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 2 

ABSTRACT  1 

Ancient genomics can directly detect human genetic adaptation to environmental cues. 2 

However, it remains unclear how pathogens have exerted selective pressures on human 3 

genome diversity across different epochs and affected present-day inflammatory disease risk. 4 

Here, we use an ancestry-aware approximate Bayesian computation framework to estimate 5 

the nature, strength, and time of onset of selection acting on 2,879 ancient and modern 6 

European genomes from the last 10,000 years. We found that the bulk of genetic adaptation 7 

occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes 8 

relating to host-pathogen interactions. Furthermore, we detected directional selection acting 9 

on specific leukocytic lineages and experimentally demonstrated that the strongest negatively 10 

selected immunity gene variant — the lipopolysaccharide-binding protein gene (LBP) D283G 11 

— is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has 12 

progressively increased in post-Neolithic Europeans, partly due to antagonistic pleiotropy 13 

following genetic adaptation to pathogens. 14 

 15 

Keywords: ancient DNA, immunity, host defense, natural selection, local adaptation, 16 

inflammatory disorders, approximate Bayesian computation, antagonistic pleiotropy, LBP  17 
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 3 

INTRODUCTION 1 

Infectious diseases have been the leading cause of human mortality throughout human 2 

history.1,2 Population genetics studies have provided support for the notion that pathogens are 3 

among the strongest selective forces faced by humans since the discovery in the 1950s that 4 

heterozygosity for red blood-cell disorders provides some protection against malaria.3 An 5 

increasing number of genes involved in host-pathogen interactions have since been identified 6 

as targets of natural selection.4-8 However, major questions remain regarding the evolutionary 7 

impact of infectious diseases on human genome diversity. First, little is known about the 8 

specific epochs during which humans were most exposed to pathogens and pathogen-9 

mediated selection. It has been suggested that the transition to an agriculture-based lifestyle, 10 

which began ~10,000 years ago, increased exposure to deadly microbes, including density-11 

dependent viruses and zoonoses,9-11 but the archaeological and genetic evidence is scarce, and 12 

even challenges this view.12,13 Second, the extent to which host defenses, including the 13 

engagement of leukocytic lineages, the qualitative and quantitative composition of which is 14 

associated with common and rare disorders,14-17 have been affected by such exposure has not 15 

been explored. Third, the rising life expectancy in recent centuries18 has contributed to an 16 

increase in the prevalence of inflammatory and autoimmune disorders, but it has been 17 

hypothesized that this increase is also the result of long-term pathogen pressures and 18 

antagonistic pleiotropy of the selected gene products.19-21 19 

The antagonistic pleiotropy hypothesis is supported by the overlap between loci 20 

underlying infectious and inflammatory traits22,23 and the discovery of several pleiotropic 21 

variants conferring protection against infectious diseases and susceptibility to some chronic 22 

inflammatory or auto-immune conditions.22-27 Classic examples are the human leukocyte 23 

antigen (HLA) loci, variants of which are thought to be under pathogen-driven positive 24 

selection,28 and to increase considerably the risk of autoimmune disease (e.g. HLA-B27 and 25 

spondyloarthritis and HLA-DQ8 and diabetes).29-33 Another example is the common TYK2 26 

P1104A variant, which protects against auto-immune phenotypes (OR: 0.1-0.3) but, in the 27 

homozygous state, confers a predisposition to mycobacterium-related infectious diseases (OR 28 

>10).25,26,34-39 Nevertheless, the evidence that antagonistically pleiotropic variants have been 29 

selected in humans remains circumstantial. 30 

Detection of a legacy of positive selection (rapid increase in the frequency of a beneficial 31 

allele) or negative selection (the removal of a deleterious variant) in human populations has 32 

long been limited to statistical inference from patterns of genetic variation in contemporary 33 

individuals. However, in recent years, the increasing availability of ancient DNA (aDNA) 34 
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data has greatly facilitated the study of human genetic adaptation over time. Direct 1 

comparisons of past and current allele frequencies have provided new insight into the genes 2 

and functions involved in human adaptation to environmental changes following cultural 3 

transitions.40-42 A pioneering study based on 230 Eurasian samples across the Holocene period 4 

detected 12 positively selected loci associated with diet and skin pigmentation, but also host 5 

defense against pathogens.43 Another study explored how the arrival of Europeans in the 6 

Americas altered the exposure of Native Americans to new pathogens. Comparisons of 7 

genomic data from a Canadian First Nation population dating from before and after the first 8 

contact with Europeans showed a recent decrease in the frequency of formerly beneficial 9 

