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Abstract

While some state-of-the-art artificial neural network systems in computer vision are
strikingly accurate models of the corresponding primate visual processing, there
are still many discrepancies between these models and the behavior of primates on
object recognition tasks. Many current models suffer from extreme sensitivity to
adversarial attacks and often do not align well with the image-by-image behavioral
error patterns observed in humans. Previous research has provided strong evidence
that primate object recognition behavior can be very accurately predicted by neural
population activity in the inferior temporal (IT) cortex, a brain area in the late
stages of the visual processing hierarchy. Therefore, here we directly test whether
making the late stage representations of models more similar to that of macaque
IT produces new models that exhibit more robust, primate-like behavior. We
conducted chronic, large-scale multi-electrode recordings across the IT cortex in
six non-human primates (rhesus macaques). We then use these data to fine-tune
(end-to-end) the model "IT" representations such that they are more aligned with
the biological IT representations, while preserving accuracy on object recognition
tasks. We generate a cohort of models with a range of IT similarity scores validated
on held-out animals across two image sets with distinct statistics. Across a battery
of optimization conditions, we observed a strong correlation between the models’
IT-likeness and alignment with human behavior, as well as an increase in its
adversarial robustness. We further assessed the limitations of this approach and
find that the improvements in behavioral alignment and adversarial robustness
generalize across different image statistics, but not to object categories outside of
those covered in our IT training set. Taken together, our results demonstrate that
building models that are more aligned with the primate brain leads to more robust
and human-like behavior, and call for larger neural data-sets to further augment
these gains.
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Figure 1: Aligning model IT representations with primate IT representations improves be-
havioral alignment and improves adversarial robustness. A) A set of naturalistic images, each
containing one of eight different object classes are shown to a CNN and also to three different primate
subjects with implanted multi-electrode arrays recording from the Inferior Temporal (IT) cortex. (1)
A Base model (ImageNet pre-trained CORnet-S) is fine-tuned using stochastic gradient descent to
(2) minimize the classification loss with respect to the ground truth object in each image while also
minimizing a representational similarity loss (CKA) that encourages the model’s IT representation to
be more like those measured in the (pooled) primate subjects. (3) The resultant IT aligned models are
then frozen and each tested in three ways. First, model IT representations are evaluated for similarity
to biological IT representation (CKA metric) using neural data obtained from new primate subjects
– we refer to the split-trial reliability ceiled average across all held out macaques and both image
sets as "Validated IT neural similarity". Second, model output behavioral error patterns are assessed
for alignment with human behavioral error patterns at the resolution of individual images (i2n, see
Methods). Third, model behavioral output is evaluated for its robustness to white box adversarial
attacks using an L∞ norm projected gradient descent attack. All three tests are carried out with: (i)
new images within the IT-alignment training domain (held out HVM images; see Methods) and (ii)
new images with novel image statistics (natural COCO images; see Methods), and those empirical
results are tracked separately. B) We find that this IT-alignment procedure produced gains in validated
IT neural similarity relative to base models on both data sets, and that these gains led to improvement
in human behavioral alignment. n=30 models are shown, resulting from training at six different
relative weightings of the IT neural similarity loss, each from five base models that derived from five
random seeds. C) We also find that these same IT-alignment gains resulted in increased adversarial
accuracy (PGD L∞, ϵ = 1/1020) on the same model set as in B. Base models trained only for
ImageNet and HVM image classification are circled in grey.

1 Introduction and Related Work

Object recognition models have made incredible strides in the last ten years, [Krizhevsky et al., 2012,
Szegedy et al., 2014, Simonyan and Zisserman, 2014, He et al., 2015b, Dosovitskiy et al., 2020, Liu
et al., 2022] even surpassing human performance in some benchmarks [He et al., 2015a]. While
some of these models bear remarkable resemblance to the primate visual system [Daniel L. Yamins,
2013, Khaligh-Razavi and Kriegeskorte, 2014, Schrimpf et al., 2018, 2020], there remain a number of
important discrepancies. In particular, the output behavior of current models, while coarsely aligned
with primate object confusion patterns, does not fully match primate error patterns on individual
images [Rajalingham et al., 2018, Geirhos et al., 2021]. In addition, these same models can be
easily fooled by adversarial attacks – targeted pixel-level perturbations intentionally designed to
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cause the model to produce the wrong output[Szegedy et al., 2013, Carlini and Wagner, 2016, Chen
et al., 2017, Rony et al., 2018, Brendel et al., 2019], whereas primate behavior is thought to be more
robust to these kinds of attacks. This is an important unsolved problem in engineering artificial
intelligence systems; the deviance between model and human behavior has been studied extensively
in the machine learning community, often from the perspective of safety in real-world deployment of
computer vision systems [Das et al., 2017, Liu et al., 2017, Xu et al., 2017, Madry et al., 2017, Song
et al., 2017, Dhillon et al., 2018, Buckman et al., 2018, Guo et al., 2018, Michaelis et al., 2019]. From
a neuroscience perspective, behavioral differences like these point to different underlying mechanisms
and feature representations used for object recognition between the artificial and biological systems,
meaning that our scientific understanding of the mechanisms of visual behavior remains incomplete.
In this work, we tested the hypothesis that we could achieve engineering/AI gains (more robustness)
by seeking scientific gains (more accurate models of the brain mechanisms).

