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Abstract 

Single molecule localization microscopy (SMLM) has revolutionized biological imaging, improving the 
spatial resolution of traditional microscopes by an order of magnitude. However, SMLM techniques 
depend on accumulation of many localizations over thousands of recorded frames to yield a single 
super-resolved image, which is time consuming. Hence, the capability of SMLM to observe dynamics 
has always been limited.  Typically, a few minutes of data acquisition are needed to reconstruct a 
single super-resolved frame. In this work, we present DBlink, a novel deep-learning-based algorithm 
for super spatiotemporal resolution reconstruction from SMLM data. The input to DBlink is a recorded 
video of single molecule localization microscopy data and the output is a super spatiotemporal 
resolution video reconstruction. We use bi-directional long short term memory (LSTM) network 
architecture, designed for capturing long term dependencies between different input frames. We 
demonstrate DBlink performance on simulated data of random filaments and mitochondria-like 
structures, on experimental SMLM data in controlled motion conditions, and finally on live cell 
dynamic SMLM. Our neural network based spatiotemporal interpolation method constitutes a 
significant advance in super-resolution imaging of dynamic processes in live cells. 

Introduction 

The spatial resolution in optical microscopes is bounded by the diffraction limit, which sets the 
minimal achievable resolution of standard light microscopes at about half the wavelength of light, 
corresponding, in the visible range, to ~200-300 nm. To overcome this limitation, and enable higher 
resolution, super-resolution microscopy (SRM) methods have been developed. Notable methods of 
this family include stimulated emission depletion (STED)1, structured-illumination microscopy (SIM)2, 
as well as single molecule localization microscopy (SMLM)3–5. Prominent variants of SMLM include 
photoactivated localization microscopy3 (PALM), stochastic optical reconstruction microscopy3 
(STORM), points accumulation for imaging in nanoscale topography6 (PAINT), and DNA-PAINT5. The 
SMLM variants differ in their experimental conditions, however they share a similar overall pipeline: 
First, fluorescent molecules are used to label structures in a specimen. Then, a sequence of frames is 
captured, in which only a sparse, random subset of molecules emit light per-frame. Subsequently, 
each emission event is detected, and fit to a model of the system point spread function (PSF) allowing 
highly precise determination of the emitting fluorophore’s position. Finally, by accumulating the 
localizations of thousands of emitters, the output of SMLM is a single super-resolved image of the 
structure, typically with an order of magnitude resolution improvement compared to the diffraction 
limit. 

An inherent limitation in SMLM is its temporal resolution. Accumulating a large enough number 
(typically millions) of single-molecule emission events, to generate a continuous image takes a long 
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time. Indeed, the typical temporal resolution in SMLM is on the order of minutes, while tens-of-
seconds resolutions have also been reported7,8. Recent advances in deep learning algorithms have 
yielded computational algorithms that further improve the capabilities of SMLM. ANNA-PALM7 
significantly reduces the number of frames needed for super-resolution reconstruction. Deep-
STORM9,10 as well as DECODE11 enable researchers to analyze densely labeled SMLM experiments by 
training a neural network to perform multi-emitter fitting in super-resolution. Importantly, while these 
algorithms and other non-SMLM methods12,13 perform exceptionally well in visualization of nanoscale 
structures, they are still mainly applicable for the analysis of static data or very slow dynamics.  

The main reason why previous methods are useful mostly for static data is because the typical SMLM 
reconstruction process does not exploit structural-correlations over long periods of time (longer than 
the temporal window being reconstructed). On the other hand, algorithms13,14 that do exploit 
temporal interpolation along the video frames, do not apply spatial interpolation per frame; an 
algorithm that combines both spatial and long-range temporal interpolation would be optimal. 

In this paper, we present DBlink, a novel algorithm that increases the spatiotemporal resolution in the 
reconstruction of dynamic SMLM data. We use a bi-directional long short term memory (LSTM) 
network, that receives as input a video of super-resolved localization maps and outputs a video of a 
dynamic super-resolved structure (Fig. 1). The super-resolved localization maps can be obtained by 
using existing algorithms, e.g. Deep-STORM15 or ThunderSTORM16. In order to perform such 
spatiotemporal interpolation, DBlink relies on inter-frame correlations, and on prior information 
regarding the imaged sample – namely, its type (e.g. microtubules, mitochondria, etc.). We first 
demonstrate the ability of DBlink to reconstruct super spatiotemporal resolution videos of the 
dynamics of simulated filaments. Then, we validate our network performance on experimental data 
of drifting and rotating microtubule filaments. We present super spatiotemporal resolution 
reconstructions of microtubule dynamics in live cells, achieving spatial resolution of ~40 nm and 
temporal resolution of 300 ms (~20 frames). Finally, we demonstrate the reconstruction of 
mitochondrial dynamics from live-cell PAINT data using a non-covalent, weak affinity fluorophore 
label. 