HLA-DQA1 alleles in the native population.44 These studies highlight how the analysis of 10 

ancient genomes can identify specific genetic variants under selection, but we still lack a 11 

comprehensive picture of the selective forces affecting host defense genes during human 12 

history and of the times at which these forces operated.  13 

Ancient genomics provides us with a unique opportunity to determine whether resistance 14 

to infectious diseases and susceptibility to inflammatory diseases have changed in the recent 15 

past. Furthermore, aDNA data can be used to detect variants subject to complex models of 16 

selection, such as time-dependent selection, including selection on de novo or standing 17 

variation due to sudden environmental changes (e.g., epidemics). For example, a recent study 18 

revealed that negative selection has led to a rapid decrease in the frequency of a 30,000-year-19 

old tuberculosis (TB) risk variant over the last 2,000 years, suggesting that TB has recently 20 

imposed a heavy burden in Europeans.35 In this study, we sought to reconstruct the history of 21 

host-pathogen interactions by detecting immunity variants affected by natural selection, 22 

thereby modulating infectious and/or inflammatory disease risk, over the last 10,000 years. To 23 

this end, we explored the strength and timing of both positive and negative selection at the 24 

genome-wide scale, by analyzing 2,879 ancient and modern European genomes in an 25 

ancestry-aware approximate Bayesian computation (ABC) framework.  26 

 27 

RESULTS 28 

Inferring the intensity and onset of positive selection from ancient DNA data 29 

We assembled a genome-wide dataset corresponding to 2,376 ancient and 503 modern 30 

individuals of western Eurasian ancestry, and computed allele frequency trajectories for 31 

1,233,013 polymorphic sites, over a time transect covering the Neolithic, the Bronze Age, the 32 

Iron Age, the Middle Ages and the present (Methods). Using simulation-based ABC45 and 33 

the calculated trajectories, we estimated the selection coefficient (s) and the time of selection 34 
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onset (T) for each derived allele. We considered a variant to be a candidate for positive 1 

selection if its s value was higher than that of 99% of s estimates for simulated neutral 2 

variants (psel <0.01). We used a demographic model35 accounting for (i) the major migratory 3 

movements contributing to the genetic diversity of contemporary Europeans, i.e., the arrival 4 

of Anatolian farmers ~8,500 years ago (ya)46,47 and that of populations associated with the 5 

Yamnaya culture around ~4,500 ya,48,49 (ii) the uneven sampling across time, with the 6 

matching of simulated data on the observed numbers of ancient and modern DNA data, and 7 

(iii) ancestry variation across epochs, by matching on observed Anatolian and Pontic Steppe 8 

ancestries (Methods).  9 

Our simulations showed that the estimation of s was highly accurate (r2 = 0.93 between 10 

simulated and estimated values; Figure S1A), and the power to detect selection from s was 11 

>80% for variants with a present-day frequency >20%, regardless of the timing of selection 12 

onset (Figure S2). The accuracy of estimation was lower for T (r2 = 0.76; Figure S1B), but 13 

our approach was nevertheless able to distinguish between variants selected before and after 14 

the beginning of the Bronze Age, ~4,500 ya (F1 score = 0.85; Figure S1C). The application 15 

of ABC to the observed allele frequency trajectories replicated the 12 loci previously shown 16 

to be subject to positive selection in Europe43 (based on the same criterion of ≥3 candidate 17 

variants for positive selection per locus). These loci included genes associated with host 18 

defense (HLA and TLR10-TLR1-TLR6), skin pigmentation (SLC45A2 and GRM5) and 19 

metabolism (MCM6/LCT, SLC22A4 and FADS1) (Figure 1; Table S1). As further evidence 20 

of the accuracy of our approach, the s estimate for the lactase persistence allele (rs4988235) 21 

was 8.1% (95% CI: [0.06-0.09]) with selection beginning 6,102 ya (3,150-8,683), as 22 

previously reported.50,51 Our approach expands previous aDNA studies by not only 23 

identifying known and novel candidates for selection, but also providing appropriate 24 

estimates of the selection parameters, s and T, over the entire genome. 25 

 26 

Positive selection has pervasively affected host defense genes in Europeans 27 

We identified the strongest signals of time-dependent positive selection, by focusing on the 28 

top 2.5% of loci with the highest proportions of candidate variants, i.e., regions defined on the 29 

basis of linkage disequilibrium (LD) groups containing >7.5% of the candidate positively 30 

selected, derived variants (psel <0.01, Methods). We identified 102 candidate loci for positive 31 

selection, 89 of which were non-consecutive. These loci were enriched in gene ontology (GO) 32 

categories such as antigen processing and presentation of endogenous antigen (Bonferroni 33 

corrected padj = 0.01), viral life cycle (padj = 0.03), and positive regulation of leukocyte 34 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498543doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498543
http://creativecommons.org/licenses/by-nc/4.0/


 6 

activation (padj = 0.05), as well as transport vesicle, vesicle membrane, luminal side of 1 

endoplasmic reticulum membrane, cell surface and vesicle-mediated transport. These 89 loci 2 

were also enriched in a curated list of immunity genes (IGs; Methods), whether we 3 

considered all candidate genes (OR = 1.6, p = 8.0 × 10-3) or a single gene per locus (28/89 4 

loci; OR = 1.6, p = 0.049). These genes included the OAS cluster (OAS1-OAS2-OAS3-5 