Incorporating neurophysiological constraints into models to make them behave more in line with
primate visual behavior is an active field of research [Marblestone et al., 2016, Lotter et al., 2016,
Nayebi and Ganguli, 2017, Guerguiev et al., 2017, Hassabis et al., 2017, Lindsay and Miller, 2018,
Tang et al., 2018, Kar et al., 2019, Kubilius et al., 2019, Li et al., 2019, Hasani et al., 2019, Sinz
et al., 2019, Zador, 2019, Geiger et al., 2022]. Previously, Dapello et al. [2020] demonstrated
that convolutional neural network (CNN) models with early visual representations that are more
functionally aligned with the early representations of primate visual processing tended to be more
robust to adversarial attacks. This correlational observation was turned into a causal test, by simulating
a primary visual cortex at the front of CNNs, which was indeed found to improve performance across
a range of white box adversarial attacks and common image corruptions. Likewise, several recent
studies have demonstrated that training models to classify images while also predicting [Safarani
et al., 2021] or having similar representations [Federer et al., 2020] to early visual processing regions
of primates, or even mice [Li et al., 2019], has a positive effect on generalization and robustness to
adversarial attacks and common image corruptions.

Here, we extend this line of research to investigate the effects of incorporating biological knowledge
of the neural representations in the IT cortex – a late stage visual processing region of the primate
ventral stream, which critically supports primate visual object recognition [DiCarlo et al., 2012, Majaj
et al., 2015]. To do so, we use neural recordings performed across the IT cortex of six rhesus macaque
monkeys (some obtained in the study of other scientific questions [Majaj et al., 2015, Kar et al.,
2019], and others recorded specifically for this work), which we divide into three training animals
and three held-out testing animals for validation. We then develop a method to align the late layer "IT
representations" of a base object recognition model (CORnet-S [Kubilius et al., 2019] pre-trained
on ImageNet [Deng et al., 2009] and naturalistic, grey-scale "HVM" images [Majaj et al., 2015]) to
the biological IT representation while the model continues to be optimized to perform classification
of the dominant object in each image. We do not view these optimization procedures as having any
relationship to biological learning, but simply as a way to discover models that are more brain-like
than current existing models. Finally, using this strategy, we generate a suite of models under a
variety of different optimization conditions and measure their IT alignment on held out animals, their
alignment with human behavior, and their robustness to a range of adversarial attacks, in all cases on
at least two image sets with distinct statistics as shown in figure 1.

We report three major findings:

1. Our method leads to improved IT representational similarity of models to brains even when
measured on new animals and new images.

2. We find that gains in model IT-likeness lead to gains in human behavioral alignment.

3. Likewise we find that improved IT-likeness leads to increased adversarial robustness.

While probing the current limits of our IT-alignment procedure, we observed that the improvements
in IT similarity, behavioral alignment, and adversarial robustness generalized to images with different
image statistics than those in the IT training set (from naturalistic gray scale images to full color
natural images) but only for object categories that were part of the original IT training set and not for
held-out object categories.
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2 Data and Methods

Here we describe the neural and behavioral data collection, the training and testing methods used for
aligning model representations with IT representations, and the methods for assessing behavioral
alignment and adversarial robustness.

2.1 Image sets

HVM image set: synthetic “naturalistic” images

High-quality images of single objects were generated using free ray-tracing software
(http://www.povray.org), similar to [Majaj et al., 2015]. Each image consisted of a 2D projec-
tion of a 3D model (purchased from Dosch Design and TurboSquid) added to a random background.
The ten objects chosen were bear, elephant, face, apple, car, dog, chair, plane, bird and zebra. By
varying six viewing parameters, we explored three types of identity while preserving object variation,
position (x and y), rotation (x, y, and z), and size. All images were achromatic with a native resolution
of 256 × 256 pixels.

COCO image set: natural images (photographs)

Images pertaining to the 10 nouns, were download from http://cocodataset.org [Lin et al., 2014].
Each image was resized to 256 x 256 x 3 pixel size and presented within the central 8 deg.

2.2 Primate neural data collection and processing

We surgically implanted each monkey with a head post under aseptic conditions. We recorded neural
activity using two or three micro-electrode arrays (Utah arrays; Blackrock Microsystems) implanted
in IT cortex. A total of 96 electrodes were connected per array (grid arrangement, 400 um spacing,
4mm x 4mm span of each array). Array placement was guided by the sulcus pattern, which was visible
during the surgery. The electrodes were accessed through a percutaneous connector that allowed
simultaneous recording from all 96 electrodes from each array. All surgical and animal procedures
were performed in accordance with National Institutes of Health guidelines and the Massachusetts
Institute of Technology Committee on Animal Care. For information on the neural recording quality
metrics per site, see supplemental section 1.1.

During each daily recording session, band-pass filtered (0.1 Hz to 10 kHz) neural activity was recorded
continuously at a sampling rate of 20 kHz using Intan Recording Controllers (Intan Technologies,
LLC). The majority of the data presented here were based on multiunit activity. We detected the
multiunit spikes after the raw voltage data were collected. A multiunit spike event was defined as the
threshold crossing when voltage (falling edge) deviated by less than three times the standard deviation
of the raw voltage values. Our array placements allowed us to sample neural sites from different
parts of IT, along the posterior to anterior axis. However, for all the analyses, we did not consider
the specific spatial location of the site, and treated each site as a random sample from a pooled IT
population. For information on the neural recording quality metrics per site, see supplemental section
1.1.

