Frequent sexual reproduction limits adaptation in outcrossed populations of the alga *Chlamydomonas reinhardtii*

Felix Moerman\(^1\)*, Nick Colegrave\(^1\)*,

1. Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3JT, United Kingdom

* Corresponding authors

Keywords: Sexual reproduction, Local adaptation, Experimental evolution

Running head: *Chlamydomonas frequency of sex*

Abstract

Sexual reproduction can facilitate adaptation of populations by reshuffling existing genetic variation or new mutations. However, sexual reproduction can also bear costs. Such costs come in two forms, direct costs and evolutionary costs. Direct costs are associated with the cost of producing males (twofold cost of sex) and the typically slower cell division during sexual reproduction. Evolutionary costs occur when too frequent sexual reproduction would hinder adaptation, by breaking apart adaptive allele combinations. Whereas the direct costs of sexual reproduction have been studied extensively, the evolutionary costs of sex remain less well understood. We investigate how the frequency of sexual reproduction affects adaptation to a non-stressful and a stressful environment in populations of the green alga *Chlamydomonas reinhardtii*, while minimizing the direct costs of sexual reproduction. Contrary to previous studies, we found that an increasing frequency of sexual reproduction hindered adaptation up to the point where adaptation was entirely prevented, suggesting...
strong evolutionary costs associated with too frequent sexual reproduction. This observation may explain the low frequency of sexual reproduction observed in many facultative sexual species.

Introduction

The geographical ranges that species occupy in the natural world are determined by how well those species are adapted to their abiotic environment (e.g. climatic conditions, soil composition) and their biotic environment (e.g. competitive interactions, predator-prey interactions, parasite-host interactions) [1–4]. Therefore, the long term survival of species depends strongly on their ability to adapt to any changes that occur in their environment. One important mechanism that affects the potential to adapt is the reshuffling of genetic variation through sexual reproduction [5,6]. Sex can affect adaptation of species in several ways (reviewed in Hartfield and Keightley, [7]) by purging deleterious mutations, aiding adaptation by bringing together and fixing novel adaptive mutations, or by recombining existing variation that can for example help in resisting parasite infections (red queen hypothesis).

Recent experimental work has demonstrated that sexual reproduction may speed up adaptation of species. For example, evolution experiments with populations of algae [8,9], protists [10–13] and yeast [14,15] have demonstrated that sexual reproduction can facilitate adaptation of populations to their biotic or abiotic environment. Additionally, it has been shown experimentally that sexual reproduction is under positive selection when environmental complexity increases [12,16]. Similarly, sexual reproduction has been shown to be advantageous in natural populations, for example by facilitating adaptation of species to the local environment by introgression of locally adapted genes [17], or by facilitating the escape from parasitism [18]. Despite these benefits of sexual reproduction, many species including plants [19], fungi [20], invertebrates [21,22] and certain vertebrate species [21,23] reproduce both sexually and asexually. Moreover, in many of these species, sexual reproduction is only occasional. These observations suggest that while sex can facilitate adaptation, it also can be costly. These costs can come in two forms. Direct costs of sex are associated with the need for investment of resources in males (two-fold cost of sex [7,24,25]), and with the typically slower cell divi-
sion during sexual reproduction. Evolutionary costs occur when sexual reproduction hinders adaptation because too frequent reshuffling of genetic material would break up adaptive combinations, and prevent effective selection. Whereas past work has investigated the direct costs extensively, the evolutionary costs of sexual reproduction have received less scrutiny. Theoretical work predicts that only occasional sexual reproduction is favourable [26–31], however experimental scrutiny of this prediction is currently largely lacking.