RNASEL), which modulates the response to infection with RNA viruses,52 and genes 6 

underlying inborn errors of immunity (IEI), such as AICDA, for which biallelic loss-of-7 

function mutations cause antibody deficiencies (OMIM:6055258 and OMIM:605257), and 8 

PLCG2, for which monoallelic gain-of-function mutations underlie autoinflammatory 9 

disorders (OMIM:614878 and OMIM:614468). 10 

One of the strongest signals identified was close the ABO gene (smallest psel, Table S2), 11 

which encodes the ABO blood group system. We found that alleles tagging the A and B blood 12 

groups53 were candidates for positive selection (psel <0.01; Table S3), suggesting that the 13 

frequency of individuals with the A, AB and, particularly, B blood groups has increased 14 

through positive selection over the last few millennia. The A and B blood groups have been 15 

shown to confer limited protection (OR >0.94) against childhood ear infections,54,55 and mild 16 

susceptibility (OR <1.13) to malaria and COVID-19,53,56 consistent with the action of 17 

balancing selection.57 Our results show that the bulk of recent genetic adaptation in Europe 18 

has primarily concerned genes involved in the host response to infection, suggesting that 19 

pathogens have imposed strong selective pressures over the last few millennia.  20 

 21 

Genetic adaptation has occurred principally since the Neolithic period 22 

We then explored the time at which positive selection began at the 89 loci, by determining 23 

whether selection occurred before or after the start of the Bronze Age (Figure S1C). For more 24 

than 80% of loci, selection was estimated to have begun after the beginning of the Bronze 25 

Age (<4,500 ya) (Figure 1). Indeed, the distribution of T estimates for the top 89 variants was 26 

not consistent with a uniform distribution across time (p = 1.3 × 10-4), with a much more 27 

recent time of selection onset than expected (Tmean = 3,327 ya; Figure S3A; Table S2). This 28 

result cannot be explained by differences in detection power, as our approach has a higher 29 

power for variants with selection beginning at earlier timepoints (Figure S2). Furthermore, 30 

using 100 distributions of T estimates obtained from 89 simulated variants drawn with 31 

uniform durations of selection and matched for allele frequency and selection intensity, we 32 

checked that the distributions were not skewed towards T estimates postdating the beginning 33 

of the Bronze Age (padj > 0.05 for all 100 distributions; Methods). Finally, the ancient and 34 
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 7 

modern DNA datasets were processed differently, so batch effects could have resulted in a 1 

sudden change in allele frequency in the last epoch and, therefore, a bias of T towards more 2 

recent times. However, when estimating T for aDNA only, we again obtained a significantly 3 

larger fraction of estimates < 4,500 ya (n = 67/89; p < 10-3; Figure S3B). These analyses 4 

support a scenario in which most of the positive selection events have occurred since the 5 

Neolithic Period. 6 

In light of these results, we reasoned that the arrival of populations from the Pontic-7 

Caspian region ~4,500 ya may have brought beneficial variants that continued to be subject to 8 

positive selection in the resulting admixed population, a process known as adaptive 9 

admixture.58 In this case, we would expect to see a positive correlation between Pontic Steppe 10 

ancestry and the probability of carrying positively selected alleles. However, no significant 11 

differences were observed between positively selected alleles and matched controls (padj 12 

>0.05 for all matched samples; Methods), and there was no systematic bias in the ancestry of 13 

simulated and observed aDNA samples (Figure S4A). Our results therefore rule out adaptive 14 

admixture as the main driver of positive selection in post-Neolithic Europe, instead 15 

suggesting that there has been selection on standing variation; in other words, most of the 16 

alleles that became beneficial after the Bronze Age were already present in Neolithic Europe 17 

(Figure S4B). 18 

 19 

Regulatory elements of immunity genes have been a prime substrate of positive selection 20 

We then investigated in-silico the functional effects of candidate positively selected variants 21 

(n = 1,846). We found that these variants were strongly enriched in missense variants (OR = 22 

3.8, p = 8.8 × 10-21) (Figure 2A). Furthermore, IGs harboring missense variants were found to 23 

be significantly enriched in positively selected variants relative to the rest of the candidate 24 

loci (p = 6.0 × 10-3). At the genome-wide scale, we detected 11 missense variants of IGs with 25 

signals of positive selection (MYH9, CHAT, NLRC5, INPP5D, SELE, C3, PSMB8, CFB, 26 