Behavioral state during neural data collection All neural response data were obtained via a passive
viewing task. In this task, monkeys fixated a white square dot (0.2°) for 300 ms to initiate a trial.
We then presented a sequence of 5 to 10 images, each ON for 100 ms followed by a 100 ms gray
blank screen. This was followed by a water reward and an inter trial interval of 500 ms, followed
by the next sequence. Trials were aborted if gaze was not held within ±2° of the central fixation dot
during any point. Each neural site’s response to each image was taken as the mean rate during a time
window of 70-170ms following image onset, a window that has been previously chosen to align with
the visually-driven latency of IT neurons and their quantitative relationship to object classification
behavior as in Majaj et al. [2015].

2.3 Human behavioral data collection

We measured human behavior (from 88 subjects) using the online Amazon MTurk platform which
enables efficient collection of large-scale psychophysical data from crowd-sourced “human intelli-
gence tasks” (HITs). The reliability of the online MTurk platform has been validated by comparing
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results obtained from online and in-lab psychophysical experiments [Majaj et al., 2015, Rajalingham
et al., 2015]. Each trial started with a 100 ms presentation of the sample image (one our of 1320
images). This was followed by a blank gray screen for 100 ms; followed by a choice screen with
the target and distractor objects, similar to [Rajalingham et al., 2018]. The subjects indicated their
choice by touching the screen or clicking the mouse over the target object. Each subjects saw an
image only once. We collected the data such that, there were 80 unique subject responses per image,
with varied distractor objects. Prior work has shown that human and macaque behavioral patterns are
nearly identical, even at the image grain [Rajalingham et al., 2018]. For information on the human
behavioral data collection, see supplemental section 1.2.

2.4 Aligning object recognition model representations with macaque IT representations

In order to align neural network model representations with primate IT representations while perform-
ing classification, we use a multi-loss formulation similar to that used in Li et al. (2019) and Federer
et al. (2020). Starting with an ImageNet [Deng et al., 2009] pre-trained1 CORnet-S model [Kubilius
et al., 2019], we used stochastic gradient descent (SGD) on all model weights to jointly minimize a
standard categorical cross entropy loss on model predictions of ImageNet labels (maintained from
model pre-training, for stability), HVM image labels, and a centered kernel alignment (CKA) based
loss penalizing the "IT" layer of CORnet-S for having representations not aligned with primate IT
representations of the HVM images. CORnet-S was selected because it already has a clearly defined
layer committed to region IT, close to the final linear readout of the network, but otherwise our
procedure is compatible with any neural network architecture. Meanwhile CKA, a measure of linear
subspace alignment, was selected as a representational similarity measure. CKA has ideal properties
such as invariance to isotropic scaling and orthonormal transformations which do not matter from
the perspective of a linear readout, but sensitivity to arbitrary linear transformations [Kornblith et al.,
2019] which could lead to differences from a linear readout as well as allow the network to hide
representations useful for image classification but not present within primate IT. CKA ranges from 0,
indicating completely non-overlapping subspaces, to 1, indicating completely aligned subspaces. We
found that our best neural alignment results came from minimizing the neural similarity loss function
log(1− CKA(X,Y )), where X ∈ Rn×p1 and Y ∈ Rn×p2 denote two column centered activation
matrices with generated by showing n example images and recording p1 and p2 neurons from the IT
layer of CORnet-S and macaque IT recordings respectively. The macaque neural activation matrices
were generated by averaging over approximately 50 trials per image and over a 70-170 millisecond
time window following image presentation. An illustration of our setup and image sets are shown in
figure 1A.

2.5 Training and Testing Conditions

In all reported experiments, model IT representational similarity training was performed on 2880
grey-scale naturalistic HVM image representations consisting of 188 active neural sites collated from
the three training set macaques for 1200 epochs. We use a batch size of 128, meaning the CKA loss
computed for a random set of 128 representations for each gradient step. In order to create models
with a variety of different final neural alignment scores, we add random probability 1− p of dropping
the IT alignment gradients and create six different sets (5 random seeds for each set) of neurally
aligned models with p ∈ [0, 1/32, 1/16, 1/8, 1/4, 1/2, 1]. For example, the set with p = 0 drops all
of the IT alignment gradients and thus has no improved IT alignment over the base model, while
the set with p = 1 always includes the IT alignment gradients and similarly achieves the highest IT
alignment scores (see figure 2). We also introduce a small amount of data augmentation including
the physical equivalent of 0.5 degrees of jitter the vertical and horizontal position of the images,
0.5 degrees of rotational jitter, and +/- 0.1 degrees of scaling jitter, assuming our model has an 8
degree field of view. The strength of these augmentations were selected to simulate natural viewing
conditions.

Model IT representational similarity testing was performed on a total of three held out monkeys:
Monkey 1 (280 neural sites) and monkey 2 (144 neural sites) on 320 held out HVM images with
statistics similar to the training distribution, and monkey 1 (237 neural sites) and monkey 3 (106

1the pre-trained version was selected as a starting point because of the relatively small number of training
samples in our dataset [Riedel, 2022].

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2022. ; https://doi.org/10.1101/2022.07.01.498495doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.498495
http://creativecommons.org/licenses/by/4.0/


active neural sites) on 200 full color natural COCO images with different statistics than those used
during training. Additional model training information can be found in supplemental section 2.

