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Abstract 

Background 

Brachiopods and molluscs are lophotrochozoans with hard external shells which are often 

believed to have evolved convergently. While palaeontological data indicates that both groups 

are descended from biomineralising Cambrian ancestors, the closest relatives of brachiopods – 

phoronids and bryozoans – are mineralised to a much lower extent and are comparatively poorly 

represented in the Palaeozoic fossil record. Although brachiopod and mollusc shells are 

structurally analogous, genomic and proteomic evidence indicates that their formation involves 

a complement of conserved, orthologous genes. Here, we study a set of genes comprised of 

three homeodomain transcription factors, one signalling molecule and 6 structural proteins 

which are implicated in mollusc and brachiopod shell formation, search for their orthologs in 
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transcriptomes or genomes of brachiopods, phoronids and bryozoans, and present expression 

patterns of 8 of the genes in postmetamorphic juveniles of the rhynchonelliform brachiopod 

Terebratalia transversa.  

Results 

Transcriptome and genome searches for the 10 target genes in the brachiopods T. transversa, 

Lingula anatina, Novocrania anomala, the bryozoans Bugula neritina and Membranipora 

membranacea, and the phoronids Phoronis australis and Phoronopsis harmeri resulted in the 

recovery of orthologs of the majority of the genes in all taxa. While the full complement of 

genes was present in all brachiopods with a single exception in L. anatina, a bloc of four genes 

could consistently not be retrieved from bryozoans and phoronids. The genes engrailed, distal-

less, ferritin, perlucin, sp1 and sp2 were shown to be expressed in the biomineralising mantle 

margin of T. transversa juveniles.  

Conclusions 

The gene expression patterns we recovered indicate that while mineralised shells in brachiopods 

and molluscs are structurally analogous, their formation builds on a homologous process that 

involves a conserved complement of orthologous genes. Losses of some of the genes related to 

biomineralisation in bryozoans and phoronids indicate that loss of the capacity to form 

mineralised structures occurred already in the phoronid-bryozoan stem group and supports the 

idea that mineralised skeletons evolved secondarily in some of the bryozoan subclades. 

Background 

Biomineralisation was an evolutionary innovation of major importance to early animals [1,2], 

its significance evident both from the vast amounts of skeletal taxa preserved as fossils and the 

ubiquity of hard tissues in present ecosystems. Beginning with a surge of small shelly fossils in 
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terminal Ediacaran strata [3,4] the evolution of skeletons accelerated during the Cambrian 

radiations [5–8], and today a wide array of mineralised structures of differing chemical 

compositions are distributed across animal phylogeny. Many fascinating configurations of such 

hard parts can be found in the Lophotrochozoa, a subclade of Spiralia which includes 

brachiopods, annelids, molluscs, and several other invertebrate groups [9–14]. By the Early 

Cambrian; most lophotrochozoan crown groups had diverged and some had evolved 

biomineralised parts [4,7,8,15–17], leaving behind a trail of skeletal fossils [3,7,8] from an 

evolutionary arms race which culminated in the emergence of extensively mineralised taxa such 

as brachiopods and molluscs [17–21].While brachiopod shells are superficially similar to the 

shells of bivalve molluscs, molecular data [12,22–24] do not support the idea that brachiopods 

and molluscs have a close relationship within Lophotrochozoa. Rather, the favoured view is 

that the morphological similarities between brachiopod and mollusc shells are an example of 

homoplasy, the structures having arisen independently in an instance of convergent evolution 

[8]. In fact, even the shells and sclerites of different mollusc classes are considered likely to be 

independently derived structures [8,25–27] due to differences in form, formation, and 

composition. Within Lophotrochozoa, the closest relatives of brachiopods are instead the 

worm-like phoronids and the sessile bryozoans [28], and these three groups together form the 

clade Lophophorata [12,29–31]. Mineralised tissues are not evenly distributed among the 

lophophorates; no extant phoronids and only two out of five major clades of bryozoans are 

skeletal [32,33], while even the earliest known brachiopods had sclerites or shells [15,18–21]. 