PIK3R1, RIPK2, CD300E). Eight of these variants were associated with immune cell traits 27 

and infectious or autoimmune disorders, such as blood cell counts, viral warts and type I 28 

diabetes, in phenome-wide association studies (p < 10-5; Figure 2B). However, given that 29 

most positively selected variants (>96%) are non-coding, we investigated whether variations 30 

of gene expression could account for the observed selection signals. Taking LD and derived 31 

allele frequency (DAF) (r2 < 0.6) into account, we found that candidate variants were 32 

enriched in cis-eQTLs in whole blood, particularly for strong eQTL associations (e.g., OR = 33 

2.9; p = 3.3 × 10-21 for eQTLs with p <10-50; Figure 2A; Methods). For example, the top 34 
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 8 

candidate variant for the OAS cluster, rs1859332>T, was found to be linked (r2 = 0.97) to the 1 

OAS1 splice QTL rs10774679>C (isoform p46), which is of Neanderthal origin.59 2 

Interestingly, this isoform has been associated with protection against severe COVID-19 (OR 3 

= 0.05),60,61 suggesting that past coronavirus-like viruses may have driven selection at this 4 

locus.  5 

Positively selected variants are also enriched in variants affecting transcription factor (TF) 6 

binding (OR = 1.75; p = 1.6 × 10-6; Figure 2A), based on allele-specific binding (ASB) 7 

events detected in ChIP-Seq data covering 1,025 human TFs and 566 cell types (FDR < 8 

0.01)62. For example, the positively selected rs3771180>T variant (s = 0.015, T = 2,250, psel = 9 

0.005) at the IL1RL1 locus disturbs the 7 bp binding motif of JUND (OR = 3.07; padj = 5.7 x 10 

10-12) and is associated with a lower risk of asthma63 and higher neutrophil levels.14 11 

Moreover, 17 of the 265 TFs with at least five ASBs have ASB-associated variants enriched 12 

in positive selection signals, and the genes closest to these ASBs are enriched in IGs (OR = 13 

1.24; p = 0.04). Collectively, these results provide insight into the regulatory mechanisms 14 

underlying recent human adaptation in the context of immunity to infection. 15 

 16 

Directional selection has affected leukocytic lineages since the Bronze Age 17 

We analyzed epigenomic data from ENCODE,64 to identify the tissues for which the 18 

regulatory elements were the most enriched in positively selected variants. In tests with 19 

matched controls and correction for multiple testing, we found an enrichment in positively 20 

selected variants at DNase-hypersensitive sites in 24 of the 41 tissues and cell types tested, 21 

including monocytes (padj = 6.1 × 10-7), tonsils (padj = 2.1 × 10-6) and blood (padj = 1.0 × 10-5) 22 

(Methods). These results, together with the enrichment in ASB in candidate variants close to 23 

IGs, led us to investigate whether positively selected variants affect hematopoiesis by altering 24 

blood cell fractions.  25 

Taking LD and DAF into account, we found that variants associated with blood cell 26 

composition in GWAS were strongly enriched in positively selected variants (OR = 10, p = 27 

7.2 × 10-65) (Figure 2C). For each of the 36 hematopoietic traits, we analyzed the frequency 28 

trajectories over time of all the trait-increasing alleles (pGWAS < 5.0 × 10-8) with a polygenic 29 

score derived from GWAS data,40 within the studied candidate positively selected LD groups 30 

(Figure S5; Methods). This score integrates tens or hundreds of generally small effect sizes, 31 

which we assessed over hundreds of generations. We found that polygenic scores for platelet 32 

and reticulocyte counts had decreased significantly over the last 10,000 years, whereas scores 33 

for mean platelet volume and mean corpuscular (red blood cell) volume, and the mean mass 34 
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 9 

of hemoglobin per red blood cell, had significantly increased (Figure 2D). Likewise, 1 

polygenic scores for the proportion of eosinophils among granulocytes were found to have 2 

significantly decreased over the study period, whereas the proportions of lymphocytes and 3 

monocytes among white blood cells and neutrophil counts had significantly increased (Figure 4 

2D). Importantly, the polygenic scores of seven traits, including traits relating to platelets, 5 

reticulocytes, lymphocytes and monocytes, were found to have significantly increased or 6 

decreased in post-Neolithic Europe, whereas no trait other than the number of granulocytes 7 

changed significantly during the Neolithic (Figure 2D), consistent with directional selection 8 

acting principally on hematopoietic lineages after the Bronze Age. 9 

 10 

Joint temporal increase in resistance to infection and the risk of inflammation 11 

It has been suggested that past selection relating to host-pathogen interactions has favored 12 

host resistance alleles that, today, increase the prevalence of chronic inflammatory disorders 13 

due to antagonistic pleiotropy.4,19-21,23,24 We investigated the correlation of genetic 14 

susceptibility to inflammatory disorders with resistance to infectious disease, by assembling 15 

the results for (i) 40 GWAS of infectious diseases, including severe infections, such as TB, 16 

hepatitis B and C, AIDS and COVID-19 (COVID-19 HGI, release 7), and surrogate 17 

phenotypes, such as positive TB test (based on tuberculin skin test) or tonsillectomy, and (ii) 18 