2.6 Behavioral Benchmarks

To characterize the behavior of the visual system, we have used an image-level behavioral metric,
i2n [Rajalingham et al., 2018]. The behavioral metric computes a pattern of unbiased behavioral
performances, using a sensitivity index: d′ = Z(HitRate) - Z(FalseAlarmRate), where Z is
the inverse of the cumulative Gaussian distribution. The HitRates for i2n are the accuracies of the
subjects when a specific image is shown and the choices include the target object (i.e., the object
present in the image) and one other specific distractor object. So for every distractor-target pair we get
a different i2n entry. A detailed description of how to compute i2n can be also found at Rajalingham
et al. [2018]. The i2n behavioral benchmark was computed using the Brain-Score implementation of
the i2n metric [Schrimpf et al., 2018].

2.7 Adversarial Attacks

For performing white box adversarial attacks, we used untargeted projected gradient descent (PGD)
[Madry et al., 2017] (also referred to as the Basic Iterative Method [Kurakin et al., 2016]) with L∞,
L2 norm constraints. Given an image x, This method uses the gradient of the loss to iteratively
construct an adversarial image xadv which maximizes the model loss within an Lp bound around x.
Formally, in the case of an L∞ constraint, PGD iteratively computes xadv as

xt+1 = Projx+S(x
t + αsgn(∇xtL(θ, xt, y)))

where x is the original image, and the Proj operator ensures the final computed adversarial image
xadv is constrained to the space x+ S, here the L∞ ball around x. In the case of L2 constraints, at
each iteration ∇xtL(θ, xt, y) is scaled to have an L2 norm of α, and the Proj operator ensures the
final xadv is within an L2 norm ball around x. Unless otherwise specified, we use ∥δ∥∞ = 1/1020
constraints where δ = x − xadv with 5 PGD iterations and a step size α = ∥δ∥p /4 and report
final top-1 accuracy. For more strenuous validation of our results we also compute full strength
(ϵ) vs accuracy curves, and in that case we use 64 PGD steps instead of just five. The Adversarial
Robustness Toolkit [Nicolae et al., 2018] was used for computing the attacks.

3 Results

Does aligning late stage model representations with primate IT representations lead to improvements
in alignment with image-by-image patterns of human behavior or improvements in white box
adversarial robustness? We start by testing if our method can generate models that are truly more
IT-like by validating on held out animals and images, as this has not been previously attempted
and is not guaranteed to work given the sampling limitations of neural recording experiments. We
then proceed to analyze how these IT-aligned models fair on several human behavioral alignment
benchmarks and a diverse set of white box adversarial attacks.

3.1 Direct fitting to IT neural data improves IT-likeness of models across held out animals
and image sets

First, we investigated how well our IT alignment optimization procedure generalizes to IT neu-
ral similarity measurements (CKA) for two held out test monkeys on 320 held out HVM im-
ages (similar image statistics as the training set). Figure 2A shows the ceiled IT neural simi-
larity scores for both test animals across different neural similarity loss gradient dropout rates
(p ∈ [0, 1/32, 1/16, 1/8, 1/4, 1/2, 1]; the model marked 100% sees IT similarity loss gradients at
every step, where as the model marked 0% never sees IT similarity loss gradients) as well as models
optimized to classify HVM images while fitting a random Gaussian target activation matrix, or an
image shuffled target activation matrix which has the same first and second order statistics as the true
IT activation matrix, but scrambled image information. For both animals, we see a significant positive
shift from the unfitted model (neural loss weight of 0.0), with higher relative neural loss weights
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Figure 2: IT alignment training leads to improved IT representational similarity on held out
animals and held out images across two image sets with different statistics. A) IT neural similarity
scores (CKA, normalized by split-half trial reliability) for held out but within domain HVM images
vs gradient steps is shown for two held out monkeys across seven different neural similarity loss
gradient dropout rates (the darkest trace receives neural similarity loss gradients at 100% of gradient
steps, while in the lightest trace neural similarity loss gradients are dropped at every step). Two
control conditions are also shown: optimizing model IT toward a random Gaussian target IT matrix
(random, blue) and toward an image-shuffled target IT matrix (shuffle, orange). B) Like A but for
natural COCO images out of domain with respect to the training set. Grey dashed line on each plot
shows the base model score for models pre-trained on ImageNet and HVM image labels with no IT
representational similarity loss, which the model set with 0% of IT similarity loss gradients does not
deviate significantly from. Error bars are bootstrapped confidence intervals for 5 random training
seeds.

generally leading to higher IT neural similarity scores. Meanwhile, both of the control conditions
cause models to become less IT like, to a significant degree.

We next investigated how well our procedure generalizes from the grey-scale naturalistic HVM images
to full color, natural images from COCO. Figure 2B shows the same model optimization conditions
as before, but now on two unseen animal IT representations of COCO images. Like in 2A although
to a lesser absolute degree, we see improvements relative to the baseline in IT neural similarity as
function of the neural loss weight, and controls generally decreasing in IT neural similarity. From
this, we conclude that our IT alignment procedure is able to improve IT-likeness in our models even
in held out animals and across two image sets with distinct statistics.

3.2 Increased behavioral alignment in models that better match macaque IT

Next, we investigated how single image level classification error patterns correlate between humans
and IT aligned models. To get a big picture view, we take all of the optimization conditions and
validation epochs generated in figure 2A while models are training and compare IT neural similarity
on the HVM test set (averaged over held out animals) with human behavioral alignment on the
HVM test set. As shown in figure 3A, this analysis reveals a broad, though not linear correlation
between IT neural similarity and behavioral alignment. Interestingly, we observe that the slope is
at its steepest when IT neural similarity is at the highest values, suggesting that if an even higher
degree of IT-alignment might result in greater increases in behavioral alignment. We also investigated
whether these trends persist when we exclude the optimization on object labels from the HVM
images and only optimize for IT neural similarity. To do so, we train the models on all previous
conditions but without the HVM object-label loss. As shown in 3, the overall shape of the trend
remains quite similar, though the absolute behavioral alignment shifts downward, indicating that the
label information during training helps on the behavioral task, but is not a requirement for the trends
to hold.

