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ABSTRACT 23 

Irrigation water is a potential source of contamination that carries plant and foodborne human 24 

pathogens and provides a niche for survival and proliferation of microbes in agricultural settings. 25 

This project investigated bacterial communities and their functions in the irrigation water from 26 

wetland taro farms on Oahu, Hawai’i using different DNA sequencing platforms. Irrigation water 27 

samples (stream, spring, and tank stored water) were collected from North, East, and West sides 28 

of Oahu and subjected to high quality DNA isolation, library preparation and sequencing of the 29 

V3-V4 region, full length 16S rRNA, and shotgun metagenome sequencing using Illumina 30 

iSeq100, Oxford Nanopore MinION and Illumina NovaSeq, respectively. Illumina reads 31 

provided the most comprehensive taxonomic classification at the phylum level where 32 
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Proteobacteria was identified as the most abundant phyla in river stream source and associated 33 

wet taro field water samples. Cyanobacteria was also a dominant phylum from tank and spring 34 

water, whereas Bacteroidetes were most abundant in wetland taro fields irrigated with spring 35 

water. However, over 50% of the valid short amplicon reads remained unclassified and 36 

inconclusive at the species level. Whereas samples sequenced for full length 16S rRNA and 37 

shotgun metagenome, clearly illustrated that Oxford Nanopore MinION is a better choice to 38 

classify the microbes to the genus and species levels. In terms of functional analyses, only 12% 39 

of the genes were shared by two consortia. Total 95 antibiotic resistant genes (ARGs) were 40 

detected with variable relative abundance. Description of microbial communities and their 41 

functions are essential for the development of better water management strategies to produce 42 

safer fresh produce and to protect plant, animal, human and environmental health. This project 43 

identified analytical tools to study microbiome of irrigation water. 44 

Keywords: Amplicon, bacterial microbiota, functional microbiome, Illumina, irrigation water 45 

microbiome, Nanopore MinION, shotgun metagenome, wetland taro. 46 

 47 

INTRODUCTION 48 

Irrigation water quality is a growing concern for agriculture as drainage is contaminated with 49 

agricultural runoff, wastewater overflows, and polluted storm or rainwater runoff, and irrigation 50 

waters are a potential source of plant and food-borne pathogens resulting in economic crop losses 51 

and human health risks (1, 2, 3). The microbial populations sharing the same niche may be 52 

commensal, symbiotic, or pathogenic. Many pathogenic bacteria can survive and proliferate in 53 

contaminated water and agricultural settings for long duration under favorable biotic and abiotic 54 
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conditions (4, 5, 6). Studies have revealed that contaminated water splash can be a potential 55 

carrier of plant and food-borne pathogens (7, 8) that can enter plants through stomata, 56 

hydathodes and wounds (9). Also, antibiotics introduced through contaminated water are a 57 

continuing challenge as they may result in high selection pressure for antibiotic-resistant bacteria 58 

(10, 11, 12) and can persist even after water treatment. 59 

Because of water scarcity and a simultaneous need to increase food production, there has been a 60 

shift from freshwater to alternative sources of irrigation water such as reclaimed or recycled 61 

water. However, potential health and environmental impact concerns are associated with the use 62 

of alternative water sources for irrigating the crops (13). Therefore, uncovering the bacterial 63 

composition and its associated functions in irrigation water will provide insight into formulating 64 

new disease management strategies and preventing major economic and public health risks. 65 

High-throughput sequencing has facilitated the identification of complex bacterial communities 66 

(14) independently of bacterial culture (15, 16). The bacterial microbiota is identified by 67 

analyzing the prokaryotic 16S ribosomal RNA (rRNA; ~1,500 bp long) with nine variable 68 

regions interspaced between conserved regions. The 16S rRNA region selected for sequencing 69 

depends on the experimental objectives, design, and sample type. Sequencing of variable regions 70 

of the 16S rRNA gene using the most popular sequencing platforms, such as Illumina 71 

technology, uncovers the majority of bacterial microbiota (17). Illumina technology only permits 72 

sequencing of short variable regions of the 16S rRNA gene (18), and therefore, taxonomic 73 

assignment of reads at the species level may be elusive. Different species within a genus possess 74 

different phenotypic and virulence characteristics, therefore, accurate speciation of bacterial 75 

species is of utmost importance for formulating effective disease management strategies against 76 

pathogenic bacterial communities.  77 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.07.01.498518doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.498518
http://creativecommons.org/licenses/by-nd/4.0/


With the advancement in next generation sequencing technologies (NGS), 3rd generation NGS 78 

technology, Oxford Nanopore enables generation of long sequence read lengths, possibly 79 

sequencing full length 16S rRNA genes (19). Full length sequences covering maximum 80 

nucleotide heterogeneity and discriminatory power allow better identification at the genus and 81 

species level. Comparative studies for Oxford Nanopore and Illumina 16S rRNA gene 82 

sequencing demonstrated similar bacterial composition at the genus level, although significant 83 

differences were observed at the species level (20). However, this technology complicates 84 

accurate species classification, particularly for bacterial species with a high sequence similarity 85 

in the 16S rRNA gene, owing to higher sequencing error rates (21).  86 

Although Polymorphic marker gene (e.g., 16S rRNA, ITS) based analyses are useful for broad 87 

community taxonomical analysis, it did not provide functionality nor resolve the complexity of a 88 

microbiome. The shotgun metagenomic sequencing using advanced Illumina sequencing 89 

platforms have been proven to be a more reliable approach for these purposes (22). Metagenomic 90 

sequencing is a powerful tool for investigating occurrence, abundance, and distribution of ARGs 91 

in the natural environment and is suitable for discovery of novel ARGs that remain unidentified 92 

in culture-and amplicon-based analyses (23, 24). 93 

This study aimed to investigate bacterial microbiota and associated gene function of different 94 

irrigation systems, mainly associated with wetland taro across the island of Oahu, Hawai’i. 95 

Mountain streams are the major source of irrigation waters used by farmers to irrigate crops. The 96 

overall goal of this project is to reveal the bacterial microbiota from different water source used 97 

for irrigation, in addition to field water, which is released back into the stream after use, carrying 98 

excess fertilizer, agricultural waste, ARGs and diverse unidentified bacteria. Bacterial 99 

communities were investigated based on 16S rRNA amplicon analysis using two principally 100 
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different sequencing technologies and platforms—Illumina iSeq100 and Oxford Nanopore 101 

MinION and their taxonomic compositions were compared. The functionality of all the genes in 102 

complex samples and the distribution of ARGs were also investigated using shotgun 103 

metagenomic analyses. We aim to compare different technologies and approaches considered for 104 

microbiome studies such as shotgun metagenome, short-and long-amplicon read based to provide 105 

the desired level of accuracy in resolving the microbial taxonomic composition of the samples. 106 

 107 

MATERIALS AND METHODS 108 

Sample collection. Irrigation source and associated taro field water samples were collected in 109 

September - November 2020, across the Island of Oahu, Hawai’i. Irrigation water samples—R-110 

S1-E, R-S2-W, R-S4-SE, and R-S5-SE—collected from natural streams which were sources of 111 

irrigation water for taro fields. Two water samples R-S7-N (stream emerging from the main 112 

reservoir on Oahu) and T-S6-N (tank storage water) were sources of irrigation for horticultural 113 

crops and other agricultural practices. Taro field water samples, R-F1-E, R-F2-W, R-F4-SE, and 114 