Loss of biomineralised tissues seems to be a recurring evolutionary theme among 

lophotrochozoans (Fig. 1A): the putative phoronid stem group was mineralised [8,15,34,35] 

although extant phoronids are not, and similar losses seem to have occurred in annelids [36] 

and entoprocts [37]. Three clades of brachiopods survive to the present; the 

Rhynchonelliformea, Craniiformea and Linguliformea, with the latter two being most closely 
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related [38,39]. In the extant rhynchonelliform brachiopod Terebratalia transversa Sowerby 

1846, shell formation begins shortly after its three-lobed lecithotrophic larva has settled on 

appropriate substrate and given rise to a juvenile which resembles a miniature version of the 

adult animal [40]. After metamorphosis, a thin, unmineralised and non-articulating bivalved 

shell known as the protegulum envelops the juvenile [40]. Mineralisation of the protegulum 

begins shortly after metamorphosis is completed and takes place periodically [40] along the 

anterior and lateral sides of the structure. At the edge of the mantle epithelium (Fig. 1B) lies the 

periostracal slot where the shell is secreted. Lobate cells located beneath the periostracal slot 

produce the organic layer of the periostracum, while vesicular cells above them secrete calcite 

crystals in what is known as the ‘primary mineralisation’ [41,42]. Combined with shell material 

produced by the outer mantle epithelium in a ‘secondary mineralisation’, this eventually results 

in a calcareous shell marked by concentric growth lines [41,42], which articulates at a teeth-

and-socket hinge structure [41]. 

Figure 1. A. Cladogram depicting lophotrochozoan 

interrelationships [23,43,44] (in red) with 

Rouphozoa [45] as outgroup (in black) with an 

overview of mineralisation capacities. Taxa 

marked with an obelisk are Cambrian stem groups 

of their respective sister clades. B. Detailed 

morphology of the mantle margin which excretes 

the shell of the brachial valve. Lobate cells (pink) 

secrete the organic portion of the periostracum 

while vesicular cells (green) produce the primary 

layer of the inorganic shell and the outer epithelial 

cells of the mantle (purple) secrete the secondary 

layer of the inorganic shell. EC: outer mantle 
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epithelial cell, LC: lobate cell, PO: periostracum, PS: periostracal slot, SF: fibre of the secondary shell layer, VC: 

vesicular cell.  

By merit of being the best-studied extensively mineralised lophotrochozoan taxon, molluscs 

provide a useful reference point for the investigation of hard tissue formation in brachiopods. 

While the last common ancestor of the two groups was likely weakly mineralised at most [8], 

mollusc shell formation does have similarities to that of brachiopods [40,42,47,48], and 

mounting evidence suggests that the two groups may share some of the underlying genetic 

architecture required for biomineralisation [48–53]. A conserved ‘biomineralisation toolkit’ has 

been proposed by several authors [1,8,27,54–59], possibly encompassing not only molluscs, 

brachiopods and other lophotrochozoans but all bilaterians. This idea implies that while 

structurally analogous, the formation of shells in brachiopods and molluscs builds on a 

complement of orthologous genes, and has support  from genomics- [49,51,57] and proteomics-

based studies [53]. Recent single-cell transcriptomic data from the bivalve Dreissena have 

supported the notion of a biomineralisation toolkit but also showed enrichment of numerous 

lineage specific transcripts in the shell field, indicating rapid evolution of shell matrix proteins 

in molluscs [56]. Here, we have examined which of a handful of select mollusc genes related 

to biomineralisation are present in the transcriptomes or genomes of various lophophorate taxa 

and studied the expression patterns of the same genes in postmetamorphic juveniles of T. 

transversa. Our primary aims were to answer whether phoronids and non-mineralised 

bryozoans could have lost parts of their biomineralisation-related gene complement, and 

whether the genes would be expressed in the T. transversa mantle margin, where 

biomineralisation occurs [40–42]. We targeted 10 genes with a known function in the 

biomineralisation of molluscs and/or brachiopods, including the three homeodomain 

transcription factors engrailed (en) [48,56,59–65], distal-less (dlx) [66,67], goosecoid (gsc) 

[68], the decapentaplegic ortholog bmp2-4 [59,64,66,69,70], the matrix protein genes ferritin 
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[66,71–73], calmodulin [50] and perlucin [50,74,75], a mantle peroxidase [48,76,77], and two 

supposedly brachiopod-specific shell-associated genes [53] originally designated as F10023803 

and R20087389 but herein dubbed shell protein 1 and 2 (abbreviated as sp1 and sp2).  