In figure 3B, we perform the same set of measurements but now focusing on the COCO image
set. Consistent with the observation on COCO IT neural similarity, the behavioral alignment trend
transfers to the COCO image set although the absolute magnitude of the improvements are less.

Finally, using the Brain-Score platform [Schrimpf et al., 2018], we benchmark our models against
publicly available human behavioral data from the Objectome image set Rajalingham et al. [2018]
which has similar image statistics to our HVM IT fitting set (with a total of 24 object categories, only
four of which overlap with the training set). As demonstrated in figure 4C, when the Objectome data
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mization conditions and unseen image statistics but not on unseen object categories. A) Held
out animal and image IT neural similarity is plotted against human behavioral alignment on the
HVM image set at every validation epoch for all neural loss weight conditions, random IT target
matrix conditions, and image shuffled IT target matrix conditions, in each case with or with and with
out image classification loss. B) and C) Like in A but for the COCO image set and the Objectome
image set Rajalingham et al. [2018] filtered to overlapping categories with the IT training set. D)
The behavioral alignment for the full Objectome image set with 20 categories not covered in the IT
training is not improved by the IT-alignment procedure and data used here. In all plots, the black
cross represents the average base model position, and the heavy blue line is a sliding X, Y average of
all conditions merely to visually highlight trends. Five seeds for each condition are plotted.
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visually highlight trends. Five seeds for each condition are plotted.

are filtered down to just the four overlapping categories, our most IT similar models are again the
most behaviorally aligned, well above the unfit baseline and control conditions, which remain close
to the floor for much of the plot. However, As shown in figure 3D, when considering all 24 object
categories in the Objectome dataset, we see that the trend of increasing human behavioral alignment
does not hold and our models actually begin to fair worse in terms of human behavioral alignment at
higher levels of IT neural similarity. As shown in figure supp 3.1, using a linear probe to assess image
class information content (measured by classification accuracy on held out representations) reveals
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that these models are losing class information content for the Objectome image set, which drives the
decrease in behavioral alignment, as the model makes more mistakes overall than a human. Similarly,
a linear probe analysis reveals minimal loss in class information in the overlapping categories. Thus,
we observe that while our method leads to increased human behavioral alignment across different
image statistics, it does not currently lead to improved alignment on unseen object categories.

3.3 Increased adversarial robustness in models that better match macaque IT

Finally, we evaluate our models on an array of white box adversarial attacks, to assess if models with
higher IT neural similarity scores also have increased adversarial robustness. Like before, we start
with a big picture analysis where we consider every evaluation epoch for all optimization conditions
considered in figure 2. Again, as demonstrated in figures 4A and 4B, for both HVM images and
COCO images, there is a broad though not entirely linear correlation between IT neural similarity and
adversarial robustness to PGD L∞ ϵ = 1/1020 attacks. Like in the analysis of behavioral alignment,
we also see a higher slope on the right side of the plots, where IT neural similarity is the highest,
suggesting further improvements could be had if models were pushed to be more IT aligned.

In order to get a better sense of the gains in robustness, we measured the adversarial strength accuracy
curves for models only trained with HVM image labels, models trained with HVM image labels and
IT neural representations, and models adversarially trained on HVM labels (PGD L∞, ϵ = 4/255).
Figure 5A shows that on held-out HVM images, IT aligned models have increased accuracy across a
range of ϵ values for both L∞ and L2 norms, though less so than models with explicit adversarial
training. However, as shown in figure 5 the same analysis on COCO images demonstrates that
adversarial robustness in the IT aligned networks generalizes significantly better on unseen image
statistics than the adversarially trained models, which lose clean accuracy on COCO images.

Finally, we tested the IT neural similarity of our HVM image adversarially trained models and find
that they do not follow the general correlation shown in 4 for IT aligned models vs adversarial
accuracy. Interestingly, the adversarially trained models are slightly more similar to IT than standard
models, but significantly higher than standard models on HVM adversarial accuracy and significantly
lower on COCO adversarial accuracy. We take this to indicate that there are multiple possible ways
to become robust to adversarial attacks, and that adversarial training does not in general induce the
same representations as IT alignment.

4 Discussion

Building on prior research in constraining visual object recognition models with early stage visual
representations [Li et al., 2019, Dapello et al., 2020, Federer et al., 2020, Safarani et al., 2021], we
report here that it is possible to better align the late stage "IT representations" of an object recognition
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and L2 strength accuracy curves on HVM images for standard trained networks (green) IT aligned
networks (blue) and networks adversarially trained (PGD L∞ ϵ = 4/255) on the IT fitting image
labels (orange). B) Like in A but for COCO images. Error shading represents bootstrapped 95%
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model with the corresponding primate IT representations, and that this improved IT alignment leads
to increased human level behavioral alignment and increased adversarial robustness. In particular,
the results show that 1) the method used here is able to improve IT alignment in object recognition
models even on held out animals and image statistics not seen by the model during the IT neural
alignment training procedure, 2) models that are more aligned with macaque IT also have better
alignment with human behavioral error patterns across unseen (not shown during training) image
statistics but not for unseen object categories, and 3) models more aligned with macaque IT are more
robust to adversarial attacks even on unseen image statistics. Interestingly however, we observed that
being more adversarially robust does not lead to significantly more IT neural similarity.