R-F5-SE, associated with R-S1-E, R-S2-W, R-S4-SE, and R-S5-SE, respectively, were collected 115 

to analyze bacterial microbiota. Two water samples, S-S3-N and S-F3-N were collected from a 116 

spring water source and an associated taro field, respectively. From each sampling site, 3 117 

replicate water samples (2L per sample) were collected in sterile glass bottles, submerged  10 to 118 

15 cm below the water surface. Samples were transported in an ice-cooler and processed in the 119 

laboratory for DNA isolation.  120 

Sample processing. Water samples collected from each site were vacuum filtered using the 121 

Millipore All-Glass Filter Holder kit (EMD Millipore Corporation, Billerica, MA). Collected 122 

water from each replicate was filtered through Whatman filter membrane to remove coarse to 123 
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medium debris, followed by filtration through a MF-Millipore 8 µm sterile mixed cellulose ester 124 

(MCE) membrane (Merck Millipore Ltd., Tullagreen Carrigtwohill, Co. Cork, Ireland), and 125 

finally, filtered via MF-Millipore 0.22 µm sterile MCE membrane to trap the maximum bacterial 126 

community. The 0.22 µm membrane was used for bacterial DNA isolation using NucleoMag 127 

DNA/RNA Water Kit (MACHEREY-NAGEL Inc., Bethlehem, PA) following manufacturer’s 128 

instructions, with a few minor modifications to improve the DNA quantity and quality. The 129 

mechanical lysis was performed in lysis buffer MWA1 for 20 minutes using a vortex at full 130 

speed, followed by the addition of 25 µl of RNase (12mg/ml stock solution); the tubes were 131 

incubated for 15 minutes at room temperature (RT). A lysate of 450 µl was transferred to a 1.5 132 

ml sterile Eppendorf tube and 25 µl of NucleoMag B-beads were added, mixed and shaken for 5 133 

minutes, and kept on a magnetic rack at RT. The supernatant was removed, and the pellet was 134 

washed twice with buffer MWA3, followed by a single final wash with buffer MWA4. The 135 

magnetic beads were air dried for 15 minutes at RT; 70 µl RNase free water was used to elute 136 

DNA from the magnetic beads. Qubit dsDNA HS kit and Qubit 4 (Thermo Fisher Scientific, 137 

Waltham, MA) were used to quantify the genomic DNA. The DNA replicates from each sample 138 

were pooled for downstream processes and stored at -80°C.  139 

Illumina 16S rRNA library preparation, sequencing, and analysis.  The polymerase chain 140 

reaction (PCR) was performed to amplify the V3-V4 hypervariable region of 16S rRNA gene 141 

following the reaction conditions: 94°C for 5 min; 40 cycles at 94°C for 20 s, 58°C for 30 s, and 142 

72°C for 1 min; and the final extension at 72°C for 3 min. Primers 341F (5’-143 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’) and 805R 144 

(5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’) 145 

were used for PCR amplification (25). The amplified PCR amplicons were enzymatically 146 
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cleaned using ExoSAP-IT (Affymetrix, Santa Clara, CA) and quantified using Qubit dsDNA HS 147 

Kit and Qubit 4. A secondary bead-linked transposome (BLT) PCR was performed using i5 and 148 

i7 adapters, provided in Nextera DNA Flex Library Prep Kit (Illumina, Inc., San Diego, CA), for 149 

barcode attachment (Supplemental Table 1). Each sample’s library was prepared in duplicate. 150 

The BLT PCR conditions were initial denaturation at 98°C for 3 min, followed by X cycles of 151 

98°C for 45 sec, 62°C for 30 sec, and 68°C for 2 min, with a final extension at 68°C for 1 min. 152 

The number of cycles of BLT PCR’s (X) was decided based on the amplicon concentration from 153 

the previous PCR as recommended by the manufacturer. Samples with concentrations ranging 154 

from 1-9 ng/µl and 9-21 ng/µl were subjected to 8 and 12 cycles BLT PCR, respectively. The 155 

amplicon libraries were cleaned using double-sided bead purification protocol following the 156 

manufacturer’s instructions. The purified libraries were quantified, normalized to 1 nM 157 

concentration and pooled. The pooled library was spiked with 2% using Phix control and loaded 158 

to Illumina iSeq100 for sequencing with a total of 302 run cycles to generate paired-end 150-bp 159 

reads. The total data yield was 717 MB with Q30 value of 88.1% and 89.6% for Read 1 and 160 

Read 2, respectively.  161 

The sequenced data was base called and analyzed using BaseSpace sequence hub and 162 

EzBioCloud, respectively (26). The paired-end reads were used as a quality control to filter out 163 

low-quality (average quality value < 25) and merged using PandaSeq (27); primers were 164 

trimmed at a similarity cut-off of 0.8. The pipeline uses EzBioCloud database for taxonomic 165 

assignment and sequence similarity was calculated via pair-wise alignment. The chimeric reads 166 

with less than a 97% best hit similarity rate were removed using EzBioCloud non-chimeric 16S 167 

rRNA database through UCHIME (28). The sequenced data was clustered using CD-Hit7 and 168 

UCLUST with 97% similarity (29). Bacterial diversity was also analyzed and compared among 169 
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the samples. For alpha diversity—OTUs, richness, and diversity were calculated, while for beta 170 

diversity—principal coordinate analysis (PCoA) and UPGMA clustering analyses were 171 

performed. 172 

Valid reads were normalized for each sample to eliminate the bias produced because of variation 173 

in total number of reads. The Wilcoxon rank-sum test was used to calculate differences between 174 

the replicates. The differences in relative abundance in phyla and genera among the samples 175 

were determined using one-way ANOVA (single factor) with the least significant difference 176 

(LSD) test at α=0.05.  177 

Oxford Nanopore 16S rRNA library preparation, sequencing, and analysis. The genomic 178 

DNA of sample R-F1-E and S-F3-N was diluted to 1 ng/µl, and a total 10 µl gDNA was used for 179 

full-length 16S rRNA library preparation using 16S Barcoding Kit 1-24 (SQK-16S024; Oxford 180 

Nanopore Technologies, Oxford Science Park, UK) according to the manufacturer’s protocol. 181 

Ten µl of input DNA (10 ng) was mixed well with 25 µl LongAmp hot Start Taq 2X Master Mix 182 

and 5 µl of nuclease free water, afterward, 10 µl of each 16S barcode was added. The PCR was 183 

performed using following conditions: Initial denaturation at 95 °C for 1 min, 25 cycles of 95 °C 184 

for 20 sec, 55 °C for 30 sec and 65 °C for 2 min, with a final extension at 65 °C for 5 min. Each 185 

amplified sample was purified and washed with AMPure XP beads and 70% ethanol, 186 

respectively. For each sample, barcoded libraries were prepared in duplicate and quantified using 187 

Qubit Qubit 4; libraries were pooled to a desired ratio of 50-100 fmol in 10 µl of 10 mM Tris-188 