Results 

The lophophorate biomineralisation gene complement and gene orthology 

Our search for biomineralization-related genes in the transcriptomes and genomes of 

lophophorates resulted in the identification of several putative orthologs, the homology of 

which were tested using phylogenetic analyses (Add. Figs. 1-6). Brachiopods have retained 

orthologs of nearly all the targeted biomineralisation genes (Fig. 2), with the exception for an 

apparent loss of the specific calmodulin orthologue in L. anatina. Most of the genes are also 

identifiable in transcriptome or genome sequences from phoronids and bryozoans, with the 

notable exception of perlucin and mpox, in addition to the putatively brachiopod-specific genes 

sp1 and sp2. Although sequences with similarity to en were present in the bryozoan 

transcriptomes, they did not form a clade with en sequences from other taxa (Add. Fig. 1). The 

seeming absence of some genes here signifies lack of an ortholog to the reference sequence, 

and does not indicate definite absence of other, closely related genes (for instance, several 

calmodulin-related genes are present in the L. anatina genome [49], but the specific calmodulin 

ortholog investigated here is not). Additionally, since we did not have access to genomes for 

all taxa and therefore only searched the transcriptomes of B. neritina, M. membranacea, N. 

anomala and P. harmeri, it is possible that some genes are present in the genome but were not 

expressed at the time of transcriptome generation. 
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Figure 2. Cladogram depicting lophophorate relationships and presence-absence matrix of genes for each taxon. 

Filled dots indicate that an ortholog was found in the available genome/transcriptome, hollow dots indicate the 

opposite. Yellow dots indicate that multiple orthologs were identified.  

Expression patterns of biomineralisation genes in T. transversa 

In-situ hybridisation of the genes yielded a range of expression patterns in various 

morphological features (Fig. 3A) of 2- and 6-day old juveniles of T. transversa, with most being 

expressed in varying degrees in the mantle margin, around the pedicle opening or in the area of 

the future hinges of the shell. Of the three homeodomain transcription factors, en was expressed 

exclusively in the mantle margin (black arrowhead, Fig. 3B). dlx was expressed in the mantle 

margin (black arrowheads, Figs. 3D and E) and lophophore (red arrowheads, Figs. 3D and E), 

while gsc was exclusively expressed in the lophophore (red arrowheads, Figs. 3F and G). The 

primary expression domains of bmp2-4 were in the developing hinges of the protegulum (white 

arrowheads, Figs. 3H and I) and the lophophore (red arrowheads, Figs. 3H and I). Additionally, 
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in juveniles at 6 dpm there was expression in the area of the future pedicle opening (blue 

arrowhead, Fig. 3I). ferritin was universally and abundantly expressed throughout the juvenile 

tissues to the point where overstaining became apparent minutes after starting the colour-

producing reaction but seemed particularly prominent in the mantle margin (black arrowhead, 

Fig. 3C) and in an area posterior to the lophophore. perlucin, sp1 and sp2 were primarily 

expressed in the mantle margin (black arrowheads, Figs. 3J-O), with an additional sp1 

expression domain located in the outer epithelial cells of the mantle in juveniles at 2 dpm 

(yellow arrowhead and insert, Fig. 3L). 
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Figure 3. A. Morphological features of a T. transversa juvenile at 2 dpm, interpreted after Stricker & Reed [40] 

and Gąsiorowski & Hejnol [46]. B-O Expression patterns of targeted genes. Gene names are indicated in the white 

bars above the images. For each gene, the left picture depicts a juvenile at 2 dpm, and the right picture a juvenile 

at 6 dpm. Data could not be retrieved for en and ferritin at 2 dpm. The insert in panel L provides a magnified view 

of expression within the outer mantle epithelium cells. Black arrowheads indicate expression in the mantle margin, 

yellow arrowheads in the mantle epithelium, red arrowheads expression in the lophophore, white arrowheads 

expression in the hinges and blue arrowheads expression in the pedicle opening. Scale bars represent 50 μm (insert 
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in panel L 20 μm). CS: chaetal sac, LO: lophophore rudiment, MC: mantle cavity, MM: mantle margin, PE: 

pedicle, PR: protegulum, HI: future hinge. 