30 GWAS of inflammatory/auto-immune disorders, including rheumatoid arthritis (RA), 19 

systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD) (Table S4). For 20 

both independent and randomly matched variants, we found that variants significantly 21 

associated with both infectious and inflammatory traits (i.e., pleiotropic variants; pGWAS < 5.0 22 

× 10-8) were more prevalent than expected by chance (OR = 132, p = 7.4 × 10-28 and p <10-3, 23 

respectively; Methods), suggesting a shared genetic architecture. Furthermore, that the 24 

estimated s values for these pleiotropic variants are stronger than for randomly matched 25 

variants (Wilcoxon p = 0.02) supports their adaptive nature. 26 

We used polygenic risk scores (PRS) to explore changes in the frequency of risk alleles 27 

for infectious or inflammatory disorders (pGWAS <5 × 10-8) over time (Methods). We found 28 

that the PRS for the merged set of all inflammatory/autoimmune disorders had significantly 29 

increased over the last 10,000 years, whereas that for infectious diseases had significantly 30 

decreased (Figure 3A). Taking into account the coverage, location and ancestry of the 31 

samples, the risk of Crohn's disease (CD) or of IBD generally has increased significantly, 32 

whereas that of severe COVID-19 has decreased significantly, essentially since the Neolithic 33 

period (Figure 3A-B). Given the recent nature of the emergence of SARS-CoV-2, the 34 
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infectious agent of COVID-19, this finding suggests that other related pathogens have exerted 1 

selection pressure in recent European history. 2 

We then searched for the specific genetic variants making the largest contribution to the 3 

changes over time in the risks of IBD and severe COVID-19. Taking multiple testing into 4 

account, we found that four risk alleles for IBD and one protective allele for COVID-19 had 5 

significantly increased in frequency over time (Figure 3C and Table S5). The risk alleles 6 

concerned were the IBD- and/or CD-associated rs1456896>T, rs2188962>T, rs11066188>A 7 

and rs492602>G alleles, and the COVID-19-associated rs10774679>C allele. The first three 8 

of these variants increase the expression of IRF1, SH2B3, and IKZF1, respectively, in blood 9 

(rs2188962, s = 0.022, T = 8,075; rs11066188, s = 0.016, T = 4,045; rs1456896>C, s = 0.007, 10 

T = 3,264; Figure 3D). These genes have been shown to protect against several infectious 11 

agents,27,65,66 suggesting that increases in their expression may be beneficial, even if they 12 

slightly increase autoimmunity risk. The fourth IBD-associated risk allele, rs492602>G (s = 13 

0.0015, T = 6,823), is a FUT2 variant in complete LD (r2 = 0.99) with the null allele 14 

rs601338>A, which confers monogenic resistance to infections with intestinal norovirus67 and 15 

respiratory viruses.68 Finally, the COVID-19-associated variant rs10774679>C (s = 0.013, T = 16 

3,617) is linked (r2 = 0.9) to the OAS1 splice variant rs10774671>G, which is also associated 17 

with slightly higher susceptibility to IBD (OR = 1.08; p = 1.4 × 10-3; 18 

FINNGEN_R5_K11_IBD). Overall, these analyses provide support for a role of selection in 19 

increasing autoimmune disease risk over recent millennia, particularly for gastrointestinal 20 

inflammatory traits, probably due to antagonistic pleiotropy. 21 

 22 

Searching for the footprints of time-dependent negative selection 23 

Given the observed links between candidate selected variants and host defense, we then used 24 

our approach to identify candidate variants increasing infectious disease risk. Specifically, we 25 

searched for variants of genes involved in host-pathogen interactions that have been under 26 

time-dependent negative selection, that is, variants that have become deleterious since the 27 

Neolithic. A typical example is TYK2 P1104A, which we have previously shown to underlie 28 

clinical TB34,39 and to have evolved under negative selection over the last 2,000 years, 29 

probably due to an increase in the pressure imposed by Mycobacterium tuberculosis.35 We 30 

removed the 89 positively selected candidate regions, and loci presenting positive selection 31 

signals in contemporary Europeans (Methods), and then searched for candidate deleterious 32 

variants displaying significant decreases in DAF in the rest of the genome (93% of all LD 33 

groups). 34 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498543doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498543
http://creativecommons.org/licenses/by-nc/4.0/


 11 

We first checked that the s and T estimates for alleles under negative selection were as 1 

accurate as those for positively selected alleles (Figure S1D-E). We confirmed that variants 2 

with a low DAF (<5% across epochs) were strongly enriched (OR = 4.8, p = 2.7 × 10-210) in 3 

candidate negatively selected variants, as opposed to positively selected alleles (OR = 0.64, p 4 