HCl (pH 8.0) with 50 mM NaCl, and 1 µl of Rapid adapter (RAP) was added. The pooled library 189 

was loaded on to MinION vR9.4 flow cell and sequenced following manufacturer’s instruction. 190 

The generated sequencing data were monitored in real-time using the MinKNOW software 191 

(version 4.0.20). The obtained FAST5 files were base called using MinKNOW (version 4.0.20) 192 
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embedded with Guppy version 3.2.10 pipeline. The generated full-length 16S rRNA sequence 193 

data were analyzed using cloud based EPI2ME (Oxford Nanopore) workflow for the 194 

identification of microbial community composition; EP2ME uses the NCBI GenBank database 195 

for taxonomic identification. The minimum and maximum read length of 1,500 and 1,600, 196 

respectively, were assigned as a quality control parameter, and Blastn was run using parameters 197 

max_target seqs=3 (finds the top three hits that are statistically significant) with blast e-value 198 

assigned as default 0.01. Per read coverage was calculated as the number of identical 199 

matches/query length. All classified reads were filtered for >77% accuracy and >30% coverage, 200 

which removed invalid alignments and were normalized for analysis. Results were obtained as 201 

comma-separated values (CSV) file via web report generated by EPI2ME workflow. 202 

Metagenomic library preparation, sequencing, and analysis. DNA from two samples (R-F1-203 

E and S-F3-N) were used for preparing DNA metagenome libraries using NEBNext Ultra DNA 204 

Library Prep Kit (NEB, Ipswich, MA) following manufacturer’s instructions. The sonication-205 

based method was used for fragmenting gDNA to the size of 350 bp. The obtained DNA 206 

fragments were end-polished, A-tailed, and ligated with full-length indexing adapters to the ends 207 

of the DNA fragments, followed by PCR amplification. The PCR products were purified using 208 

AMPure XP, and libraries were analyzed for size distribution and quantified using Agilent 2100 209 

Bioanalyzer (Agilent, Santa Clara, CA) and real-time qPCR, respectively. The quantified 210 

libraries were pooled and sequenced on an Illumina NovaSeq 6000 platform to generate paired 211 

end reads. The obtained raw reads were pre-processed to trim low-quality bases with quality 212 

value (Q-value ≤ 38), reads with N nucleotides over 10 bp, and reads that overlapped with 213 

adapters over 15 bp. The obtained clean reads after quality control were assembled into scaftigs 214 

using MEGAHIT (30). The quality of the assembled data was predicted by N50 length. Scaftigs 215 
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(≥500bp) were used for ORF (Open reading Frame) prediction using MetaGeneMark (31) and 216 

the ORF’s less than 100 nt were removed. Non-redundant gene catalogue, generated using CD-217 

HIT (32), was further used to map clean reads using SoapAligner (33). Each metagenomic 218 

homolog was taxonomically annotated against NR database (34) for classification of microbial 219 

community at different taxonomic levels. For functional analysis, Kyoto Encyclopedia of Genes 220 

and Genomes (KEGG), evolutionary genealogy of genes: Non-Supervised Orthologous Groups 221 

(eggNOG), and Carbohydrate-Active enzymes (CAZy) databases were used for mapping 222 

functionally annotated unigenes. For Antibiotic Resistance Genes (AGRs) analysis, all the 223 

unique genes were BLASTp against the CARD (Comprehensive Antibiotic Research Database) 224 

database (e-value ≤ 1e–5). To identify the biologically relevant differences between two samples, 225 

statistical analyses were performed using STAMP v 2.1.3 (35), employing Fisher’s exact test 226 

with Newcombe-Wilson CI method (0.95 confidence interval) and Benjamini-Hochberg FDR 227 

correction factors and visualized using extended error bar plots.  228 

  229 

RESULTS 230 

Short length amplicon-based analysis—Illumina. The paired end 16S rRNA encoding gene 231 

sequences were obtained using Illumina iSeq100. After the data was pre-filtered and passed the 232 

quality check to remove low-quality, non-chimeric and non-target amplicons, the total number of 233 

valid reads with an average read length was computed (Supplemental Table 2) for each sample. 234 

Each sample was successfully sequenced in duplicate, except sample S-S3-N that encountered 235 

sequencing biasness in the 2nd replicate run and failed to produce enough valid reads. After 236 

quality control, an average of 43,599 and 41,163 valid reads from the first and second replicate 237 
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run, respectively, were obtained. In both the replicates, the highest and lowest number of valid 238 

reads were observed in sample R-S2-W (61,272 and 67,325) and R-F4-SE (22,274 and 26,908), 239 

respectively. 240 

Based on phylum comparison performed using valid reads obtained from two sequencing 241 

replicates, no differences were observed, therefore the first replicate (barcode1-12) was 242 

considered for further taxonomic and diversity analysis (Supplementary Fig. 1). The valid reads 243 

generated from each sample were normalized to the least number of obtained valid reads 244 

(22,274; R-F4-SE) to overcome biasness in analysis outcomes. The reads were further clustered 245 

into operational taxonomic units (OTUs) at 97% identity ranging from 1,410 to 4,897. The OTU 246 

number remained higher in river stream sources, R-S1-E (3,416), R-S2-W (4,059), R-S4-SE 247 

(2,817), and R-S5-SE (4,897), compared with associated field water, R-F1-E (1,570), R-F2-W 248 

(2,753), R-F4-SE (1,978), and R-F5-SE (2,946). However, in spring source and field water 249 

samples, the OTU count remained comparable (Table 1). Furthermore, sample T-S6-N had the 250 

lowest count of 1,077 identified OTUs, followed by sample R-S7-N with 1,410 OTU numbers.  251 

Table 1. List of total number of OTUs and calculated diversity analysis.  252 

Sample  OTUs ACE CHAO Jackknife Shannon Simpson Phylogenetic 
Diversity 

Good's 
Coverage of 
Library (%) 

R-F1-E 1,570 2,712.05 2,458.62 3,062.1 3.97 0.12 1,635 96.57 
R-S1-E 3,416 5,924.43 5,273.62 6,074.57 5.35 0.08 4,165 92.35 
R-S2-W 4,059 6,950.62 6,139.12 7,115.85 6.21 0.03 4,241 91.02 
R-F2-W 2,753 3,513.98 3,231.47 3,649 5.17 0.08 3,230 95.98 
S-S3-N 2,153 3,149.55 2,905.06 3,240.36 4.34 0.14 2,378 96.14 
S-F3-N 2,157 3,526.22 3,221.37 3,746.8 4.35 0.1 1,435 95.49 
R-S4-SE 2,817 4,123.62 3,730.12 3,994.1 5.28 0.04 3,516 94.86 
R-F4-SE 1,978 2,408.57 2,214.96 2,521 4.42 0.11 2,473 97.56 
R-S5-SE 4,897 7,684.84 6,782.04 7,219.57 6.86 0.01 4,739 89.97 
R-F5-SE 2,946 4,257.84 3,804.92 4,166.01 4.91 0.09 3,116 94.56 
T-S6-N 1,077 1,656.5 1,522.44 1,763.94 2.88 0.34 1,106 97.93 
R-S7-N 1,410 1,818.37 1,697.27 1,859.62 4.97 0.02 1,359 97.99 
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 253 