In this experiment, we investigated how the frequency of sexual reproduction affects adaptation of genetically diverse and outcrossed populations of the green alga *Chlamydomonas reinhardtii*. Specifically, we aimed to directly assess how the frequency of sexual reproduction affected evolutionary adaptation, under a situation where direct costs (i.e. slower cell division and twofold cost of sex) were minimised. To do so, we assessed how increasingly frequent sexual reproduction affected adaptation in a stressful environment (increased concentration of salt, previously used as a stressful environment [32,33]; ”salt lines”) and in a non stressful environment (non-elevated salt concentration; ”no salt lines”). We designed our experiment in such a way that the evolution lines experienced an approximately equal number of generations, independent of the frequency of sexual reproduction, to minimize direct costs associated with sexual reproduction. We then assessed how the frequency of sexual reproduction affected adaptation to both the selection environment that populations experienced during experimental evolution, and trade-offs in growth in the second environment (see also Figure 1).
Figure 1: **Schematic representation of the experimental setup.** A) We created a genetically diverse and outcrossed ancestor population by mixing together 24 clonal lines of *Chlamydomonas reinhardtii*, and subjecting them to three cycles of sexual reproduction. B) We started the evolution experiment using this ancestor population, and subjected evolution lines either to a non-stressful environment (blue) or a stressful environment (red). Evolution lines experienced different frequencies of sexual reproduction (none, once, monthly or biweekly). For each combination of the environment and frequency of sexual reproduction, we maintained six replicate evolution lines. The evolution lines experienced a total of 24 weeks of evolution, during which we repeated the same three week cycles, consisting of a sexual reproduction/asexual control phase, followed by two cycles of asexual growth. C) After experimental evolution, we subjected the evolution lines (blue circle=no salt lines; red circle=salt lines) to a common garden phase (non-stressful environment; blue box), and subsequently grew them in both environments (blue box=non stressful environment; red box=stressful (salt) environment) to measure adaptation to the selection environment and trade-offs with growth in the second environment.
Results

Aims and hypotheses

We investigated how the frequency of sexual reproduction and the evolutionary history (salt lines versus no salt lines) affected adaptation to the environment experienced during selection and trade-offs in adaptation to different environments. Specifically, we investigated how these factors affected the change in intrinsic rate of increase r_0 and the equilibrium population density K in the abiotic environment that populations experienced during experimental evolution (adaptation to selection environment) and in both abiotic environments (evolutionary trade-offs).

Because we minimize direct costs associated with sexual reproduction, we could expect to see different relations between the frequency of sexual reproduction and the degree of adaptive evolutionary change (i.e. adaptation to the selection environment, measured as change in the intrinsic rate of increase r_0 or the equilibrium density K). If sexual reproduction consistently facilitates adaptation, and there are no evolutionary costs associated with too frequent sexual reproduction, we would expect to see that the degree of adaptation increases directly with an increasing frequency of sexual reproduction (Figure 2, dark teal line). If, however, sexual reproduction is not costly, but too frequent sex would no longer aid adaptation, we would expect to see that the degree of adaptive evolutionary change initially increases quickly with the frequency of sexual reproduction, but this increase diminishes and levels off as the frequency of sexual reproduction increases further (Figure 2, light teal line). When too frequent sex would start to hinder adaptation, we would however expect that either the degree of adaptive evolutionary change start to decrease if sexual reproduction would be too frequent (Figure 2, light brown line), or potentially even at low frequencies of sexual reproduction, entirely preventing any adaptive evolutionary change as sexual reproduction becomes more frequent (Figure 2, dark brown line). Based on theoretical predictions [26–31], we hypothesize that intermediate frequencies of sexual reproduction may have the most beneficial effect on adaptive evolutionary change, but too frequent sexual reproduction may become costly by breaking up beneficial allele combinations, and thus preventing effective selection (mild cost; Figure 2, light
Based on past experiments [8–15,34], we would however expect that the benefits of sexual reproduction will be larger for those populations that experienced evolution in the stressful environment (salt lines) than in the non-stressful environment (no salt lines).

Figure 2: **Hypothetical relation between the frequency of sexual reproduction and the degree of adaptive evolutionary change that a species may experience.** We here show four hypothetical cases of a relation between the frequency of sexual reproduction and the degree of adaptive evolutionary change that we could expect to see in our experiment. Depending on the evolutionary costs and benefits, we could expect to see that either 1) sexual reproduction consistently facilitates adaptive evolutionary change (dark teal), 2) sexual reproduction has no evolutionary cost, but has diminishing return when species engage increasingly frequent in sexual reproduction (light teal), 3) too frequent sexual reproduction can have a mild cost, and reduces adaptive evolutionary change (light brown) or 4) where even low frequencies of sexual reproduction can become costly and start to reduce the degree of adaptive genetic change (dark brown). Note that this figure only shows evolutionary costs, not direct costs such as slower division rates.