= 4.2 × 10-7). We found that negative selection had a broader impact across the genome; 25% 5 

of LD groups harbor candidate negatively selected variants (psel < 10-4), whereas only 3% 6 

harbor positively selected alleles (Figures 1A and 4A). By focusing on negatively selected 7 

missense variants at conserved positions (GERP score >4; n = 50; Table S6), we found that 8 

the vast majority of these variants (41 out of the 50; 82%), like the positively selected 9 

variants, had an estimated onset of selection <4,500 ya (Figure 4). Focusing on immunity 10 

genes, we identified six negatively selected missense variants: LBP D283G (rs2232607), 11 

TNRC6A P788S (rs3803716), C1S R119H (rs12146727), IL23R R381Q (rs11209026), TLR3 12 

L412F (rs3775291) and TYK2 P1104A (rs34536443). These time-series analyses provide 13 

compelling evidence for negative selection against variants of host defense genes in recent 14 

millennia.  15 

 16 

The D283G variant is hypomorphic and impairs LBP expression 17 

We investigated the functional impact of negatively selected variants, by focusing on the LBP 18 

D283G variant, which had the strongest negative selection signal (s = -0.018, T = 3,084). LBP 19 

encodes the lipopolysaccharide (LPS)-binding protein, which senses LPS — a major 20 

component of the outer membrane of Gram-negative bacteria — and initiates immune 21 

responses that prime host defense mechanisms against further infection.69 Previous studies 22 

have shown that a common LBP variant (P333L; 8% in Europe) reducing both LPS binding 23 

capacity and cytokine response is associated with greater mortality due to sepsis and 24 

pneumonia.70 We investigated whether LBP D283G, which has decreased in frequency from 25 

6% to 1.2% over the last 5,000 years, had a similar biochemical impact on LBP function, 26 

potentially decreasing host fitness for fighting bacterial infections.  27 

We transiently transfected HEK 293T cells with plasmids encoding wild-type (WT) or 28 

mutant LBP cDNAs, including the previously reported P333L variant. All constructs were C-29 

terminally tagged with DDK and equal transfection efficiencies were confirmed by RT-qPCR 30 

(Figure 5A). Protein levels were analyzed by western blot on whole-cell lysates and cell 31 

culture supernatants. The WT and mutant proteins were detected at the expected molecular 32 

weight (~60 kDa) with an LBP-specific antibody and an antibody against the C-terminal tag 33 

(Figure 5B). However, D283G levels were lower than WT protein levels, and P333L was not 34 
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detectable. The low levels of D283G protein were confirmed by ELISA (Figure 5C), 1 

suggesting that this variant may be less stable when secreted. Finally, we showed that the 2 

D283G and WT proteins had similar LPS binding capacities (Figure 5D), demonstrating that 3 

this variant does not affect this function. These findings suggest that D283G alters LBP 4 

stability, resulting in lower LBP protein levels, potentially impairing the host response to 5 

bacterial exposure. 6 

 7 

DISCUSSION 8 

Based on a time-series of human aDNA data and extensive computer simulations, we have 9 

delineated the genomic regions under the strongest selective pressure over the last 10,000 10 

years of European history. We found that host defense genes are enriched in positive selection 11 

signals, with selected variants primarily involved in regulatory functions. We also found that 12 

directional selection has operated on at least four leukocytic traits (|r| <0.6; Figure S5) in 13 

recent millennia. Leukocytic lineages have undergone positive selection, with the exception 14 

of eosinophils, which have decreased in proportion among granulocytes, possibly reflecting 15 

an evolutionary trade-off in favor of neutrophils, consistent with the apparently less essential 16 

role of eosinophils in immunity to infection.71 Conversely, non-leukocytic lineages, such as 17 

red blood cells, seem to have undergone changes in efficacy, given the observed decrease in 18 

the number of reticulocytes but the increase in their mean size and in the concentration of 19 

hemoglobin per red blood cell. These results suggest that recent positive selection has targeted 20 

the regulatory machinery underlying immune cell variation, possibly as a result of temporal 21 

changes in pathogen exposure.35,72,73 22 

The estimated times of selection onset highlight the importance of the post-Neolithic 23 

period in the adaptive history of Europeans, as most selection events — both positive and 24 

negative — postdate the beginning of the Bronze Age (<4,500 ya). Furthermore, our results 25 

support a history of selection preferentially targeting variants that were already segregating in 26 

Europe before the arrival of Pontic-Caspian groups.74 The increase in adaptation following the 27 

Neolithic may be due to the population growth that followed the ‘Neolithic decline’,75 with 28 

higher selection efficacy.76 Alternatively, selection pressures may have increased during the 29 