 

Figure 1: DBlink concept. Low-resolution frames containing stochastic blinking events are analyzed by a 
localization algorithm, in our case, Deep-STORM9, which generates super-resolved localization maps for each 
input frame. The localization maps serve as input to a LSTM network that provides as output super-resolution 
video reconstruction of the imaged structure. Scale bar = 2.5 um. 

Results 

Our goal is to extend the temporal resolution of SMLM beyond the current state-of-the-art, while 
maintaining high-spatial resolution. Conceptually, the problem at hand is spatiotemporal interpolation 
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of a dynamic structure from noisy pointwise samples. Clearly, there is insufficient information per 
frame, and solving this inverse problem requires some sort of prior knowledge. The strategy we chose 
here is to supply this knowledge in the form of training a neural network on data that resembles the 
desired structures – spatially as well as temporally. In addition to the exploitation of prior knowledge, 
we searched for a neural network architecture that can capture long term dependencies between 
different video frames. LSTM networks have previously proven themselves as a good solution for this 
task17,18. The hidden states of LSTM cells carry information from previous frames as they propagate 
throughout the video. Since our method analyzes experiment in retrospect, we possess also 
information from future frames; therefore, we decided to use a bi-directional LSTM network, 
concatenate the forward pass and the backward pass, and input them into a convolutional neural 
network (CNN) that provides the final video reconstruction (Supplementary Fig, S1). In the following 
example applications, we show that this approach is feasible and produces high quality results.  

First, we tested our approach on simulated data (Fig. 2). To do so, we generated simulated filaments 
according to the model of Shariff et al.19 (see methods section); then, we shifted and rotated them 
randomly in time (see SI for info). The simulated ground truth for each video was a binary map that 
contained ones where there was a filament and zeros everywhere else. Then, we generated simulated 
localizations based on the ground truth mask, at finite precision. To simulate motion within a single 
acquisition frame, we summed the localizations over temporal windows of 10 simulated-frames. The 
frame summation window size could be optimized according to different experimental conditions for 
better performance.  The neural network was able to reconstruct random shifting structures over time 
with high accuracy (Supplementary Video 1), namely, 90% of the simulated binary map matched the 
predicted structure, and only 1.3% of the predicted structure was hallucinated (see SI for more 
details). In this simulation, the temporal resolution corresponds to 1 reconstructed frame per 10 
simulated blinking frames. 

 

Figure 2: Generation and analysis of simulated filament training data. A We simulated a random number of 
filaments in the field of view (FOV) according to the model of Shariff, et al19. B Then, we applied gradually 
increasing affine transformations over a predefined video length of N frames. c Next, we generated random 
blinking event localizations based on the simulated structure. d Finally, we summed the simulated localizations 
every 10 frames and inserted the summed frames (total of N/10 frames) to the LSTM. The output of the LSTM 
was a super-resolution reconstruction video of length N/10. Scale bar = 2.5 um. 
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To quantify the spatial reconstruction resolution of the network, we performed Fourier ring 
correlation analysis20 as well as decorrelation analysis21 between the network reconstruction and a 
STORM reconstruction on a static sample. The network result was consistent with standard STORM 
reconstruction using ThunderSTORM16 up to a resolution of ~37 nm (see SI).   

Next, as a first validation of our method on experimental data, we reconstructed a static structure 
which was shifting laterally over time. For this, we captured a STORM experiment of fixed 
microtubules exhibiting naturally occurring lateral sample-drift. We estimated the drift using Deep-
STORM drift correction mechanism, which is based on cross-correlation, and received a total shift of 
240 nm in y direction and 400 nm in x direction (Fig 3). Next, we used the localization maps provided 
by Deep-STORM and summed them over windows of 100 frames with 50 ms acquisition time, to obtain 
high enough density per-input-frame to match our network training density. Finally, we input the 
summed localization maps into our network and received a super spatiotemporal reconstruction of 
the shifting data (Supplementary Video 2), at a temporal resolution of 0.2 frames per second. We 
predicted the drift according to the cross-correlation between the first reconstructed frame of our 
network and every other frame in the reconstructed video. The mean distance between our drift 
prediction and Deep-STORM prediction over the course of the experiment was 38 nm (Fig. 3). Notably, 
the network did not have any prior knowledge that the sample is static and drifting, namely, that the 
only motion was a global shift; rather, the network treated this data as general dynamic data. A global-
motion prior would improve the performance significantly, at the cost of a less generalized solution.   