Discussion 

A shared brachiopod-mollusc complement of genes involved in biomineralisation 

The gene expression patterns we observed indicate that the two main groups of lophotrochozoan 

biomineralisers, brachiopods and molluscs, base their shell formation on a shared and conserved 

genetic foundation. Of the studied genes, en is arguably the most implicated in shell 

development in both groups [48,66]  and as demonstrated here en was clearly and exclusively 

expressed in the T. transversa mantle margin, which indicates its involvement in shell formation 

due to the vicinity of CaCO3-excreting vesicular cells. dlx was also predominately expressed in 

the mantle margin, with an additional expression domain in the lophophore rudiment. Although 

dlx could not be confirmed to have biomineralising functions in Lingula anatina [48], the 

expression pattern herein corresponds well with the reported involvement of this gene in 

gastropod shell formation [66]. In accordance with our expression patterns in T. transversa, dlx 

is involved in lophophore formation in L. anatina [48], and the gene has been reported to be 

part of an “head appendage” genetic program [78] which agrees well with the idea that 

lophophores are homologous to the head of other bilaterians. Meanwhile, gsc was exclusively 

expressed in the developing lophophore and does not seem involved in T. transversa 

biomineralisation. Aside from its role in gastropod shell field formation, the gene is generally 

known to be one of the head patterning’ homeodomain transcription factors [79,80] with a 

specific role of patterning sensory cells around the mouth, agreeing well with the 

aforementioned link between lophophores and bilaterian heads [38,46,49,81]. bmp2-4 was 

primarily expressed in the region of the lophophore, the developing hinge structure and the 

pedicle opening, the two latter of which are not close to the mantle margin but are areas which 

undergo structural modifications involving secondary biomineralisation of the pre-existing 
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larval protegulum [40,42]. The bmp2-4 ortholog in Saccostrea kegaki is likewise expressed in 

the hinges of the shell and seemingly important for hinge formation [64], and this similar 

expression pattern could represent a convergently evolved co-option of the gene for hinge 

formation. Lophophore expression of bmp2-4 in the lophophore agrees with another proposed 

function of this gene family; the formation of the head, appendages and other outgrowths of the 

body [78,82]. The two shell matrix protein genes ferritin and perlucin were united by a clear 

expression in the mantle margin, but while this was the exclusive expression domain for 

perlucin, ferritin was broadly expressed also in other tissues. The highly specific mantle margin 

expression of perlucin adds weight to the argument for a shared brachiopod-mollusc 

biomineralisation gene complement, while the broad expression of ferritin could be explained 

by the wide range of physiological functions ferritins are known to carry [83]. Orthologues of 

sp1 and sp2, the genes which were previously described as shell forming proteins from the 

rhynchonelliformean brachiopod Magellania [53] are also present in the transcriptomes or 

genomes of Terebratalia, Novocrania and Lingula but are absent in the transcriptomes or 

genomes of phoronids and bryozoans, indicating that the genes are brachiopod-specific and 

evolved in the common ancestor of all brachiopods after the split from other lophophorates. 

Alignment of the protein sequences of the sp1 and sp2 genes (Add. Fig. 7) suggests that both 

proteins are homologous, however they are divergently distributed among particular brachiopod 

clades. In Lingula, sp2 was present but sp1 absent, and in Novocrania we identified two 

paralogous sequences corresponding to sp2. Like in Magellania, both sp1 and sp2 could be 

identified in Terebratalia, suggesting that sp1 may be a rhynchonelliform innovation. Both sp1 

and sp2 were distinguished by mantle margin expression in T. transversa juveniles, indicating 

a conserved function among brachiopods. The expression of sp1 in the outer epithelial cells of 

the mantle in 2- but not 6-dpm juveniles of T. transversa corresponds well with what would be 

expected of a gene involved in the progressive secondary mineralisation of the protegulum, 
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which is finished shortly after metamorphosis [40]. In a broader context, our results support the 

notion of structurally analogous but genetically homologous shells in brachiopods and 

molluscs, an idea reinforced by both genomics- [49,51,57] and proteomics- [53] based studies. 

