

enrichment across all datasets (increasing order). Highly downregulated genes were 656

identified by MDSeq using the maximum mean fold-change threshold values, enabling 657

us to keep the FDR of the differential dispersion detection below 0.05, in agreement 658
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with our simulation study and with respect to the number of available samples per 659

dataset, i.e. 1.25 for the breast cancer dataset (TCGA-BRCA) and 1.30 for the others. 660
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