These empirical observations raise a number of important questions for future research. First, we
find it intriguing that aligning IT representations in our models to empirically measured macaque IT
responses has no effect or even a negative effect on behavioral alignment for objects not present in the
IT fitting image-set, a noteworthy limitation in our approach. We speculate that this is due to the small
range of categories covered in our IT training set, which limits the span of neural representational
space that those experiments were able to sample. In that regard, it would be informative to get a
sense of the scaling laws [Kaplan et al., 2020] for how much neural data (in terms of images, neurons,
trials, or object categories) needs to be absorbed into a model before it behaves in a truly general
more human like fashion for any instance of image categories or statistics. With regard to adversarial
robustness, a number of questions remain as well. While there are clear gains in robustness from
our procedure, the overall magnitude is relatively small. How much adversarial robustness could we
expect to gain, if we perfectly fit IT? And how much could be gained from fitting other regions of the
ventral stream more precisely? These question hinges on how adversarially robust primate behavior
really is, an active area of research [Guo et al., 2022, Elsayed et al., 2018, Yuan et al., 2020]. We
also note that our current study do not exhaustively test the influence of various model architectures,
training data, and learning algorithms (or other optimization goals) on the ability of the model to
better absorb macaque IT responses during training. Finally, the question remains as to why primate
visual representations are more robust than representations developed in models with the standard
classification loss.

Overall, our results provide further evidence in support of the framework encouraging direct opt-
mization of models with empiricial data from the primate brain to make them more robust and well
aligned with human behavior [Sinz et al., 2019]. We also highlight that there are many compelling
ways forward. In hopes that more neurophysiological constraints will further limit the model solution
space to resemble what is used by the primate brain, a clear next step is to combine our IT alignment
method with prior methods developed to increase alignment with early visual representations, either
with a fixed V1 front end [Dapello et al., 2020], or in a more data driven manner [Safarani et al.,
2021]. Beyond this, our method could be adapted to constrain recurrent models [Kubilius et al., 2019,
Nayebi et al., 2018] with the recorded temporal dynamics of IT neural responses [Kar et al., 2019].
Finally, we could also test if adding neural stochasticity offers improvements in robustness here as it
did in Dapello et al. [2020, 2021].
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All claims made in the abstract and intro are directly
supported by the figures in the paper.

(b) Did you describe the limitations of your work? [Yes] The middle paragraph of the
discussion focuses on limitations of the work

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not
foresee any negative societal implications in IT aligning object recognition models.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not use

any proofs.
(b) Did you include complete proofs of all theoretical results? [N/A] We do not use any

proofs.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] We include
instructions to reproduce our work and will release a github repository with all code
and data needed to reproduce our results upon paper acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In the materials and methods section as well as further in the
supplemental materials.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] All experiments were run with 5 random seeds per
condition and plotted with error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In supplemental material section 2,
where we discuss additional model training details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite Brain-Score,

ART, Kubilius et al. [2019], Majaj et al. [2015], and Rajalingham et al. [2018], whose
code and data we use in our work.

(b) Did you mention the license of the assets? [Yes] We include code and asset licensing
information where appropriate in supplemental section 4.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We will release new assets upon paper acceptance.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A] All non-original data was taken from public sources (like
published papers) where consent was not necessary

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Our data contains nothing of a personally
identifiable nature.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] We include relevant information in supplemental section 1.2
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] There were no risks to our participants.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [Yes] We include relevant information in supple-
mental section 1.2
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Supplementary Material
A Data Collection and Processing

A.1 Neural Data Collection and Processing

A.1.1 Surgical implant of chronic micro-electrode arrays

In this study we have recorded chronic, in-vivo neural responses across both left and right hemispheres
of 6 specific monkeys (3 used in model training and 3 used in model testing). First, we surgically
implanted each monkey with a head post under aseptic conditions. After behavioral training, we
recorded neural activity using multiple 10 × 10 micro-electrode arrays (Utah arrays; Blackrock
Microsystems). A total of 96 electrodes were connected per array. Each electrode was 1.5 mm long
and the distance between adjacent electrodes was 400 um. Before recording, we implanted each
monkey multiple Utah arrays in the IT cortex. Array placement was guided by the sulcus pattern,
which was visible during surgery. The electrodes were accessed through a percutaneous connector
that allowed simultaneous recording from all 96 electrodes from each array. All behavioral training
and testing was performed using standard operant conditioning (water reward), head stabilization, and
real-time video eye tracking. All surgical and animal procedures were performed in accordance with
National Institutes of Health guidelines and the Massachusetts Institute of Technology Committee on
Animal Care.

A.1.2 Electrophysiological Recording

During each recording session, band-pass filtered (0.1 Hz to 10 kHz) neural activity was recorded
continuously at a sampling rate of 20 kHz using Intan Recording Controller (Intan Technologies,
LLC). The majority of the data presented here were based on multiunit activity. We detected the
multiunit spikes after the raw data was collected. A multiunit spike event was defined as the threshold
crossing when voltage (falling edge) deviated by less than three times the standard deviation of the
raw voltage values. Our array placements allowed us to sample neural sites from different parts of IT,
along the posterior to anterior axis. However, for all the analyses, we did not consider the specific
spatial location of the site, and treated each site as a random sample from a pooled IT population.