Taxonomic classification at phylum, genus, and species levels. Based on Good’s coverage 254 

index, the sequencing covered more than 94% of the taxonomic richness except for sample R-255 

S1-E (92.35%), R-S2-W (91.02%) and R-S5-SE (89.97%; Table 1). A total of 18 phyla with 256 

relative abundance of >1% were compared after being identified in at least one sample (Figure 257 

1A). Proteobacteria, a phylum with major plant and food-borne pathogens, was significantly the 258 

most abundant phylum in 12 different samples (Supplemental Table 3). The relative abundance 259 

of Proteobacteria was higher in river stream source samples, R-S1-E (76.99%), R-S2-W 260 

(71.28%), R-S4-SE (83.71%), and R-S5-SE (52.04%), and associated field samples, R-F1-E 261 

(66.57%), R-F2-W (78.64%), R-F4-SE (89.08%), and R-F5-SE (75.70%). Considering samples 262 

collected from North Oahu, Cyanobacteria was the topmost abundant phylum identified from the 263 

spring water sample S-S3-N (35.86%) and stored tank water sample T-S6-N (58.39%). 264 

Bacteroidetes was the most dominant phylum in spring water irrigated field with relative 265 

abundance of 48.82% and interestingly this phylum was also higher in the stream water irrigated 266 

field sample, R-F1-E (31.63%), whereas it remained <6.9% of relative abundance in other river 267 

stream source and associated field water samples. Phylum Actinobacteria was relatively higher 268 

in the reservoir stream source, R-S7-N (26.82%) compared with other samples. Other identified 269 

phyla varied in their relative abundance among all the samples, as shown in Figure 1A. The 270 

normalized valid reads from all the 12 samples were classified and compared at the genus level 271 

(Figure 1B). The taxonomic classifier used to classify valid reads identified uncultured genera 272 

and best hit genera classified with high and low confidence values, while the rest remained 273 

unclassified at a taxonomic level (genus-species). The genera within the family 274 

Comamonadaceae were classified as significantly most abundant among all the other identified 275 
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genera and named as Comamonadaceae_uc by the taxonomic classifier (Supplemental Table 4). 276 

The taxonomic classifier could not differentiate the genera within the family Comamonadaceae 277 

owing to low confidence value in assigning the best hit to the reference database—indicating that 278 

short amplicon reads might not be efficient in classifying valid reads with high accuracy. The 279 

abundance of Comamonadaceae_uc was relatively higher in natural stream sources and 280 

associated field samples. Prochlorococcus was the most abundant genus identified in samples T-281 

S6-N (58.3%) and S-S3-N (35.65%) collected from North Oahu. Spring field water sample S-F3-282 

N was dominated by the genus Flavobacterium with relative abundance of 37.14%, while 283 

16.99% Flavobacterium abundance was calculated in sample R-F1-E—the abundance remained 284 

<1% in all the other river stream and associated field water samples. The classified reads at the 285 

genus level, with a relative abundance of <1%, ranged between 22.32 - 61.87% among all 286 

samples, indicating diverse microbiota associated with different samples. The percentage of valid 287 

reads that remained unclassified varied between 4.83% (T-S6-N) and 21.55% (R-S4-SE) among 288 

all the samples (Supplemental Table 5).  289 

At the species level, valid reads that remained unclassified among all the 12 samples ranged from 290 

11.2% (T-S6-N) to 62.23% (R-F4-SE) (Supplemental Table 5). A total of 34 species classified at 291 

species level using EzBioCloud with relative abundance of more than 1%, only three species, 292 

Flavobacterium fontis, F. hydatis and F. shanxiense, remained classified with a high confidence 293 

value—indicating that the short length reads-based approach for classifying at species level is an 294 

inadequate approach for attaining species level resolution (Supplementary Fig. 2).  295 

Alpha and Beta diversity analyses. Non-parametric analysis of diversity indices, such as ACE, 296 

CHAO, and Jackknife, indicated higher bacterial diversity in river stream compared to associated 297 

field water samples, followed by sample S-F3-N, S-S3-N, R-S7-N, and T-S6-N (Table 1). The 298 
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higher Shannon diversity indices of river stream source field water indicated an increased 299 

abundance and bacterial community than associated field water; however, a negligible difference 300 

between spring source S-S3-N (4.34) and field water S-F3-N (4.35) was observed (Table 1). The 301 

Shannon diversity calculated for sample T-S6-N and R-S7-N was 2.88 and 4.97, respectively. 302 

Taken together, natural stream source water contaminated with fertilizer runoff, wastewater 303 

runoff and other agricultural waste showed higher diversity in the bacterial community. 304 

To compare the relationship between bacterial communities in all the samples at the genus level, 305 

PCoA (Principal Coordinate Analysis) and UPGMA (unweighted pair group method with 306 

arithmetic mean) clustering based on the Bray-Curtis dissimilarity index were performed. The 307 

beta diversity indices, based on PCoA, revealed clear distinctions between different water 308 

samples forming three distinctive clusters (Figure 1C). Cluster one was formed exclusively by 309 

natural stream sources and associated with wet taro field water samples irrespective of the 310 

sampling site except for sample R-F1-E. The second distinctive cluster was formed by water 311 

samples collected from North Oahu, S-S3-N, T-S6-N, and R-S7-N, except S-F3-N. Interestingly, 312 

the 3rd cluster was formed by field water samples R-F1-E and S-F3-N indicating a close 313 

association between their bacterial communities, despite having been surveyed from different 314 

geographical locations and irrigated by different water sources (spring and river sources). 315 

Furthermore, UPGMA clustering revealed a similar clustering pattern in the dissimilarity of 316 

relative abundance of the bacterial communities (Supplementary Fig. 3). To unravel the close 317 

microbial association between R-F1-E and S-F3-N, these two samples were further sequenced to 318 

obtain full length 16S RNA and metagenomes using Oxford Nanopore MinION and Illumina 319 

NovaSeq, respectively, for amplicon and functional analyses.  320 
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Full length 16S RNA amplicon analysis—Oxford Nanopore MinION. Samples R-F1-E and 321 

S-F3-N were sequenced in duplicate to attain confidence and reliability in the obtained data 322 

(Supplemental Table 6). Replicate 1 of sample S-F3-N failed to sequence and no reads were 323 

generated; nevertheless, the other replicate generated 87,818 reads with ~1,500 bp length. In 324 

contrast, sample R-F1-E sequenced in two repeats validly sequenced 1,27,647 and 5,57,290 325 

reads ranging from 1,500 to 1,600 bp length, and the comparative analyses between replicates at 326 

the genus and species levels were comparable, comprising almost similar bacterial composition 327 

(Supplementary Figure 4). Therefore, for further comparative analysis, reads from one 328 

sequencing replicate of sample R-F1-E were used. 329 

Taxonomic classification at phylum, genus, and species levels. At the phylum level, sample 330 

R-F1-E showed Bacteroidetes and Proteobacteria with relative abundance of >1%, while sample 331 

S-F1-E was dominated with 3 phyla- Bacteroidetes, Proteobacteria and Verrucomicrobia (Figure 332 

2). Classification at the genus level uncovered a total of 11 and 6 genera from samples R-F1-E 333 

and S-F3-N, respectively, with relative abundance >1% (Figure 2). The most abundant genus 334 

classified in both the samples was Limnohabitans belonging to the family Comamonadaceae. 335 