Adaptation to the selection environment

Intrinsic rate of increase r_0

The intrinsic rate of increase r_0 was affected by the evolutionary history, the frequency of sexual reproduction, as well as the interaction between these two factors. For both the salt lines and the no salt lines, the intrinsic rate of increase changed less when the evolution lines ex-
experienced a higher frequency of sexual reproduction during the evolution experiment. In case of the no salt lines, (frequency of sexual reproduction; $\chi^2_{3}=19.172$, $p<0.001$; Figure 3), the change in r_0 was reduced by 0.11 and 0.35 for the evolution lines that experienced monthly or biweekly sexual reproduction, respectively. This negative effect of more frequent sexual reproduction was even more pronounced for salt lines (Evolutionary history \times frequency of sexual reproduction; $\chi^2_{3}=8.041$, $p=0.045$; Figure 3 right panel). Compared to the populations that experienced no sexual reproduction, the change in r_0 of salt lines was reduced by respectively 0.12 if they experienced sexual reproduction once, by 0.38 if they experienced monthly sexual reproduction, and by 0.71 if they experienced biweekly sexual reproduction. Notably, both in the no salt lines and the salt lines, the evolution lines that experienced the highest frequency of sexual reproduction (biweekly) grew approximately as fast as the ancestor population, suggesting that adaptation was entirely prevented when experiencing a high frequency of sexual reproduction. Additionally, we observed that in the absence of sexual reproduction, r_0 of salt lines increased more strongly than the r_0 of no salt lines, relative to the ancestor (evolutionary history; $\chi^2_{1}=8.769$, $p=0.003$; Figure 3). For full statistical output, see the Supplementary Material section S4.1.
Figure 3: **Higher frequency of sexual reproduction reduces change in the intrinsic rate of increase** r_0. The left panel shows data and model predictions for adaptation to the selection environment (intrinsic rate of increase) for the no salt lines, and the right panel for the salt lines. Circles represent individual measurements of change in intrinsic rate of increase of evolved lines, relative to the ancestor. Boxplots show the model predictions (black lines) and 95% confidence intervals (shaded areas) for the fixed effect estimates of the best fitting model. Colours represent the frequency of sexual reproduction during experimental evolution.

Equilibrium population density K

Contrary to the intrinsic rate of increase, we observed that the change in the equilibrium density K was not affected by the frequency of sexual reproduction. We observed however a clear effect of the evolutionary history, where salt lines showed stronger adaptation to the local environment in terms of the equilibrium population density than the no salt lines (Evolutionary history; $\chi^2_1=22.178$, $p<0.001$; Figure 4). Full statistical output can be found in the Supplementary Material section S4.2.
Evolutionary history shapes the change in the equilibrium density K. The left panel shows data and model predictions for adaptation to the local environment (equilibrium population density) for the no salt lines, and the right panel for the salt lines. Circles represent individual measurements of change in equilibrium population density of evolved lines, relative to the ancestor. Boxplots show the model predictions (black lines) and 95% confidence intervals (shaded areas) for the fixed effect estimates of the best fitting model. Colours represent the frequency of sexual reproduction during experimental evolution.

Evolutionary trade-offs

Next, to assess whether the evolution lines experienced any trade-offs in growth between the selection environment and the other environment, we assessed the correlated response of respectively the intrinsic rate of increase r_0 and the equilibrium density K for both environments.

Intrinsic rate of increase r_0

The change in the intrinsic rate of increase r_0 was affected by the frequency of sexual reproduction, the evolutionary history of the evolution lines, as well as by the abiotic environment. More specific, we found that on average, the no salt lines increased more strongly in r_0, irrespective of the abiotic environment (evolutionary history; $\chi^2_1=12.982$, $p=0.0003$; Figure 5).
Both salt lines and no salt lines grew significantly slower in the salt environment than in the no salt environment (abiotic environment; $\chi^2_{1}=21.631, p<0.0001$; Figure 5). Independent of the evolutionary history and the abiotic environment, we found that an increasing frequency of sexual reproduction led to a smaller increase in r_0 (frequency of sexual reproduction; $\chi^2_{3}=30.583, p<0.0001$; Figure 5). We observed that the negative effect of too frequent sexual reproduction was stronger for the salt lines than for the no salt lines (evolutionary history \times frequency of sexual reproduction; $\chi^2_{3}=10.200, p=0.0169$; Figure 5 right panels). However, we found no statistical indication of trade-offs in terms of the intrinsic rate of increase r_0 (i.e. no significant interaction effect between the evolutionary history and the abiotic environment).
Figure 5: **Higher frequency of sexual reproduction reduces change in the intrinsic rate of increase** r_0. The left panel shows data and model predictions for evolutionary trade-offs (intrinsic rate of increase) for the no salt lines, and the right panel for the salt lines. Circles represent individual measurements of change in intrinsic rate of increase of evolved lines, relative to the ancestor. Boxplots show the model predictions (black lines) and 95% confidence intervals (shaded areas) for the fixed effect estimates of the best fitting model. Colours represent the frequency of sexual reproduction during experimental evolution.