In addition to the genes investigated here, pou3, which regulates expression of shell matrix 

proteins in molluscs [54,84] is also expressed in the mantle margin of T. transversa [85], further 

supporting idea of a common molecular control of the biomineralisation in both groups. The 

fossil record likewise indicates that both molluscs [7,8,17,86] and brachiopods [15,18,19,21,87] 

have had the capacity for biomineralisation for a very long time, although their stem groups 

bore variations of sclerites rather than fully formed shells. Likely, their common ancestor had 

a genetic capacity for biomineralisation which was initially used to mineralise an organic 

skeleton [8] before giving rise to bona fide brachiopod and mollusc shells through convergent 

evolution. 

Implications for the evolution of lophophorate biomineralisation 

It is not surprising that of the lophophorate clades, phoronids and bryozoans seemingly retain 

the fewest orthologs of the putative biomineralisation-related genes (Fig 2). It is worth noting 

that four of the tested genes which are present in the phoronid and bryozoan genomes or 

transcriptomes (en, dlx, gsc and dmp2-4) are not strictly biomineralisation-specific, but play 

multiple functions during the development of various lophophorates as has been shown in 

several studies [48,88–90]. When it comes to the more biomineralisation-specific genes, 

phoronids and bryozoans are united not only by the lack of tentatively brachiopod-specific sp1 

and sp2 genes, but also of perlucin and mantle peroxidase which otherwise have orthologs in 

other bilaterians, including molluscs (Add. Figs. 5 & 6). Additionally, phoronids and bryozoans 

both lack the Hox gene scr [38,81,91], which in brachiopods is specifically expressed in the 

shell forming epithelium [46,49,92]. The loss of scr has previously been hypothesised to be 

related with the reduction of the biomineralisation capacities in phoronids [38,81]. The similar 
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pattern of loss in bryozoans and phoronids agrees well with recent studies that indicate a sister-

group relationship between the two [31,43,44,93,94]. The bryozoan stem group was 

unmineralised and originated in the early Cambrian, as indicated by recent fossil discoveries 

[95], while the crown group did not appear until at least in the Early Ordovician by which time 

the Stenolaemata had secondarily evolved a mineralised skeleton [96]. The notion of an 

unmineralised origin of bryozoans has further support [33], with the morphologically disparate 

skeletons of stenolaemates and cheilostomates likely being secondarily evolved as indicated by 

their phylogenetic distribution (Fig. 4). The sister relationship and similar pattern of loss of 

biomineralisation genes in phoronids and bryozoans suggests that the capacity of forming hard 

tissues was lost before the two groups diverged from each other. Taking this scenario into 

account, we suggest that the Early Cambrian tommottiid Eccentrotheca helenia, a putative stem 

group phoronid [34,35] which possessed a hard skeleton of loosely associated sclerites, likely 

represents an evolutionary stage predating loss of biomineralisation and should be rather 

considered as belonging to the phoronid-bryozoan stem group (Fig. 4). 
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Figure 4. The evolution of biomineralisation in lophophorates. Black parts of the tree indicate biomineralising 

lineages, while light blue indicates soft-bodied taxa. The ancestral lophophorate has been assumed to be 

biomineralising due to the similarity between brachiopod and mollusc biomineralisation-related genes. Bryozoan 

topology after Schwaha et al. [33], Xia et al. [96] and Zhang et al (Zhang et al., 2021). 