Within the family Comamonadaceae, the genera Arcobacter, Curvibacter, Limnohabitans, and 336 

Rhodoferax were identified in both samples, with an additional two genera—Hydrogenophaga 337 

and Pelomonas—exclusively in sample R-F1-E with >1% relative abundance. Furthermore, 338 

genus Aquirufa was recognized in sample S-F3-N with relative abundance of 25.71%, while 339 

8.86% remained in sample R-F1-E. The bacterial genera classified with relative abundance of 340 

<1% in total comprised 33.21% and 22.41% of bacterial community in sample R-F1-E and S-F3-341 

N, respectively.  342 
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At the species level, 16 and 11 species were classified from samples R-F1-E and S-F3-N, 343 

respectively, with >1% relative abundance (Figure 2F). Samples R-F1-E and S-F3-N were 344 

dominated with species Limnohabitans parvus II-B4 and Aquirufa anthreingensis, respectively. 345 

Four species belonging to genus Limnohabitans—L. australis, L. curvus, L. parvus II-B4, and L. 346 

planktonicus—were identified in both the samples with variable abundance. Furthermore, 347 

73.38% and 72.06% of the bacterial diversity was composed of the bacterial population 348 

identified with relative abundance >1% in samples R-F1-E and S-F3-N, respectively. Full length 349 

amplicon reads that remained unclassified in samples R-F1-E and S-F3-N were 1.1 and 0.82% of 350 

the total analyzed reads, respectively.  351 

Taxonomic classification comparison with short and long reads 16S rRNA-based data sets. 352 

Short and full length 16S rRNA amplicon reads were obtained using Illumina iSeq100 and 353 

Oxford Nanopore MinION sequencers. The taxonomic classification results at phylum, genus 354 

and species levels were compared with different input reads (10K, 20K, 30K, 40K, and 50K), 355 

randomly extracted from total obtained valid reads–for samples R-F1-E and S-F3-N (Figure 3).  356 

At phylum level classification, Illumina sequenced samples R-F1-E and S-F3-N identified a 357 

greater number of phyla than MinION at different input reads (Figure 3A). In sample R-F1-E, an 358 

increase in the number of identified phyla was observed from 10K to 20K reads sequenced using 359 

Illumina (25 and 28, respectively) and MinION (13 and 15, respectively). With an increase in 360 

Illumina and MinION reads from 30K to 50K, a uniform number of phyla were identified, except 361 

for Illumina sequenced input read of 50K (Figure 3A). A similar trend in the number of 362 

identified phyla was observed in sample S-F3-N, with an exception that uniformity in the 363 

number of identified phyla (31) was observed in Illumina sequenced reads from 30K to 50K 364 

(Figure 3B). However, MinION sequenced input reads of 30K to 40K identified 16 phyla with a 365 
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slight increase to 18 at 50K reads. Proteobacteria and Bacteroidetes were two major phyla 366 

identified in sample R-F1-E with >1% relative abundance, sequenced using both the techniques 367 

(Figure 3A). However, in sample S-F3-N, total 5- Actinobacteria, Bacteroidetes, 368 

Parcubacteria_OD1, Proteobacteria and, Verrucomicrobia and 3- Bacteroidetes, Proteobacteria 369 

and Verrucomicrobia were identified with relative abundance >1% from Illumina and MinION 370 

sequenced reads, respectively, at different input reads (Figure 3B). The number of genera and the 371 

genera classified with relative abundance >1% and remaining unclassified reads formed a 372 

uniform trend using both short- and long-amplicons at different input reads. The number of 373 

genera identified using Illumina input reads from 10K to 50K ranged from 339 to 675 for sample 374 

R-F1-E, whereas ranged from 338 to 561 for sample S-F3-N (Figure 3C and 3D). In contrast, 375 

MinION sequenced reads identified comparatively fewer genera ranging from 311 to 627 and 376 

265 to 581 for sample R-F1-E and S-F3-N, respectively (Figure 3C and 3D). However, most 377 

genera classified using short amplicon reads were identified with low confidence values against 378 

the database, whereas long amplicon reads had comparatively better resolution for classified 379 

genera (Figure 3C and 3D). For both samples, the unclassified reads were fewer than 8% and 2% 380 

of the total input reads using short and long amplicon reads, respectively.  381 

The number of species classified using long amplicon reads was higher than when using short 382 

amplicon reads (Figure 3). The number of identified species ranged from 619 to 1,421 and 551 to 383 

1,306 for MinION sequenced samples R-F1-E and S-F3-N, respectively (Figure 3E and 3F). 384 

Whereas Illumina sequenced samples R-F1-E and S-F3-N identified species ranging from 464 to 385 

1089 and from 408 to 722, respectively (Figure 3E and 3F). At the species level classification, 386 

~50% and ~33% of the total input reads remained unclassified using short amplicon reads for 387 

sample R-F1-E and S-F3-N, respectively, whereas long amplicon reads were classified with high 388 
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accuracy comprising >98% classified reads (Figure 3E and 3F). In sample R-F1-E and S-F3-N, 389 

the species identified with relative abundance >1%, utilizing long amplicon reads at different 390 

inputs comprehends >70% of the identified bacterial microbiota.  391 

In term of relative abundance, almost similar abundance patterns were obtained with each 392 

technique when 10 – 50K reads were used as an input data—indicated that minimum input of 393 

10K reads from either Illumina iSeq100 or Oxford Nanopore MinION, can provide similar 394 

resolution with 5 times more input reads. However, with respect to the number of classified 395 

phyla, Illumina provided better outcomes compared to Oxford Nanopore, and there was no 396 

dramatic increase in number of phyla when the input reads were increased from 10K to 50K by 397 

either sequencing technology (Figure 3A and 3B). The analyses indicated that Oxford Nanopore 398 

MinION is a better choice for higher resolution at genus and species levels (Figure 3C-3F). To 399 

identify number of genera or species, it is important to include higher number of reads (~>20K).    400 

Shotgun metagenome analysis. A total of 5,61,183 and 4,91,726 non-redundant genes were 401 

identified from sample R-F1-E and S-F3-N, respectively, while sharing 1,24,661 (12%) unigenes 402 

between both. Despite having close microbial association indicated by PCoA analysis, the 403 

samples R-F1-E and S-F3-N were distinctively differentiated based on unique genes composition 404 

of 78% and 75%, respectively.  405 

Taxonomic classification of metagenomics (shotgun) data. According to the obtained 406 

abundance table of each taxonomic level, the bar plots were plotted for the top 10 classified 407 

phyla, genera, and species (Figure 2G-2I). At the phylum level, the most abundant phyla, in both 408 

the samples, were Proteobacteria, followed by Bacteroidetes with relative abundance >1%. 409 

Additionally, Actinobacteria was also classified in sample S-F3-N with >1% relative abundance, 410 

differentiating this from sample R-F1-E in which seven genera—Curvibacter, Limnohabitans, 411 
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Flavobacterium, Pelomonas, Rhodobacter, Pseudarcicella, and Novosphingobium—were 412 

classified with more than 1% relative abundance, whereas only 5 genera—Limnohabitans, 413 