Equilibrium population density K

We observed that the equilibrium population density K was affected by the abiotic environment and the evolutionary history of the evolution lines, as well as their interaction. Specifically, we observed that K increased on average more strongly in the salt environment than in the no salt environment (abiotic environment; $\chi^2_1=11.202$, $p=0.0008$; Figure 6). In the no salt environment, no salt lines showed a stronger increase in K than salt lines (evolutionary history; $\chi^2_1=4.741$, $p=0.030$; Figure 6). However, in the salt environment, we observed the exact op-
posite patterns, as the equilibrium population density K of salt lines increased more strongly than for the no salt lines (abiotic environment × evolutionary history; $\chi^2_{1}=23.213, p<0.0001$; Figure 6). Overall, these results suggest that there is a trade-off in adaptation between the two environments, in terms of the equilibrium population density K. But we found no statistical indication that this trade-off was affected by the frequency of sexual reproduction in this data.

![Figure 6: Evolutionary trade-offs affect the equilibrium density K.](image)

The left panels shows data and model predictions for the no salt lines, and the right panels for the salt lines. Top panels show data and model predictions in the no salt environment, whereas bottom panels show the salt environment. Circles represent individual measurements of change in equilibrium population density of evolved lines, relative to the ancestor. Boxplots show the model predictions (black lines) and 95% confidence intervals (shaded areas) for the fixed effect estimates of the best fitting model. Colours represent the frequency of sexual reproduction during experimental evolution.
Discussion

We investigated the evolutionary costs and benefits of sexual reproduction in a non stressful and a stressful environment, while minimizing the direct costs associated with sexual reproduction. Specifically, we assessed how the frequency of sexual reproduction affected adaptation to the selection environment, as well as trade-offs in terms of growth in another environment. We found that the frequency of sexual reproduction strongly affected adaptation in terms of the intrinsic rate of increase r_0 in both the non stressful and the stressful environment (Figure 3). Specifically, an increasing frequency of sexual reproduction reduced adaptive evolutionary change in the evolution lines, up to the point where adaptation was entirely prevented in those populations that experienced the highest frequency of sexual reproduction. Surprisingly, sexual reproduction had a negative effect for lines that evolved in both the stressful environment (salt lines) and the non-stressful environment (no salt lines). Additionally, adaptation to the selection environment was traded off with adaptation to the other environment, but only in terms of the equilibrium population density K (Figure 6), suggesting that there may be trade-offs for competitive ability in the different environments. In contrast, we observed that the intrinsic rate of increase r_0 does not show such trade-offs, and a stronger increase in r_0 in the salt environment is associated with also a stronger increase in r_0 in the no salt environment. This suggests that selection for growth was not specific to the selection environment, but rather happened through selection for increased cell division or adaptation to the general experimental conditions, contrary to previous experiments where adaptation to salt stress led to environment specific changes in growth rates [33,35].

Our observation that an increasing frequency of sexual reproduction hinders adaptation during experimental evolution at first glance appears in contrast with our own prediction (see also Figure 2) and past theoretical work. Based on theoretical predictions [26–31], we would have expected to observe that sexual reproduction is most beneficial when it happens at a low to intermediate frequency. Additionally, we would have expected that higher frequencies of sexual reproduction would be more adaptive in those evolution lines that experienced a stressful environment during experimental evolution (i.e. salt lines). Previous experimental studies have found that sexual reproduction may speed up adaptation of populations, especially when they
are subjected to complex or stressful environments [8–10,12–15,34]. Whereas our observation may seem to be at odds with these previous studies, the cause of these differences may lie in the initial conditions of the experiment. In our current experiment, the ancestral population was both genetically diverse, and outcrossed, as we generated this population by mixing together 24 clonal lines and subjecting the resulting population to three cycles of sexual reproduction. In this case, selection can likely act efficiently on this starting population, as the sexual reproduction prior to the start of the evolution experiment may have generated beneficial allele combinations from the mixed clonal lines. This observation would also be in line with previous findings that up to three rounds of sexual reproduction may facilitate adaptation in *Chlamydomonas* populations, before sexual reproduction had diminishing returns on adaptation [34].