 

Figure 3: Tracking drifting microtubules. a Deep-STORM is used to analyze 10,000 frames of experimental STORM 
data containing undesirable drift and obtain a super-resolution reconstruction of the microtubule structure. We 
used Deep-STORM’s drift correction tool to predict the drift over the course of the experiment. b The same 
STORM video is analyzed using DBlink. We have determined the drift by taking the maximal value of the cross-
correlation between each reconstructed frame and the initial reconstructed frame. c Deep-STORM drift 
prediction (dashed line) is consistent with the DBlink’s motion prediction. Scale bar = 2.5 𝜇𝑚. 

To demonstrate our algorithm on a more complex type of motion than lateral shift, while still 
possessing knowledge of the sample structure to serve as validation, we captured a STORM video of 
static microtubules while rotating the camera manually (Fig. 4). We added to the sample fluorescent 
beads to serve as fiducials reporting on sample rotation. The rotation could be predicted by finding 
the lateral displacement of the bead in each frame and calculating the arctan of y position divided by 
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x position, relative to the rotation axis. At the end of the experiment, we stopped rotating the camera 
and let the blinking continue for ~15,000 more frames; this is to generate the ground truth structure 
by running Deep-STORM on the static portion of the video. To test our reconstruction performance, 
we computationally rotated back the predicted structure in each frame according to the calculated 
rotation angle. Then, we compared the computationally-rotated video to the static reconstruction 
obtained by Deep-STORM (Supplementary Video S3). To quantify the prediction error, we measured 
the consistency between the reconstructed video frames based on the cross-correlation between 
every two frames in the reconstructed video, achieving a mean consistency score of 0.91, which 
indicates a stable reconstruction (see SI). In this experiment, we used a window size of 40 summed 
frames to generate the reconstructed video, with acquisition time of 20 ms per frame, resulting in 
temporal resolution of 1.25 frames per seconds. 

 

Figure 4: DBlink performance quantification using rotating microtubules. a A STORM movie of blinking 
microtubules is captured while rotating the camera. Fluorescent beads (red arrows) serve as fiducials reporting 
on the rotation. b Rotation is stopped, and a static STORM video is captured for 15,000 more frames, used to 
produce a ground truth static structure via Deep-STORM. The static structure is then compared to each frame 
in the dynamic reconstructed video, rotated appropriately. Scale bar = 2.5 𝜇𝑚. 

Next, we tracked microtubule dynamics in live cells. Since ground truth information was not available 
in this case, we compared our network reconstructions to two alternative solutions: Deep-STORM 
reconstructions based on short time windows, and a previously reported blind inpainting algorithm8 
(Supplementary Video 4), meant to compensate on the loss of information that occurs when choosing 
short temporal STORM windows. In this experiment, the input to DBlink was the sum of localizations 
over windows of 20 frames. We set the number of input frames for Deep-STORM windows and blind 
inpainting to be 300 frames. This number was chosen by optimizing the window size for the best 
reconstruction result (see Supplementary Fig. S6).  

Qualitatively, DBlink reconstructions consistently outperformed the other two methods. Although 
blind inpainting has managed to filter most of the noise in Deep-STORM data, it performed poorly in 
densely labeled areas. Furthermore, rapid dynamics caused motion blur in temporally-windowed 
STORM reconstructions (Fig. 5), while our network provided a more stable reconstruction in areas 
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exhibiting rapid motion. The spatial resolution we achieved was 40 nm and the temporal resolution 
was 0.3 seconds, namely, 3.3 frames per second. 

 

Figure 5: DBlink reconstruction of dynamic microtubule filaments in a live cell. We compared DBlink to state-of-
the-art single-molecule super-resolution reconstruction methods. Left column: a single reconstructed frame of 
microtubule dynamics obtained by summing Deep-STORM localizations over 300 frames. Middle column: 
reconstruction after summing 300 localization frames and applying blind inpainting. Right column: DBlink 
reconstruction. Bottom row: a region of interest (blue dashed box) for emphasizing the differences between the 
different reconstructions. The red dashed polygon marks the noise cancellation performed by both blind 
inpainting and our algorithm. The yellow arrow marks motion blur artefacts caused by summing localization 
from multiple frames. Upper row scale bar = 2 𝜇𝑚; bottom row scale bar = 1 𝜇𝑚.  