Flavobacterium, Rhodoluna, Pesudarcicella, and Novosphingobium—were classified in sample 414 

S-F3-N. Species level classification revealed 10 species with relative abundance of >1% from 415 

both the samples. A high percentage of “others” in the metagenomic analysis could result from 416 

an incomplete database.  417 

“Others” representing the relative abundance of the reads that remain unclassified and classified 418 

with relative abundance of <1% was higher at phylum, genus, and species level classification for 419 

both the samples sequenced using Illumina NovaSeq (shotgun reads) than Illumina iSeq100 and 420 

Oxford Nanopore MinION (Figure 2). Sample R-F1-E represented 40.12%, 69.88%, and 86.12% 421 

of reads as “others” at phylum, genus, and species level classification, respectively. Sample S-422 

F3-N at phylum, genus, and species level represented 46.25%, 69.04%, and 89.53%, 423 

respectively, as “others”.  424 

Functional profiling of active bacterial community. For better insight into the physiology of a 425 

bacterial community, the assembled metagenomic protein coding sequences were mapped 426 

against three functional databases—eggNOG, KEGG, and CAZy (Supplemental Figure 4). Both 427 

samples (R-F1-E and S-F3-N) revealed similarity in annotated gene function profiles and were 428 

clustered together.  429 

Annotation based on eggNOG database revealed (Supplementary Fig. 5A-B) that highest number 430 

genes in sample R-F1-E were associated with inorganic ion, amino acid, carbohydrate, 431 

nucleotide, and lipid transport and metabolism, cell motility, and transcription with the relative 432 

abundance >1% for each function. Whereas in sample S-F3-N, the maximum number of genes 433 

were associated with 7 functions and having >1% relative abundance—replication, 434 
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recombination, and repair, translation, ribosomal structure, and biogenesis, nucleotide transport 435 

and metabolism, cell wall/membrane/envelope biogenesis, post-translational modification, 436 

protein turnover, chaperons, coenzyme transport and metabolism, and energy production and 437 

conversion.  438 

Most of the genes represented in the KEGG pathway analysis were associated with metabolic 439 

pathways (Supplemental Fig. 4C-D), and particularly dominant in the category of amino acid 440 

transport and metabolism having 28,924 and 19,900 associated genes in samples R-F1-E and S-441 

F3-N, respectively. Statistically differential features of functional categories based on KEGG 442 

analysis between the two samples were analyzed using STAMP, indicating metabolism, genetic 443 

information processing, human diseases, and organismal system dominant in sample S-F3-N, 444 

whereas environmental information and cellular processing were enriched in sample R-F1-E 445 

(Supplemental Fig. 4D).  446 

As per CAZy database-based analysis, glycoside hydrolases (GH) associated genes were most 447 

abundant with the relative abundance of 49.33 and 51.87% in sample R-F1-E and S-F3-N, 448 

respectively, followed by glycosyl transferase (GT), carbohydrate-binding modules (CBM), 449 

carbohydrate esterases (CE), auxiliary activities (AA), polysaccharide lyases (PL) 450 

(Supplementary Fig. 5E). STAMP analysis revealed GH was significantly different with a q-451 

value of 4.37e-3 and was enriched in sample S-F3-N (Supplementary Fig. 5F). Whereas glycosyl 452 

transferase (GT), carbohydrate-binding modules (CBM), carbohydrate esterases (CE), auxiliary 453 

activities (AA), polysaccharide lyases (PL) were higher in sample R-F1-E, with no significant 454 

differences observed among these functions.  455 

Occurrence, abundance, and diversity of ARGs. To explore and compare the ARGs profile in 456 

sample R-F1-E and S-F3-N, all unique genes obtained from the samples were BLASTp against 457 
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the CARD database. This analysis revealed the presence of 83 and 62 ARGs in sample R-F1-E 458 

and S-F3-N, respectively (Figure 4A), while sharing 50 ARGs between each other with variable 459 

relative abundance (Figure 4B). MexK, a resistance nodulation cell division (RND) antibiotic 460 

efflux pump gene, was the most abundant ARG present in both the samples (Figure 4C).  461 

Furthermore, the top 10 most abundant ARGs out of 95 ARGs, annotated collectively from both 462 

samples, were represented in Circos for observing overall proportion and distribution of the 463 

resistance genes in both samples (Figure 4C). The top 10 ARGs were: mexK (multidrug 464 

resistance gene), ugd (peptide resistance gene), rpoB2 (rifamycin resistance gene), kdpE 465 

(aminoglycoside resistance gene), golS (multidrug resistance gene), dfrA3 (diaminopyrimidine 466 

resistance gene), mtrD (macrolide resistance gene), Streptomyces rishiriensis parY mutant 467 

conferring resistance to aminocoumarin (Sris_parY_AMU) (aminocoumarin resistance gene), 468 

Bifidobacterium ileS conferring resistance to mupirocin (Bbif_ileS_MUP) (mupirocin resistance 469 

gene), and mtrA (macrolide resistance gene). The relative abundance of gene ugd, kdpE, golS, 470 

and dfrA3 was higher in sample R-F1-E, whereas mexK, rpoB2, Bbif_ileS_MUP, and mtrA were 471 

relatively higher in sample S-F3-N. Interestingly, ARG mtrD and Sris_parY_AMU were only 472 

conferred to sample R-F1-E and S-F3-N, respectively.  473 

An additional analysis was performed to reveal the dominant bacterial phyla possessing the most 474 

ARG genes with different associated resistance mechanisms. The most abundant resistant 475 

mechanism associated with the annotated ARGs corresponded to RND antibiotic efflux pump, 476 

followed by major facilitator superfamily (MFS) antibiotic efflux pump, antibiotic target 477 

alteration (pmr phosphoethanolamine transferase), protein and two component regulatory system 478 

modulating antibiotic efflux (kdpE), antibiotic target replacement (DfrA42_TMP), and ABC 479 
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antibiotic efflux pump. These potential antibiotic mechanisms were associated with the ARG that 480 

were affiliated with phyla Proteobacteria (Supplementary Fig. 6).  481 

DISCUSSION  482 

Our study highlighted significant differences and similarities in the bacterial communities of 483 

different irrigation water systems from different geographical locations (North, West, and East) 484 

on Oahu, Hawaii. Comparative assessment of bacterial communities between samples showed 485 

distinctive discriminations based on type of water system and geographical location. It is striking 486 

to note that natural stream and associated field water samples were dominated by Proteobacteria, 487 

regardless of their geographical locations—there was a close bacterial association between the 488 

samples based on beta diversity analysis. These outcomes agreed with the previous studies 489 

conducted in Brazil (36) and Tokyo (37), which revealed a dominance of Proteobacteria in river 490 

water. Samples collected from North Oahu showed close microbial association regardless of 491 

different water systems, indicating an influence of geographical locations (topography, water 492 

bodies, climatic conditions, natural vegetation etc.) in composing the microbial consortia (38). 493 

Field water samples R-F1-E and S-F3-N were clustered based on the microbiota despite being 494 

irrigated by different irrigation systems (spring and stream) and different geographical regions 495 