Monkeys used for model training: We recorded neural data from three monkeys for training the CNNs.
Chronic multi-electrode recordings from these monkeys’ ventral visual cortex (recorded for various
other research objectives) has been previously published [Majaj et al., 2015] [Hong et al., 2016]
[Bashivan et al., 2019] [Rajalingham et al., 2020].

Monkeys used for model testing: We recorded neural data from three monkeys for testing the jointly
optimized models. Chronic multi-electrode recordings from these monkeys’ ventral visual cortex
(recorded for various other research objectives) has been previously published [Kar et al., 2019] [Kar
and DiCarlo, 2021] [Bashivan et al., 2019] [Rajalingham et al., 2020]

A.1.3 Neural recording quality metrics per site

Visual drive per neuron (d′visual): We estimated the overall visual drive for each electrode. This
metric was estimated by comparing the selected image responses of each site to a blank (gray screen)
response.

d′visual =
avg(Rimg)− avg(Rgray)√

1
2 (σ

2
Rimg

+ σ2
Rgray

)
(1)

Image rank-order response reliability per neural site (ρIRO
site ): To estimate the reliability of the

responses per site, we computed a spearman-brown corrected, split half (trial-based) correlation
between the rank order of the image responses (all images).

Selectivity per neural site: For each site, we measured selectivity as the d’ for separating that site’s
best (highest response-driving) stimulus from its worst (lowest response-driving) stimulus. d′ was
computed by comparing the response mean of the site over all trials on the best stimulus as compared
to the response mean of the site over all trials on the worst stimulus, and normalized by the square-root
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of the mean of the variances of the sites on the two stimuli:

selectivityi =
mean(b⃗i)−mean(w⃗i)√

var(b⃗i)+var(w⃗i)
2

(2)

where b⃗i is the vector of responses of site i to its best stimulus over all trials and w⃗i is the vector
of responses of site i to its worst stimulus. We computed this number in a cross-validated fashion,
picking the best and worst stimulus on a subset of trials and then computing the selectivity measure
on a separate set of trials, and averaging the selectivity value of 50 trial splits.

Inclusion criterion for neural sites: For our analyses, we only included the neural recording sites that
had an overall significant visual drive (d′visual), an image rank order response reliability (ρIRO

site ) that
was greater than 0.6 and a selectivity score that was greater than 1. Given that most of our neural
metrics are corrected by the estimated noise at each neural site, the criterion for selection of neural
sites is not that critical, and it was mostly done to reduce computation time by eliminating noisy
recordings.

A.2 Human Data Collection

We measured human behavior (from 88 subjects) using the online Amazon MTurk platform which
enables efficient collection of large-scale psychophysical data from crowd-sourced “human intelli-
gence tasks” (HITs). The reliability of the online MTurk platform has been validated by comparing
results obtained from online and in-lab psychophysical experiments [Majaj et al., 2015] [Rajalingham
et al., 2015]. Each trial started with a 100 ms presentation of the sample image (that contained a
visual object embedded in a scene). This was followed by a blank gray screen for 100 ms; followed
by a choice screen with the target and distractor objects (similar to [Rajalingham et al., 2018]). The
subjects indicated their choice by touching the screen (for touch screen tablets) or clicking the mouse
over the target object (for desktop computers). Each subjects saw an image only once. We collected
the data such that, there were 80 unique subject responses per image, with varied distractor objects.

Human participants were compensated at a rate of approximately 4 USD per hour. The total amount
spent was approximately 300 USD.

Human participants were greeted with the following messages upon clicking on the task on Amazon
Mechanical Turk.

Welcome page instructions: "This HIT is part of a MIT scientific research project. Your decision to
complete this HIT is voluntary. There is no way for us to identify you. The only information we will
have, in addition to your responses, is the time at which you completed the survey. The results of the
research may be presented at scientific meetings or published in scientific journals. Clicking on the
’SUBMIT’ button on the bottom of this page indicates that you are at least 18 years of age and agree
to complete this HIT voluntarily.

NOTE: Please close all other programs/taps while running this task to get the optimal system
performance. Users on a suboptimal system can experience glitches that will lead to rejection. Also,
low scores on this task will lead to rejection: make sure to read this instruction! Thank you for your
interest! You are contributing to ongoing vision research at the Massachusetts Institute of Technology
and the McGovern Institute for Brain Research. This task will require you to look at images on your
computer screen and click to indicate a response for up to about 15 minutes, although we expect
this to take about 5-10 minutes. If you cannot meet these requirements for any reason, or if doing
so could cause discomfort or injury to you, do not accept this HIT. We encourage you to try a little
bit of this HIT before accepting to ensure it is compatible with your system. If you think the task is
working improperly, your computer may be incompatible. We recommend this task for those who
are interested in contributing to scientific endeavors. Your answers will help MIT researchers better
understand how the brain processes visual information."