Finally, we reconstructed the dynamics of mitochondria in live cells from high-density single-molecule 
data of mitochondrial protein COX8. In addition, we extended the observation time in live cell imaging 
by using a HaloTag7 fusion in combination with a non-covalent, weak affinity fluorophore tag that 
binds to and unbinds from the target and acts as an exchangeable fluorophore label22 (Supplementary 
Video 5). In this case, training required a model for mitochondrion size and shape, labeling density, 
motion type and speed, etc. For this purpose, we developed a dynamic mitochondria simulator (see 
SI for more information). After training the neural network, we analyzed a SMLM video containing 
dynamic mitochondria labeled with HaloTag (see Methods section). The mitochondria displayed 
contraction, elongation, and drift, at different velocities, similarly to previously published work on 
mitochondrial dynamics23. DBlink managed to detect the dynamics with high fidelity to the observed 
data (Fig. 6); this validates the generalizability and applicability of our network for the analysis of 
various biological samples, contingent on appropriate training. 
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Figure 6: DBlink reconstruction of mitochondria dynamics in a live cell. Upper row: 10-frame summation of Deep-
STORM localizations in three different timepoints of the experiment (0, 5, 15 s). Bottom row: DBlink 
reconstructions of dynamic mitochondria. Yellow arrow marks mitochondria elongating over time. Scale bar = 5 
𝜇𝑚. 

The temporal resolution we achieved in this experiment is 5 frames per second and the spatial 
resolution is 75 nm, calculated by decorrelation analysis21. 

Discussion 

In this paper, we presented a method for super spatiotemporal resolution reconstruction of dynamic 
SMLM data. Our solution utilizes two main assumptions: 1) the imaged-sample class is known (e.g. 
filaments, mitochondria), and 2) dynamically varying objects maintain some degree of structural 
similarity over time, allowing the network to exploit structural information correlation over time. In 
other words – the information used by our network to recover an SMLM video with a temporal rate 
of 20 frames is not contained in these 20 frames alone – but rather also in a window of hundreds of 
frames around it. Notably, both assumptions are necessary in order to achieve the spatiotemporal 
resolutions demonstrated in this work.  

To overcome the challenge of verifying the network results, we tested several cases in which 
estimation of ground truth position was possible, including numerical simulation, sample drift, and 
controllable whole-sample motion.  First, we proved our network can reconstruct random motion of 
filaments in simulations. The network could reconstruct nanoscale rapid movement of simulated 
filaments with 90% of the simulated structure correctly classified per simulated video, assuming 
certain SMLM conditions (e.g. ~20 nm localization precision, ~1 emitter per µm2); naturally, 
predication accuracy varies as a function of fluorophore density, motion speed and other experimental 
parameters (see SI for more details). Next, an experiment that consisted of undesirable sample drift 
was performed. In this experiment, we could obtain the dynamic structure, since the sample was fixed 
and only global drift was present, which could be estimated by Deep-STORM. Our drift prediction and 
the structure reconstruction agreed with the predictions of Deep-STORM (mean error of 38 nm). 
Additionally, we demonstrated the ability of our network to reconstruct a different global motion: 
whole sample rotation. These two validation experiments show that our network manages to 
reconstruct the ground truth structure at high spatiotemporal resolution with high fidelity. 

Ultimately, the goal of our method is to enable live SMLM. For this purpose, we have analyzed SMLM 
videos of live-cell microtubule dynamics, provided by R. Tachibana, et al.24.  Since no ground truth 
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structure is available in such an experiment, we have qualitatively assessed the reconstruction 
accuracy by comparison to another state-of-the-art solution for dynamic SMLM. We used Deep-
STORM to generate localizations over temporal windows, followed by blind inpainting8 to filter noisy 
localization and compensate for missing information. Both blind inpainting and our algorithm have 
successfully managed to filter noisy localizations and compensate on missing information. 
Nevertheless, our network was able to reliably reconstruct much denser areas in the FOV and without 
motion blur, which was possible since each input contained localizations from only 20 recorded 
frames. Temporally-windowed STORM over short windows performs poorly because information 
regarding the sample is missing. Since our network involves temporal correlations between multiple 
windows, it manages to output a more complete description of the entire structure. Moreover, our 
reconstructions were more consistent over time, namely, the predicted structure did not change 
significantly between frames in comparison to the results of blind inpainting. Notably, the network 
was capable to reconstruct random movements of filaments, despite the fact it was trained on 
rotations and shifts only. This suggests that the network training was general enough to avoid 
overfitting to simulations. 