Bronze Age; the expansion of urban communities, greater human mobility, animal 30 

husbandry77 and environmental changes78 may have favored the spread of epidemics, such as 31 

plague, as suggested by archeological and ancient microbial data.13,72,73 32 
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Our analyses also provide several lines of evidence supporting a significant contribution 1 

of antagonistic pleiotropy to the emergence of modern chronic diseases. First, selection over 2 

the last 10,000 years, particularly since the beginning of the Bronze Age, has led to a higher 3 

genetic risk of inflammatory gastrointestinal disorders79. Second, the main risk variants for 4 

IBD/CD are located close to key immunity genes (IRF1, IKZF1, FUT2 and SH2B3), for 5 

which monogenic lesions confer susceptibility or resistance to infectious diseases.27,65,67 6 

Third, we found that pleiotropic variants underlying infectious and inflammatory phenotypes 7 

have been primary targets of positive selection in recent millennia. 8 

Finally, our study highlights the value of adopting an evolutionary genomics approach, 9 

not only to determine the legacy of past epidemics in human genome diversity, but also to 10 

identify candidate negatively selected variants potentially increasing infectious disease risk. 11 

Candidate negatively selected variants included the hypomorphic LBP D283G and TB-risk 12 

TYK2 P1104A variants, together with TLR3 L412F, which is associated with mild protection 13 

against autoimmune thyroid disease (OR = 0.93; p = 7.0 x 10-12)80 but with a modest increase 14 

in the risk of severe COVID-19 pneumonia,81 and IL23R R381Q, which increases IBD risk 15 

(OR = 1.93)82. Autosomal recessive or dominant TLR3 deficiency underlies viral diseases of 16 

the brain and lungs,83,84 whereas autosomal recessive IL23R deficiency underlies clinical 17 

disease caused by weakly virulent fungi and mycobacteria.85 It is tempting to speculate that 18 

TLR3 L412F and IL23R R381Q confer predispositions to viral and mycobacterial/fungal 19 

infectious diseases, respectively.86 Detailed functional characterization of these variants in 20 

appropriate cell types, and the detection of new candidates from high-quality ancient 21 

genomes, will provide insight into the contribution of other variants to infectious disease 22 

susceptibility and severity.  23 

In conclusion, this study shows that directional selection has targeted host defense genes 24 

over the last ten millennia of European history, particularly since the start of the Bronze Age, 25 

probably contributing to present-day disparities in susceptibility to infectious and 26 

inflammatory disorders. 27 

 28 

Limitations of the study 29 

This study assumes population continuity since the Bronze Age, but fine-scale migrations 30 

have probably affected the European gene pool in modern times. Nevertheless, ancient DNA 31 

data suggest that no major population turnover has occurred over the last three millennia,43,87-32 
89 indicating that our results should be largely robust to unmodeled discontinuity. 33 

Furthermore, the spatially heterogeneous nature of the aDNA dataset used here reduces the 34 
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power to detect loci undergoing local adaptation. Likewise, the array used to generate ancient 1 

genomes, originally designed for demographic purposes, does not capture most rare variants, 2 

particularly those that became very rare, or even extinct, due to negative selection, providing 3 

a partial view of the evolutionary past of west Eurasians. Finally, given that environmental 4 

exposures may have differed in nature and intensity across Europe — during and beyond the 5 

studied timeframe — larger and denser sequence-based aDNA datasets are required to 6 

replicate our results and detect more subtle, region-specific selection events.  7 

8 
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 METHODS 1 

Ancient DNA analysis of the 1240k capture dataset 2 

We analyzed 2,632 aDNA genomes (Table S7) (i) originating from burial sites in western 3 

Eurasia (-9< longitude (°) <42.5 and 36< latitude (°) <70.1), (ii) including genotypic 4 

information for1,233,013 polymorphic sites, and (iii) retrieved from the V44.3: January 2021 5 

release at https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-6 

genotypes-present-day-and-ancient-dna-data. All individuals were treated as pseudo-haploid 7 

(i.e., hemizygotes for either the reference or the alternative allele). Using READ,90 we 8 

manually removed 95 samples that were either annotated as duplicated or found to correspond 9 

to first-degree relatives of at least one other individual with higher coverage in the dataset.  10 

 11 

Variant filtering 12 

We removed variants for which the derived allele was present in fewer than five aDNA 13 

samples from the analysis. We also excluded variants absent from gnomAD v2.1.1 (ref91) and 14 

the 1,000 Genomes Project92 or for which the ancestral allele was not annotated in the 1,000 15 