Theoretical work has indicated that in such a case of well-mixed populations, sexual reproduction may be less advantageous, as it will no longer affect the genetic variation needed for effective selection [30]. In contrast, several of the previous studies started out with populations which had either an extremely low genetic diversity (single or few clonal lines; [8,14,15,35]) or with populations with an extremely high degree of linkage disequilibrium, as they consisted of clonal lines that were mixed together, but did not experience any previous recombination [13]. Under these conditions, sexual reproduction may have played a more beneficial role. In case of the clonal populations, sexual reproduction may have played a beneficial role either by purging deleterious mutations or bringing together beneficial mutations/reducing clonal interference [36–39]. In the genetically more diverse populations but with a high degree of linkage disequilibrium, sexual reproduction may also have aided adaptation, by generating beneficial allele combinations from the existing genetic variation present in the different clonal populations [28,40,41]. This is also in line with the theoretical prediction that sexual reproduction is mainly beneficial for populations by reducing selection interference between mutations/clonal lines [7].

However, the strong negative effects that sexual reproduction had on adaptation in our well mixed populations was still surprising, but may help explain why facultative sexual species tend to engage only infrequently in sexual reproduction. Indeed, when looking at the natural world, many species have the capability to reproduce both asexually or sexually, and facultative sexual...
reproducing species typically engage in sexual reproduction only infrequently and when faced with adverse conditions (e.g. [42–46]). Whereas past studies have shown how sexual reproduction may be beneficial for adapting to new conditions (see above), these studies for two reasons did not elucidate why species would only engage infrequently in sexual reproduction. Firstly, although this studies show very well how sexual reproduction can aid adaptation, the starting populations from these experiments are often not representative of typical natural populations (due to the extremely low genetic diversity and strong linkage disequilibrium; see above), and may be more similar to, for example, the conditions of invasions or small founder populations. Under such conditions, the benefits of sexual reproduction may be larger than in natural populations (e.g. [17,47]). Secondly, given that these past results indicated that sexual reproduction strongly aided adaptation under those experimental conditions, they could not yet explain why there would be only infrequent sexual reproduction in natural populations. Such an intermediate to low frequency of sexual reproduction, as observed in nature, could either be caused by direct costs associated with sexual reproduction (e.g. slow cell division, two-fold cost of sex, [7,24,25]), or due to evolutionary costs when sexual reproduction becomes too frequent. Whereas the direct costs are likely to play at least partially a role in reducing the frequency of sexual reproduction, they may be unlikely to entirely explain the observed frequency of sexual reproduction in facultative sexually reproducing species. Especially for populations that are near equilibrium density, and for which a slower cell division is therefore likely less costly, the direct costs of sexual reproduction may be low, as also suggested by empirical observations [6,21,25,48,49] as well as one experimental study [16]. Thus, to explain the predicted and observed relatively low frequency of sexual reproduction of facultative sexually reproducing species, an additional explanation may be necessary in the form of an evolutionary cost due to too frequent sexual reproduction. Indeed as suggested by the results of our experiment, where we observed that sexual reproduction was hindering adaptation, even when we minimized the indirect costs of sexual reproduction, evolutionary costs due to too frequent sexual reproduction may play a major role in why many species only engage infrequently in sexual reproduction.