As in all model-based neural-net reconstruction algorithms, the network’s ability to generalize will 
always be limited by the training data, and caution should be exercised when applying the method; 
specifically, training data must resemble the experimental structure to avoid hallucinations25–27  To 
validate the applicability of DBlink to structures with higher structural complexity than filaments, we 
tracked mitochondrial dynamics. First, we trained the neural network on simulated mitochondria-like 
structures, drifting and wobbling in time. Then, we used weak-affinity, non-covalent fluorophore 
labels that allow extended observation time28. The combination of these dyes with our high 
spatiotemporal reconstruction, enables tracking dynamics in live cells at high spatiotemporal 
resolution in SMLM imaging over long observation times. 

Future work can include extensions to other structures in live cells, e.g.: endoplasmic reticulum (ER), 
vimentin filaments, etc., expanding the types of motion in the training data to simulate elongation, 
contraction, wobbling and more complex dynamics, and systematic parameter optimization, e.g. 
optimal sample densities, sample-motion-rate to acquisition-rate ratio, and more. Our neural network 
based spatiotemporal interpolation could enable higher quality observation and ultimately facilitate 
discovery in various applications including cellular dynamics29, colocalization of nano-particles with 
organelles30,31, synthetic materials32, and more. 

Methods 

Training scheme 

To train the neural network we used 1000 pairs of localization videos and ground truth structure 
videos (see SI for info) as a training set, and 250 pairs as validation set. Our loss function is comprised 
of three main terms: (i) Mean Squared Error (MSE); (ii) consistency loss; (iii) total variation loss. The 
consistency loss is calculated by the sum of pixelwise distance between every two adjacent frames: 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐿𝑜𝑠𝑠 = ෍ ෍ 𝑓𝑟𝑎𝑚𝑒௜[𝑥, 𝑦] − 𝑓𝑟𝑎𝑚𝑒௜ିଵ[𝑥, 𝑦]

௫,௬

௏௜ௗ௘௢ ௅௘௡௚௧௛

௜ୀଵ

 

Additionally, we used the Adam optimizer (betas = [0.99, 0.999]) with reduce on plateau mechanism 
(patience = 3). The network was trained on a single Titan RTX GPU for approximately 3 days. 
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Dynamic data acquisition 

Drifting microtubules 

To prepare cells for imaging, we cleaned cover glasses (#1.5H, 22X22 mm, Marienfeld) in an ultrasonic 
bath (DCG-120H, mrc) with 5% Decon90 at 60 °C for 30 min. Then we washed the cover glasses with 
water, incubated them in ethanol absolute for 30 min, and sterilized them with 70% filtered ethanol 
for 30 min. The slides were then seeded with COS7 cells and grown for 24 h in a six-well plate using 
phenol-free Dulbecco′s Modified Eagle′s medium (Gibco) with 1 g/l D-Glucose (i.e., low glucose), 
supplemented with fetal bovine serum (Biological industries), penicillin–streptomycin and glutamine 
at 37 °C and 5% CO2. Cells were fixed with 4% paraformaldehyde in PBS (37 °C, pH 7.3) for 20 min, 
washed, and incubated in 0.3 M glycine/PBS solution for 15 min. The cover glasses were transferred 
into a clean six-well plate, incubated for 10 min in permeabilization solution (0.25% Triton-x in PBS), 
washed 3 times with PBS and incubated in a blocking solution for 2 h (10% goat serum, 3% BSA, 2.2% 
glycine in PBS). The cells were then immunostained overnight with anti-α-tubulin-AF647 (ab190573, 
Abcam) diluted 1:500 in the blocking buffer. After staining, the samples were washed five times with 
PBS. To prevent detachment of the anti-tubulin antibodies, the sample was again treated with 4% 
paraformaldehyde in PBS (pH 7.3) for 10 min, washed, and incubated in 0.3 M glycine/PBS solution for 
10 min. 

For super-resolution imaging, a PDMS chamber was attached to a glass coverslip holding fluorescently 
labeled COS7 cells. Blinking buffer33 (Smart Kit - Super resolution buffer, Abbelight) was added and a 
clean coverslip was placed on top while minimizing any residual air bubbles in the chamber. The 
sample was illuminated with 640 nm laser (~ 300 W/cm2), and 10,000 images with 50 ms exposure 
time were acquired (Photometrics Prime 95B). 