Task instructions: "Please fixate at the center ’+’ sign which will appear once you press any key.
Then, an image will be shown in the center of the screen. The image will contain an object. This
will be followed by a Choice Screen containing two objects. Please choose the option [Click on the
object] that you think was present in the image"
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B Additional Model Training and Testing Details

In order to align model representations with primate IT representations while performing a classi-
fication task, we start by loading an ImageNet [Deng et al., 2009] pre-trained CORnet-S [Kubilius
et al., 2019] as a base model. We add 8 new classification logits for the HVM image classes, and
model hooks to extract representations from the first time step of the "IT" layer of CORnet-S. Next,
we resume ImageNet training of the CORnet-S using stochastic gradient descent with a batch size
of 128, a learning rate of 0.001, 0.9 momentum, and weight decay of 0.0001, but now for every
gradient step we also include a batch of HVM images. For each HVM batch, a cross entropy loss
is applied to the 8 new logits for classifying the HVM images, and a log(1− CKA(X,Y )) loss is
applied, where X is the activation matrix for the batch of representations extracted from CORnet-S
"IT" layer and Y is the activation matrix of the corresponding image representations recorded from IT
in the three training macaques. To generate a diversity of IT similarity in our models, we introduce
random dropout of the CKA similarity loss which we call a neural loss ratio. A neural loss ratio of
1:1 corresponds to all HVM images having both a neural similarity loss and an HVM classification
loss, while a neural loss ratio of 0.5:1 means that 50% of the time, the HVM batch only includes the
HVM classification loss and no neural similarity loss. A neural loss ratio of 0:1 means that the model
never has neural similarity gradients, only HVM classification gradients during the HVM batches.
Finally, for experiments like 3 where we explore the effect of HVM label information on behavioral
alignment, the HVM classification loss is set to 0 on all HVM batches. At no point during the training
procedure does the model see COCO images or IT representations of COCO images.

In all reported experiments, model IT representational similarity training was performed on 2880
grey-scale naturalistic HVM image representations consisting of 188 active neural sites collated from
the three training set macaques for 1200 epochs, or 26400 gradient steps on QUADRO RTX6000
GPUs, which took approximately 5 hours per training run. We introduce a small amount of data
augmentation including the physical equivalent of 0.5 degrees of jitter the vertical and horizontal
position of the image, 0.5 degrees of rotational jitter, and +/- 0.1 degrees of scaling jitter, selected to
simulate natural viewing conditions. All models are in pytorch [Paszke et al., 2017], and training and
testing is performed using pytorch lightning [Falcon et al., 2019].

Model IT representational similarity testing was performed on a total of three held out monkeys:
Monkey 1 (280 neural sites) and monkey 2 (144 neural sites) on 320 held out HVM images with
statistics similar to the training distribution, and monkey 1 (237 neural sites) and monkey 3 (106
active neural sites) on 200 full color natural COCO [Lin et al., 2014] images with different statistics
than those used during training. IT neural similarity was computed as CKA(XCORnet−S , YMn

)
where XCORnet−S denotes the activation matrix of CORnet-S time step zero responses from the
"IT" layer and YMn

is the activation matrix of test macaque n responses to all test images from
an image set (HVM or COCO). The CKA score is computed for each test animal individually and
normalized by the split half trial reliability of the animal’s recordings, ie CKA(X,Y ) where X is the
time and trial averaged recordings for 50% of the images presentations and Y is the time and trial
averaged recordings for the other 50% of image presentations, bootstrapped over 10 random splitting
seeds. Finally, the we average the individually computed and ceiled scores of each animal to give the
Validated IT Neural Similarity scores reported in all experiments.

C Additional Experimental Results

Here, to investigate why the behavioral alignment on Objectome Rajalingham et al. [2018] images
decreases for higher levels of validated IT neural similarity, we use a linear probe to assess the
(linear) class information content of Objectome image representations. Briefly, like for computing
i2n behavioral alignment, feature representations are extracted for all image from the final average
pooling layer of the network and partitioned into a train and test set. A linear classifier is fit to the
train partition representations, and the classification error on the test set is reported. Results are
shown in figure A.1. As can be seen, in the case of the full Objectome image set, classification
accuracy decreases for higher values of IT neural similarity. Meanwhile, in the category overlapping
subset, there is minimal loss in overall classification accuracy. Since i2n behavioral alignment is
implicitly reliant on raw classification accuracy, this is at least one source of the decreasing behavioral
alignment for Objectome images. Still, it is surprising to us that the network representations for
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Figure A.1: Higher levels of validated IT neural similarity are associated with decreasing
classification accuracy on Objectome images over all, but not Objectome images with categories
overlapping the IT training set categories. A) Classification accuracy versus validated IT neural
similarity for all model optimization conditions at all validation checkpoints reveals decreasing
accuracy on the full Objectome image set which contains 20 categories not overlapping with the IT
training set. B) Like in A but for the Objectome image set filtered to overlapping categories with
the IT training set has relatively stable classification accuracy. In all plots, the black cross represents
the average base model position, and the heavy blue line is a sliding X, Y average of all conditions
merely to visually highlight trends. Five seeds for each condition are plotted.

categories beyond the IT fitting set are being degraded, and more research is needed to understand
exactly what is happening to the underlying representations.

D Licensing Information

The MS COCO images dataset [Lin et al., 2014] is licensed under a Creative Commons Attribution
4.0 License. Adversarial Robustness Toolbox [Nicolae et al., 2018], Brain-Score [Schrimpf et al.,
2018], Brain-Score associated datasets are under the MIT License. Pytorch [Paszke et al., 2017]
is under a BSD license. Pytorch Lightning [Falcon et al., 2019] is under an Apache 2.0 license.
CORnet-S [Kubilius et al., 2019] is under a GNU General Public License. ImageNet [Deng et al.,
2009] is under a BSD 3-Clause License.
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