(North and East), which prompted us to uncover the complex and diverse microbiota at a higher 496 

taxonomic level (Figure 1). The short amplicon reads generated from V3-V4 gene region of 16S 497 

rRNA using Illumina iSeq100 was able to detect phyla with high accuracy in addition to 498 

classification of most dominant genera as well. However, some genera within the family were 499 

not classified with high confidence value and more than 50% of the valid reads were 500 

unclassified, indicating a limitation of short amplicon reads for high resolution and accuracy of 501 

classification. A study (39) designed to uncover and compare the microbial consortia of indoor 502 
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dust sequenced using Illumina and Nanopore MinION revealed significant differences in 503 

microbial composition at genus and species levels, with better resolution provided by MinION 504 

sequenced reads. Therefore, to investigate the microbiota of sample R-F1-E and S-F3-N at a 505 

higher taxonomic level with better resolution, full length 16S rRNA gene region was sequenced 506 

using Oxford Nanopore MinION and analyzed. Full length amplicon analysis revealed high 507 

abundance of the genus Limnohabitans that includes planktonic bacteria and classified other 508 

dominant genera within family Comamonadaceae that remained unclassified using short 509 

amplicon reads. All the four species within the genus Limnohabitans (40, 41) were successfully 510 

classified with >1% relative abundance. Additionally, genus Aquirufa, a freshwater bacterium, 511 

was identified in spring and stream field water with relative abundance >1% and Aquirufa 512 

antheringensis was the dominant species in spring field water. Another study (42) also found the 513 

higher abundance of A. antheringensis in fresh water. The resolution obtained for genus and 514 

species level classification was better using long amplicon reads with <2% valid reads that 515 

remained unclassified (Figure 2).  516 

Furthermore, we compared the performance of long reads (~1,500bp) obtained from Oxford 517 

Nanopore MinION with short reads (~300bp) obtained from Illumina iSeq100 to assess bacterial 518 

taxonomic classification at phylum, genus, and species levels with different numbers of input 519 

reads. Results from this experimental study showed uniform trends in classification at phylum, 520 

genus, and species levels for samples, R-F1-E and S-F3-N, at 10K, 20K, 30K, 40K, and 50K 521 

input reads (Figure 3). However, when long- and short-read outcomes were compared, 522 

dissimilarities in relative abundance at all three taxonomic levels were observed (Figure 3).  523 

Short-read-based taxonomic analysis provided the most comprehensive classification at the 524 

phylum level compared to 16S rRNA full length reads and shotgun metagenome data (Figures 2-525 
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3). However, 16S rRNA full length reads clearly illustrated its advantage for classification at 526 

genus and species levels (Figures 2-3). In a study (43) proposed Oxford Nanopore MinION as a 527 

low cost and rapid technology for revealing microbial communities with higher resolution at the 528 

species level which ultimately aids in identifying bacteria potentially pathogenic to human 529 

health. In our study, with a high number of unclassified reads at phylum [39.52% (R-F1-E); 530 

45.82% (S-F3-N)], genus [68.04% (R-F1-E); 68.35% (S-F3-N)] and, species [85.37% (R-F1-E); 531 

89.17% (S-F3-N)] levels, we have not observed any advantages of using shotgun metagenome 532 

data for taxonomic classification (Figure 2)—this could be due to the limited and incomplete 533 

annotated metagenomic and bacterial genome databases currently available (44). With the 534 

advancement and improvement in the Nanopore MinION technology, this efficient, cost-535 

effective, and robust technology can be employed for on-field microbiome study of 536 

environmental samples with minimum data requirements (45).  537 

The environmental samples consist of complex and diverse microbiota which are better resolved 538 

in terms of predication of microbial community’s functions. This can be achieved using shotgun 539 

metagenomic sequencing with advanced next generation sequencing technologies that generates 540 

enormous amounts of genomic data (46). However, due to different sequencing protocols and 541 

annotated databases, metagenome analysis and 16S rRNA gene sequencing cannot provide an 542 

identical taxonomic classification, as observed in our study and in (47). Metagenomic functional 543 

analysis revealed the presence of 78% and 75% of unique genes in sample R-F1-E and S-F3-N, 544 

respectively, while only 12% of the genes were shared between both the samples, but 545 

interestingly, were annotated for comparable gene functional profiles (Supplementary Fig. 4). 546 

The relatively high abundance of genes was related to metabolism of amino acids, nucleotides, 547 

carbohydrates, coenzymes, lipids, and inorganic ion metabolism and transport. ‘Amino acid 548 
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metabolism’ was enriched in both the samples, which may be due to fertilizer residues that 549 

provide a suitable living environment for microbiota that use amino acids. Additionally, 550 

environmental samples consist of diverse and abundant complex mixtures of carbohydrates 551 

requiring different enzymes for metabolism, mainly supported by glycoside hydrolases (GH) 552 

(48). In our study, GH were the most abundant and significantly different among all the other 553 

identified enzymes in both samples (Figure 4E and 4F). This enzyme assists in the enzymatic 554 

processing of carbohydrate, ultimately contributing to functioning of an ecosystem, global 555 

carbon cycling. The metagenomic data also revealed the prevalence of a variety of ARGs in both 556 

the samples. The ubiquity of ARGs in the environmental sample is an emerging concern. A study 557 

(49) documented the prevalence of ARGs in irrigation ditch water and urban/agriculturally 558 

impacted river sediments leading to the potential spread of ARGs to or from humans. From 95 559 

identified ARGs, only 50 genes were shared between both the samples with variable abundance 560 

depending on the microbial consortia and their genome compositions (Figure 4)—the genomic 561 

composition can be altered through horizontal gene transfer from environment or other bacteria 562 

mediated by mobile genetic elements such as plasmids, transposons, bacteriophages, insertion 563 

sequences and integrons (50, 51). The most abundant ARG in both the samples was MexK, a 564 

resistance nodulation cell division (RND) antibiotic efflux pump gene which can transport 565 

multiple classes of antimicrobials, contributing to multidrug resistance (52). Therefore, 566 

uncovering the bacterial components, functional analysis, and investigation of the ARGs will 567 

resolve the microbial complexity and help to formulate better disease management strategies for 568 

water transmitted pathogens.  569 

CONCLUSIONS 570 
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The bacterial consortia found in different water source of taro irrigation across the island of 571 

Oahu, Hawaii revealed that Proteobacteria is the most dominant phyla, except for a few samples 572 

from storage tank and spring water. The most reliable and comprehensive taxonomic 573 

classifications at phylum and genus/species levels were observed with input reads obtained from 574 

Illumina and Oxford Nanopore, respectively. The lack of robust and comprehensive annotated 575 

metagenome and bacterial genome databases contributed to inconclusive classification using 576 

shotgun metagenome reads, particularly at genus and species levels. However, metagenomic data 577 

contributed to the understanding of gene distribution of microbiomes and their functions, 578 

including ARGs, associated with different microbial consortia. This study provided some 579 

appropriate sequencing platforms and pipelines to study irrigation water microbiome. 580 
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Figure 1. The distribution heatmap of bacterial A) phylum and B) genus detected with relative 736 

abundance >1% among all the water samples sequenced using Illumina iSeq100, an amplicon 737 

sequencing platform and analyzed on EzBioCloud. The heatmap was generated using displayR. 738 

