


Whole network (1&2&3)
coexistence domain

Isolation coexistence domain of a subnetwork

Coexistence domain of the whole network

Embedded coexistence domain of a subnetwork

 For subnetwork of species 2&3,
the embedded coexistence domain is larger than
 the isolation coexistence domain.

For subnetwork of species 1&2,
the embedded coexistence domain is the same as the isolation coexistence domain.

Figure 2: A structural approach to link persistence across scales. We establish the link
between the network and the subnetwork scales via the concept of the coexistence domain: the region
of all parameters in which a given set of species coexists. For illustrative purposes, we consider a
hypothetical 3-species network. If we want to understand persistence of the network as a whole, we
should study the coexistence domain of the network where all species coexist (orange region). If
we want to understand the isolation persistence of a subnetwork, we should study the coexistence
domain of the subnetwork in isolation i.e., removed from the larger network of interactions in which
it is embedded (hashed region). If we then want to understand the persistence of the network as a
whole, but we can only observe a subnetwork (embedded persistence), then the observed coexistence
domain for the subnetwork is the projection of the network’s coexistence domain into the subnetwork’s
(light green region). The projection of the network’s coexistence domain is always larger than (e.g.,
subnetwork with species 2 and 3) or equal to (e.g., subnetwork with species 1 and 2) the subnetwork’s
coexistence domain.
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Figure 3: Generic phase transition of persistence across scales. (A) Schematic illustration
of the structure of our experiment. For a given network, we measure the proportion of subnetworks
(motifs) that are persistent along ‘transects’ that span inside and outside the coexistence domain
of the network. Within the coexistence domain, the network is persistent; outside the coexistence
domain the network is non-persistent. The transects span a tuning parameter that ranges from 0 to 1,
with 0 being at the centre of the coexistence domain and 0.5 being at the boundary of the coexistence
domain. (B) Here, we explore the subnetwork mechanisms driving network persistence as a whole.
The x axis denotes a tuning parameter moving the network from non-coexistent (non-persistent) to
coexistent (persistent). The y axis denotes the proportion of subnetworks (motifs) in the network
that persist (blue) and do not persist (red) in isolation. The whole network is persistent in the left
half and non-persistent in the right half. Each thin line represents one simulation along a ‘transect’,
as shown by the black line in panel A (50 are shown here), and the think lines denote the average.
We see a transition in the proportions of persistent and non-persistent subnetworks as the network
transitions from persistence into non-persistence. This transition shows that a persistent network
is primarily composed of persistent subnetworks, and vice versa. This phase transition is generic in
nearly almost all simulations (see Appendix B). (C)-(D) Monitoring network persistence as a whole
from subnetworks. Panel (C) shows the case for persistent network (left side of Panel B), while Panel
(D) for non-persistent case (right side of Panel B). The x axis shows the number of randomly sampled
subnetworks (from 3 to 5 species). The y axis shows the proportion of samples that reaches decisive
Bayes factor that supports that the network is persistent (in Panel C) or non-persistent (in Panel
D). The transparency of the lines denotes different network sizes (from 20 to 50). We find that it is
generally easier to statistically determine if the network as a whole is not persistent from monitoring
subnetworks.
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Figure 4: Restored mutualistic networks contain more subnetworks with higher likeli-
hood of persistence in isolation than unrestored disturbed networks. We use a temporal
dataset with 64 networks (8 networks sampled over 8 months) located on the granitic island of Mahé,
Seychelles13. The x axis denotes the eight consecutive months between September 2012 and April
2013. The y denotes the z-scores of a given subnetwork (over- or under-representation of empirical
motif frequency compared to motif frequency in randomized networks). The black horizontal line
corresponds to the threshold above or below which a subnetwork (motif) occurs significantly more
than random (z-score = 2). The green lines correspond to the restored networks, while the pur-
ple lines correspond to the disturbed and unrestored networks. (A) Monitoring the network. Each
translucent light line corresponds to a different network. The thick lines correspond to the average
across 4 different networks. The persistent in isolation subnetworks are significantly over-represented
in the larger networks, and the over-representation is stronger in restored networks than in disturbed
networks. These patterns are consistent with the natural history of these plant-pollinator networks.
(B) Monitoring a subset of the network. Suppose that we cannot monitor the whole network but only
a subset of it. Here we show the case for monitoring 6 species (see Appendix F for other numbers of
monitored species). We find that all the qualitative patterns linking subnetworks and the network in
Panel (A) remains. This shows that we can monitor a subnetwork (6 species of the whole network)
and then study the persistence in isolation of its subnetworks (3-5 spices in the monitored 6 species),
which would provide useful information of the network as a whole.
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