Conclusions 

Several genes involved in mollusc biomineralisation are expressed in the mantle margin and 

other biomineralising cell types in postmetamorphic juveniles of the rhynchonelliform 

brachiopod Terebratalia transversa. We suggest that the common ancestor of brachiopods and 

molluscs was able to form mineralised structures, for which it utilised a molecular machinery 

that has been at least partially retained in both lineages. This ancestral biomineralisation ability 

has been independently co-opted into formation of the shell-like external skeleton in molluscs 
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and brachiopods, which evolved convergently as indicated by comparative morphology and the 

fossil record. This explains why the shells of both groups, despite being structurally analogous, 

show homology on the genetic level. Losses of some of the biomineralization-specific genes in 

bryozoans and phoronids indicate loss of the capacity to form mineralised structures in the 

phoronid-bryozoan stem group and supports the idea that mineralised skeletons evolved 

secondarily in some of the bryozoan subclades. 

Methods 

Specimen collection and preservation 

Egg-bearing specimens of the rhynchonelliform brachiopod Terebratalia transversa were 

collected off San Juan Island, Washington State, USA. Animal husbandry and fertilisation of 

eggs was performed in vitro, and juveniles were fixed in 3.7 % formaldehyde and stored in 

methanol at -20 ℃.  

Transcriptome searches and orthology assessment 

A set of reference sequences for each gene of interest (Add. Table 1) was used to search the 

transcriptomes and genomes for orthologous sequences via BLAST. Transcriptomes of the 

bryozoans Membranipora membranacea and Bugula neritina, the brachiopods Terebratalia 

transversa and Novocrania anomala and the phoronid Phoronopsis harmeri (available in-

house) and published genomes of the brachiopod Lingula anatina (GenBank accession number: 

LFEI00000000.2) and the phoronid Phoronis australis (GenBank accession number: 

NMRA01000001.1) were also screened for orthologs using the reference sequences. Sequences 

retrieved from the transcriptomes and genomes were imported into the software CLC Main 

Workbench v. 7, translated to protein sequences, and aligned with related sequences from other 

taxa retrieved from the NCBI repository of protein sequences and other databases. Alignments 

of protein sequences (including the sp1 and sp2 genes, Add. Fig 7) were trimmed using the 
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software trimAl v1.1 [97] and imported into FastTree v. 2.1.10 [98] for phylogenetic 

reconstructions using the ML Model option ‘Le-Gascuel 2008’ and CAT approximation with 

20 rate categories. The resulting approximately-maximum-likelihood phylogenies (Add. Figs. 

1-6) were used to assess orthology of the lophophorate genes of interest. New sequences 

obtained and identified in this study were uploaded to GenBank (accession numbers ON868422 

to ON868458). 

Gene amplification, cloning and sequencing 

Specific primers against the genes of interest were designed using the software MacVector v 

11.1.2. Genes were amplified from cDNA libraries using PCR, verified by electrophoresis on a 

1 % agarose gel, extracted from the gel using a MinElute Gel Extraction Kit according to the 

manufacturer's instructions, and ligated into vectors. The vectors were heat-shocked into 

competent Escherichia coli cells which were left to proliferate for 24 hours in 37 ℃. Bacterially 

amplified vectors were purified using a Qiagen Spin Miniprep Kit according to the 

manufacturer's instructions, and inserts were sequenced using the Sanger method.  

Riboprobe synthesis, whole-mount in situ hybridisation and imaging  

PCR was used to amplify genomic DNA from vectors, and amplicons were purified using a 

MinElute PCR Purification Kit according to the manufacturer's instructions. Resulting nucleic 

acid concentrations were measured using a NanoDrop device, while amplicon sizes were 

verified through electrophoresis on a 1 % agarose gel. dUTP-digoxigenin-labelled RNA probes 

were synthesised according to the manufacturer's instructions (Roche, USA). WISH was 

performed in accordance with previously published protocols [46,90,99]. Following specimen 

digestion with proteinase K for 10 minutes, probes were allowed to hybridise with T. transversa 

juveniles at a concentration of 1 ng ⋅ μL-1 at 67 ℃ for 72 hours. Anti-digoxigenin-AP antibodies 

were used to detect the probes, and they were visualised using nitroblue tetrazolium chloride 
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and 5-bromo-4-chloro-3-indolyl phosphate. Successfully hybridised and visualised specimens 

were transferred to cover slides, mounted in 70% glycerol and photographed using a Zeiss 

Axiocam camera connected to a Zeiss Axioscope Ax10 using Nomarski bright field optics. 
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