Although our experiment provides strong evidence that evolutionary costs due to too frequent sexual reproduction may limit adaptation, this in no way negates the existing compelling
evidence from previous experimental studies that sexual reproduction may facilitate adaptation under certain conditions. As discussed above, the difference in these findings may stem from the initial conditions of these different evolution experiments. Consequently, there may exist a gradient of conditions in genetic diversity and the degree of linkage disequilibrium during which the effect of sexual reproduction shifts from beneficial for adaptation to hindering adaptation. Future work could further elucidate how the role of sexual reproduction hinges on these initial conditions. This question could be either tackled experimentally or empirically. Using an experimental design that carefully controls the degree of genetic variation and degree of linkage disequilibrium, one can evaluate either how sexual reproduction alters adaptation, or how the frequency of sexual reproduction itself changes depending on these initial conditions. Empirical studies may investigate natural populations of facultative sexually reproducing species, and try to assess whether the frequency of sexual reproduction is affected by the genetic compositions (standing genetic variation; linkage disequilibrium) of said populations. Additionally, future experimental work may further incorporate direct costs of sex into the equation (as already partially done by Becks and Agrawal [16]), to see how this further alters the change in the frequency of sexual reproduction. In conclusion, we here demonstrated that too frequent sexual reproduction has a strong evolutionary cost in genetically diverse and outcrossed populations, suggesting that the low frequency of sexual reproduction in natural populations may be in part due to such costs. Future experimental endeavours may help in further elucidating the costs and benefits of sexual reproduction, thus advancing our understanding on when and why sex may be (dis)favoured in natural populations.

Acknowledgements

F.M. was funded by the Swiss National Science Foundation, Early PostDoc Mobility Fellowship P2ZHP3_199658.
Author contributions

F.M. and N.C. designed the experiment. Experimental work and statistical analyses were performed by F.M., and both authors interpreted the results. F.M. wrote the manuscript, with input from N.C..

Data availability statement

All data and model code is available on Github (DOI: 10.5281/zenodo.6788686).

Materials and methods

Model species and general culturing conditions

Chlamydomonas reinhardtii is a unicellular green alga, living in freshwater and soil environments. Because of its ease in culturing, short generation time, and strict control over its reproductive cycle, this species is commonly used in evolution experiments [35,50–55]. We performed all experimental work with *C. reinhardtii* cultures under the same general conditions. We kept all cultures in a 23 °C incubator. During experimental evolution, we grew cultures either in 24 well plates, containing 2 mL of medium per well, or on agar plates containing 10 mL of Bold’s medium supplemented with 15 g L⁻¹ of bacteriological agar [56]. During fitness assays, we grew cultures in 96 well plates, containing 200 µL of medium per well. We kept 96 well plates and 24 well plates at all times on a shaker, rotating at 180 rpm.

Ancestral population

We generated a genetically diverse and outcrossed ancestor population from 24 clonal strains of *C. reinhardtii* by subjecting them to three rounds of sexual reproduction (see the Supplementary Material Table S1 for a full list of all clones). To do so, we first grew all 24 clones to equilibrium density in a 24 well plate. We followed an established protocol to induce mating of the *C. reinhardtii* cells [9,35]. To do so, we first mixed all 24 clones in a 50 mL Falcon tube, and
centrifuged the Falcon tube for 10 minutes at 5000 rpm, in order to pellet the cells. We then
decanted the supernatant, and resuspended cells in nitrogen free medium (distilled water), to
induce mating. Subsequently, we incubated the cells in a 24 well plate (2 mL of culture per
well) until the next day. We checked whether cells were mating through the formation of a
mating mat. We then transferred the mating mat in each of the wells using an inoculation loop
to an agar plate containing Bold’s medium supplemented with 15 g L\(^{-1}\) of agar powder, and
wrapped the plates in aluminium foil. Next, we incubated the wrapped agar plates in the dark
for four days. After this incubation period, we placed the agar plates in a \(-20^\circ\text{C}\) freezer, in
order to kill non-mating cells. We subsequently removed the aluminium foil, and incubated
the cells in the light for an additional two days. Following this incubation in the light, we
added 5 mL of Bold’s medium to each of the agar plates, and left them for one hour to recover
offspring cells from the mating. Next, we transferred 2 mL of medium from each agar plate
to one well of a new 24 well plate, and incubated this plate for one week, in order for the
populations to grow to equilibrium density. We then repeated this whole process (mixing all
populations, incubation in nitrogen free medium, incubation in the dark, freezing and recovery
of cells) two additional times to make sure populations were thoroughly outcrossed.