C) Principal Coordinate Analysis (PCoA) clustering based on Bray-Curtis dissimilarity index 739 

was analyzed at genus level bacterial structure to visualize the variation in bacterial community 740 

structures among 12 different samples, forming three distinctive clusters. Cluster 1 (blue circle) 741 

shows close microbial communities of river streams and associated field samples, irrespective of 742 

geographical location. Cluster 2 (red circle) represents close microbial association between 743 

samples collected from North Oahu. Cluster 3 (gray circle) shows close microbial association 744 

between sample R-F1-E and S-F3-N.  745 

Figure 2. Comparison of sample R-F1-E and S-F3-N sequenced using Illumina iSeq100 (short 746 

amplicon reads), Oxford Nanopore MinION (long amplicon reads), and Illumina NovaSeq 747 

(shotgun reads) for the classification of phylum (A, D, and G, respectively), genus (B, E, and H, 748 

respectively), and species (C, F, and I, respectively) with relative abundance >1%. “Others” in 749 

the plots represents reads classified with <1% relative abundance and reads that remains 750 

unclassified.  751 

Figure 3. Comparison of A) total number of classified phyla; B) the phyla classified with >1% 752 

relative abundance; C) total number of classified genera; D) genus classified with >1% relative 753 

abundance; E) total number of classified species; and F) species classified with >1% relative 754 

abundance from sample R-F1-E and S-F1-E sequenced using Illumina iSeq100 and Oxford 755 

Nanopore MinION at different input reads ranging from 10K to 50K. “ETC (<1%) represents the 756 

classified reads at different taxonomic levels with <1% relative abundance, whereas 757 
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“unclassified” represents the relative abundance of the reads that remains unclassified at 758 

taxonomic level.  759 

Figure 4. Distribution heatmap to represent A) comparison of relative abundance of a total 95 760 

Antibiotic resistance gene (ARG) profile obtained from sample R-F1-E and S-F3-N; B) 761 

comparison of relative abundance of 50 ARGs shared between sample R-F1-E and S-F3-N. All 762 

the unique genes from the metagenomic assembly were blastp against Comprehensive Antibiotic 763 

Resistance Database (CARD). C) Circos analysis displays the corresponding abundance 764 

relationship between samples and top 10 identified antibiotic resistance genes (ARGs) along with 765 

“others” representing remaining ARGs. Circle chart is divided into two parts. The right side of 766 

the circle is sample information, and the left side of the circle represents top 10 ARGs. Inner 767 

circle with different colors represents different ARGs. The scale represents the relative 768 

abundance, and the unit is ppm. The left part represents the sum of relative abundance of 769 

different samples for ARG, while the outer right circle represents the relative abundance of 770 

different ARGs in the samples.  771 

 772 

SUPPLEMENTARY FIGURES AND TABLES  773 

Supplementary Figure 1. Bar plot comparison of phylum level classification, classified with 774 

relative abundance of >1% in 11 samples- R-F1-E, R-S1-E, R-S2-W, R-F2-W, S-F3-N, R-S4-775 

SE, R-F4-SE, R-S5-SE, R-F5-E, T-S6-N, and R-S7-N (Replicate 1 and Replicate 2) sequenced 776 

for short length amplicon using Illumina iSeq100 and analyzed on EzBioCloud platform. 777 

“Others” represents the reads classified with less than <1% relative abundance and remains 778 

unclassified in the classification against the database.  779 
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Supplementary Figure 2. Distribution heatmap of bacterial species classified with >1% relative 780 

abundance among all the 12 water samples—sequenced for V3-V4 region of 16S rRNA gene 781 

region using Illumina iSeq100 sequencing platform. The generated short amplicon reads were 782 

analyzed using EzBioCloud platform. The heatmap was generated using displayR.  783 

Supplementary Figure 3. UPGMA (unweighted pair group method with arithmetic mean) 784 

clustering of water samples based on Bray-Curtis dissimilarity index at genus level. Samples 785 

were grouped in three distinctive clusters: Cluster 1 (R-F1-E and S-F3-N) irrespective of water 786 

system or geographical location, Cluster 2 (R-S1-E, R-F2-W, R-S2-W, R-F4-SE, R-S4-SE, R-787 

F5-SE, and R-S5-SE) based on irrigation source and associated taro field water, and Cluster 3 (S-788 

S3-N, T-S6-N, and R-S7-N) based on geographical location.  789 

Supplementary Figure 4. Bar plot comparing the (A) genus and (B) species classified with 790 

relative abundance of >1% in sample R-F1-E (Replicate 1 and Replicate 2) sequenced for full 791 

length amplicon using Oxford Nanopore MinION and analyzed on EPI2ME platform. Input valid 792 

reads that were not classified to genus and species levels are represented as “Unclassified”, while 793 

“ETC (<1%)” represents the bacterial population identified with relative abundance of <1%. 794 

Supplementary Figure 5. Comparison of samples R-F1-E and S-F3-N for relative abundance 795 

and statistical differences of annotated gene function profiles based on mapping of assembled 796 

metagenomic protein coding sequences to three databases: (A, B) non-supervised Orthologous 797 

groups (eggNOG), (C, D) Kyoto Encyclopedia of Genes and Genomes (KEGG), and (E, F) 798 

Carbohydrate-Active Enzymes Database (CAZy). Statistical analyses performed using STAMP v 799 

2.1.3 software, employing Fisher’s exact test with Newcombe-Wilson CI method and Benjamini-800 

Hochberg FDR correction factors, and visualized using extended error bar plots. 801 
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Supplementary Figure 6. Circos analysis displays the corresponding abundance relationship 802 

between identified dominant phyla (Proteobacteria and Actinobacteria) along with “other” 803 

representation of identified phyla and associated resistance mechanism. Circle chart is divided 804 

into two parts. The right side of the circle is phyla information, and the left side of the circle is 805 

antibiotic resistance mechanisms. Inner circle with different colors represents different antibiotic 806 

resistance mechanisms. The scale represents the relative abundance, and the unit is ppm. The left 807 

part represents the sum of relative abundance of different phyla for resistance mechanisms, while 808 

the outer right circle vice versa.  809 

 810 

Supplemental Table 1. List of samples sequenced in two replicates using Illumina iSeq100. 811 

Assigned barcodes with different combinations of i5 and i7 adapters. 812 

Supplemental Table 2. List of valid reads with calculated average read length generated by 813 

sequencing of each barcode after quality filtration.  814 

Supplemental Table 3 Statistical analysis of the identified phyla among all the samples was 815 

determined using one-way ANOVA (single factor) with the least significant difference (LSD) 816 

test at α=0.05.  817 

Supplemental Table 4. Statistical analysis of identified genera among all the samples was 818 

determined using one-way ANOVA (single factor) with the least significant difference (LSD) 819 

test at α=0.05.  820 

Supplementary Table 5. Short length 16S rRNA reads classified to genus level, accounting for 821 

relative abundance <1% and remains unclassified are represented as “ETC (<1%)” and  822 

“Unclassified” based on the analysis performed using EzBioCloud. 823 
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Supplemental Table 6. Oxford Nanopore MinION 16S rRNA sequencing and analyses results 824 

of sample R-F1-E and S-F3-N. The EPI2ME Fastq16S pipeline was used for the analyses. 825 

 826 

 827 

 828 

 829 

 830 
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