Cell Culture – mitochondria experiment 

U2OS cells were cultured in T-75 flasks (Greiner) at 37℃ and 5% CO2 in Dulbecco`s Modified Eagle 
Medium (DMEM) / F-12 (Gibco, Thermo Fisher, USA) containing 10% (v/v) fetal bovine serum (FBS) 
(Corning, USA), 1% penicillin-streptomycin (w/v) (Gibco, ThermoFisher, USA) and 1% GlutaMAX (v/v) 
(Gibco, USA).  

Cells were transiently transfected with the plasmid pCDNA5/FRT/TO- COX8A-HaloTag7. For this 
purpose, 2 x 104 U2OS cells were seeded on fibronectin-coated 8-well chamber (Sarstedt, Germany). 
After 24 h incubation (37℃, 5% CO2), cells were transfected using Lipofectamine 3000 transfection 
reagent (Gibco, Thermo Fisher, USA). Briefly, 0.31 μL Lipofectamine 3000 was diluted in 10.42 μL 
OptiMEM medium (Gibco, Thermo Fisher, USA), and 210 ng vector DNA was diluted in 10.42 μL 
OptiMEM medium with 0.42 μL P3000 reagent (Gibco, Thermo Fisher, USA). Diluted DNA solution was 
added to Lipofectamine diluent in a 1:1 ratio and incubated for 20 min at RT. After adding the DNA-
lipid complex, cells were further incubated for 16-24 h at 37°C and 5% CO2. 

Prior to imaging, the cells were washed with pre-warmed live cell imaging solution (LCIS, 
ThermoFisher) and temperature adjusted to avoid lateral and axial drift. 
 
Live cell imaging 

Live cell data of microtubules was generously provided as reported previously in R. Tachibana et al24. 
Briefly, SMLM imaging was carried out using an inverted fluorescence microscope (Eclipse Ti-E; Nikon) 
with an oil-immersion objective (CFI Apo TIRF 100X Oil, NA 1.49; Nikon), and irradiation laser at 
wavelength of 561 nm (Sapphire 561 LP; Coherent). The microtubules were labeled by 4(5)-Halo-
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HMCR550 conjugated to HaloTag proteins. For more details on sample preparation see R. Tachibana 
et al24. For live-cell confocal imaging of U2OS expressing COX8-HaloTag7, the HT ligand JK114/HSAm 
carrying the fluorophore JF635 was added to the live cell imaging solution (LCIS, ThermoFisher, USA) 
at a final concentration of 500 nM. After an incubation time of 10 minutes, confocal microscopy was 
carried out on a Leica SP8 (Leica, Germany) equipped with an oil immersion objective (HC PL APO CS2 
63x, NA 1,4) and an 633nm HeNe laser. Fluorophores were excited with an intensity setting of 1% 633 
nm and a pinhole diameter of 1 Airy Unit. 300 frames were acquired using the HyD detector with a 
gain of 100 and at a scan speed of 400 Hz in xyt acquisition mode. Leica LASX software was used for 
the microscope control and data acquisition. 

For live-cell SMLM imaging of U2OS expressing COX8-HaloTag7, the HT ligand JK114/HSAm carrying 
the fluorophore JF635 was added to the pre-warmed live cell imaging solution (LCIS, ThermoFisher, 
USA) at a final concentration of 1 nM. After an incubation time of 10 minutes, imaging was carried out 
on a N-STORM microscope (Nikon, Japan) equipped with an oil immersion objective (Apo, 100x, NA 
1.49) and an EMCCD camera (DU-897U-CS0-#BV, Andor Technology, Ireland). Fluorophores were 
excited with a collimated 647 nm laser beam at an intensity of 0.4 kW/cm2 (measured at the objective 
back focal plane) at highly inclined and laminated optical sheet (HILO) mode. 20,000-60,000 
consecutive frames were acquired at 50 Hz in active frame transfer mode with an EMCCD gain of 200, 
a pre amp gain of 3, readout mode of 17MHz and at an effective pixel size of 158 nm. NIS Elements 
(Nikon, Japan), LCControl (Agilent, USA), and Micro-Manager were used for the optical setup and the 
data acquisition.  

Code availability 

The code is available online at: https://github.com/alonsaguy/DBlink. 
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