Experimental evolution

In this evolution experiment, we aimed at assessing how the abiotic environment (non-stressful
versus stressful environment) and the frequency of sexual reproduction affected adaptation of
the ancestral population. Because we were mainly interested in the evolutionary costs and ben-
efits of sexual reproduction, we aimed to minimize the ecological costs associated with sexual
reproduction. The sexual reproductive cycle of \(C.\) reinhardtii takes much longer than asexual
reproduction. Therefore we subjected populations that were not scheduled for sexual reproduc-
tion to an asexual control treatment (discussed below), aimed at ensuring that the number of
generations was approximately similar for populations experiencing asexual or sexual repro-
duction.
Experimental design and handling

We subjected a total of 48 replicate populations (from here on referred to as evolution lines) to experimental evolution. Half of those evolution lines experienced a non-stressful environment (Bold’s medium), whereas the remaining half experienced evolution in a stressful environment (Bold’s medium supplemented with 4 g L\(^{-1}\) NaCl). From this point on, we will refer to those evolution lines that experienced the stressful environment as “salt lines”, and to the evolution lines that experienced the non-stressful environment as “no salt lines”. In each of the abiotic environments, we subjected the remaining 24 populations to four different frequencies of sexual reproduction: none (pure asexual reproduction), once (single sexual reproduction event), monthly (sexual reproduction after every 4 weeks of asexual growth) or biweekly (sexual reproduction after every 2 weeks of asexual growth). We thus had six replicate evolution lines per treatment combination. We subjected each of those evolution lines to a total of 24 weeks of experimental evolution. These 24 weeks consisted of eight cycles of three weeks, during which the same steps were repeated in every cycle. Each cycle consisted of a first week during which the evolution lines experienced either sexual reproduction or an asexual control treatment. The remaining two weeks consisted each of an asexual growth phase (asexual cell division). After these 24 weeks of experimental evolution, we subjected the evolution lines to a common garden treatment, after which we assessed the change in fitness of the evolution lines. Each of these handling steps is discussed in more detail below. A full overview of handling during experimental evolution can also be found in the Supplementary Material section S3.

Sexual reproduction cycle and asexual control

In order to induce sexual reproduction, we transferred 2 mL of culture from the appropriate evolution lines (i.e. the evolution lines scheduled for sexual reproduction) to a 2 mL Eppendorf tube. We centrifuged those eppendorf tubes for 10 minutes at 5000 rpm in order to pellet the cells. We then decanted the supernatant, and resuspended cells in 2 mL of nitrogen free medium (distilled water). Subsequently, we transferred the evolution lines to a new 24 well plate, which we incubated for one day. For evolution lines which were not scheduled for sexual reproduction (asexual control), we transferred 2 mL of culture directly to the new 24 well plate.
Mating was visually confirmed through the formation of mating mats in the medium. After the 24 hours of incubation, we transferred the mating cells (mating mats) to an agar plate using an inoculation loop. For the asexual control, we instead pipetted 100 µL of culture directly on the agar plate. We subsequently wrapped the plates in aluminium foil, and incubated them for four days in the dark. After this incubation period, we placed the agar plates for sexually reproducing populations in a −20 °C freezer for four hours in order to kill the asexual cells. We kept the agar plates with the evolution lines scheduled for asexual control in the incubator during this time. Afterwards, we removed the aluminium foil, and incubated the agar plates for an additional two days in the light. We then added 5 mL of medium to each of the agar plates (respectively Bold’s medium or Bold’s medium + 4 g L⁻¹ NaCl) and left the plates to rest for one hour, in order to recover the cells. We then transferred 2 mL of culture to a new 24 well plate.

Asexual growth cycle

To initiate an asexual growth cycle, we prepared fresh 24 well plates by adding medium to all the wells (2 mL of Bold’s medium for the non-stressful environment or 2 mL of Bold’s medium + 4 g L⁻¹ NaCl for the stressful environment). We then transferred 20 µL of culture from the evolution lines to these new 24 well plates, and incubated these plates for one week.

Common garden treatment

After experimental evolution, we subjected the evolution lines to a common garden environment, to reduce maternal and epigenetic effects. To do so, we transferred 20 µL of culture from the evolution lines to new 24 well plates containing Bold’s medium supplemented with 100 mg L⁻¹ Ampicillin, to ensure all evolution lines were free from potential bacterial contamination. We subsequently incubated these common garden populations for one asexual growth phase (seven days). Thus, the evolution lines should have experienced a common garden environment for approximately 8 generations, prior to starting the population growth assays (see the section below).
Population growth assays

To assess how the abiotic environment and the frequency of sexual reproduction experienced during evolution affected fitness change, we measured population growth of the evolution lines and the ancestor population in both abiotic environments (Bold’s medium or Bold’s medium + 4 g L\(^{-1}\) NaCl). For each of the evolved lines, we measured population growth of three replicate populations in each environment (total of 48 evolution lines \(\times\) 2 environments \(\times\) 3 replicates = 288 assays). For the ancestor population, we measured population growth of 36 replicate populations in each of both environment (2 environments \(\times\) 36 replicates = 72 assays). We prepared population growth assays in 96 well plates, by adding 200 \(\mu\)L of medium to the wells, and inoculating the wells with 2 \(\mu\)L of culture from respectively the evolution lines or the ancestor population. To avoid drying out of the assays due to evaporation, we only used the central 60 wells of the 96 well plates for assays, and filled the wells of the outside rows and columns with medium only. Subsequently, we incubated the assays, and allowed them to grow for seven days, during which we measured population size twice per day (total of 14 absorbance measurements). Following established protocols [9,32,35], we measured optical density in the wells (OD\(_{750}\)) as a proxy for population size. To account for background absorbance from the plates and medium, we subtracted for each plate the median absorbance of the empty wells (i.e. wells containing medium but no *Chlamydomonas* cells) from all absorbance measurements.

Statistical analysis

We performed all statistical analyses using the R-statistical language version 4.1.2 [57].

Calculation of fitness change

In order to investigate fitness change of the evolution lines, we assessed two aspects of population growth: the intrinsic rate of increase \((r_0)\) and the maximum density that populations reached (equilibrium population density \(K\)). In order to estimate \(r_0\), we first estimated the growth rate between each two subsequent absorbance measurements \(n_1\) and \(n_2\) as:

\[
r_i = \frac{\ln(\text{absorbance}_2) - \ln(\text{absorbance}_1)}{(t_2 - t_1)}
\]

where \(t_1\) and \(t_2\) are the times since the start of the assays for the absorbance measurements.
We then estimated r_0 as the maximum value of all r_i values for each of the assays. Secondly, we calculated K as the maximum absorbance observed in each of the assays, over all 14 absorbance measurements.

In order to calculate change in fitness, relative to the ancestor population, we subsequently divided our r_0 estimates and K estimates by the median value for the ancestor population. This allowed us to assess how the traits in the evolved lines had changed, relative to the ancestor, with a value of 1 indicating that evolution lines performed equally well as the ancestor populations, whereas positive (negative) values indicate an increase (decrease) in fitness.

Assessment of adaptation to the selective environment

To investigate how adaptation to the selective environment experienced during experimental evolution was affected by evolutionary history and the frequency of sexual reproduction, we assessed the change of fitness (intrinsic rate of increase and equilibrium population density) of evolved populations, in the assay environment that matched the environment they experienced during experimental evolution. That is, fitness change of no salt lines in Bold’s medium and fitness change of salt lines in Bold’s medium + 4 gL$^{-1}$ NaCl. To do so, we first fit a linear mixed model [nlme package, version 3.1-155; 58], using evolutionary history (salt lines/no salt lines) and frequency of sexual reproduction (none/once/monthly/biweekly) as fixed effects, and population ID as a random effect. We subsequently ranked all possible models using the dredge function in the MuMIn package [version 1.43.17; 59], based on the AICc criterion [60]. We selected the best fitting model, and report summary and type-III anova output. We do so separately for the intrinsic rate of increase (r_0) and the maximum population density (K).

Assessment of trade-offs in adaptation to the different environments

To assess whether evolution lines experienced trade-offs in adaptation to the different environments, we next assessed the change of fitness (intrinsic rate of increase and equilibrium population density) of evolution lines, in both assay environments (salt environment and no salt environment). To do so, we fit a linear mixed model [nlme package, version 3.1-155; 58], using the abiotic environment (no salt environment/salt environment), evolutionary history
and frequency of sexual reproduction (none/once/monthly/biweekly) as fixed effects, and population ID as a random effect. We then ranked all possible models based on the AICc criterion [60] using the dredge function in the MuMIn package [version 1.43.17; 59]. Following model ranking, we selected the best fitting model (lowest AICc score), and report summary and type-III anova output of this best fitting model. We separately discuss the best fitting model for the intrinsic rate of increase (r_0) and the maximum population density (K).
References