Genomes Project92. Finally, we included only variants with the ‘PASS’ flag in gnomAD 16 

v2.1.1. Other filters based on frequency were applied.  17 

We controlled for potential artifacts due to undetected technical problems in this ‘capture’ 18 

dataset, by comparing the allele frequencies obtained with those from shotgun sequencing 19 

data. We processed 952 available published aDNA shotgun data (FASTQ files) with a 20 

published pipeline88 to obtain pseudohaploid data comparable with those of the capture 21 

dataset. We combined all samples and retrieved 4,620,071 variants after filtering, accounting 22 

for 95% of those present in the capture dataset. Strikingly, nine of the top 10 variants in the 23 

capture dataset, ranked by s value, had a frequency trajectory different from that of the 24 

shotgun dataset, with a single, strong change in frequency in the present generation, 25 

suggesting a misestimation of frequency in either the ancient or modern dataset. For these 26 

variants, we found that, when both genotypes were called in the capture and shotgun datasets, 27 

they were consistent between datasets, but there was a high percentage of missingness in the 28 

capture dataset when shotgun-sequenced individuals were called as homozygotes for the 29 

derived allele (Table S8). This was not the case for genotypes called as homozygous for the 30 

ancestral allele in the shotgun dataset, generating a frequency bias at population level. While 31 

searching for a pattern common to these variants, we found that only 3% of all variants in the 32 

capture dataset were within or close to an indel (within 20 bp) with a frequency >5% in 33 

European populations, 90% and 44% of our top 10 and top 100 variants from the capture 34 
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dataset, ranked by s value, respectively, were located in such a position. We therefore 1 

conservatively removed all SNPs close to (<50 bp) an indel with a frequency >5% in the 2 

European population from the capture dataset, and variants for which the increase (or 3 

decrease) in frequency over the last 1,000 years exceeded 10% (a highly unlikely scenario), 4 

thereby excluding 28,493 variants in total. Our final dataset consisted of 933,781 SNPs from 5 

2,537 ancient genomes. 6 

 7 

Allele frequency trajectories across epochs 8 

For each SNP, we used the ancient genomes and 503 modern European genomes from the 9 

1,000 Genomes Project (CEU ,GBR,FIN,TSI and IBR populations),92 to compute time-series 10 

data corresponding to the trajectory of allele frequencies across various time transects. The 11 

ancient genomes were grouped by well-characterized historical periods.35 We considered the 12 

Neolithic (8,500-5,000 ya; n =729 for the capture dataset), the Bronze Age (5,000-2,500 ya; n 13 

= 893), the Iron Age (2,500-1,250 ya; n = 319) and the Middle Ages (1,250-750 ya; n = 435). 14 

We excluded 190 samples dated to before 8,500 ya because of the small number of 15 

individuals for such a large time period. The genetic information for the variants in ancient 16 

and modern genomes was summarized in a five-dimensional frequency vector. 17 

 18 

Ancestry estimation 19 

We used factor analysis93 to estimate ancestry proportions at the individual level. We used a 20 

merged dataset consisting of 143,081 SNPs for 363 present-day European individuals from 21 

the 1,000 Genomes Project (IBS, TSI, GBR and FIN, available at the V42.4: March 1 2020 22 

release) and all ancient samples (see above). Before ancestry analysis, samples were imputed 23 

with the ‘LEA’ R v3.6 package, as recommended elsewhere.93 We imputed individuals with 24 

high levels of genome coverage (> 795,475 SNPs covered in the 1240k dataset; n = 421) first, 25 

to prevent bias due to the inclusion of low-coverage samples. The remaining individuals were 26 

then imputed one-by-one and added to the imputed set of high-coverage samples. Factors are 27 

interpreted as the principal components of principal component analysis (PCA), but with 28 

temporal correction for present-day and ancient samples. We set the drift parameter so as to 29 

remove the effect of time on the Kth factor (K = 3 here), where K is the number of ancestral 30 

groups considered. As source populations, we used 41 samples annotated as Mesolithic 31 

hunter-gatherers, 25 as Anatolian farmers, and 17 as Yamnaya herders.  32 

  33 

Demographic model 34 
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The model used includes demographic parameters, such as divergence times, effective 1 

population sizes, migration rates and exponential growth rates of continental populations 2 

(ancestral African population, and West and East Eurasians)35. This model also accounts for 3 

the two major migratory movements that shaped the genetic diversity of current Europeans: 4 

the arrival of Anatolian farmers in Europe around 8,500 ya, admixing with the local 5 

Mesolithic hunter-gatherers, and that of populations of Yamnaya culture from the north of the 6 

Caucasus around 4,500 ya. We accounted for the over/under representation of a particular 7 

ancestry at selected epochs, by matching simulated ancestry proportions to the mean ancestry 8 

proportions of the observed samples, as described in ref.35, and by performing the analyses at 9 

the SNP level taking into account their coverage in each individual.  10 

 11 

Forward-in-time simulations 12 

Computer simulations of an allele evolving under the aforementioned demographic model 13 

were performed with SLiM 3 (ref.94), as described elsewhere.35 Briefly, for each simulation, 14 

three main evolutionary parameters were randomly sampled from uniform prior distributions: 15 

the age of the mutation, the time of selection onset T (1,000 < T < 10,000 ya) and selection 16 

strength, as measured by the selection coefficient s (-0.05 < s < 0 for negative selection and 0 17 

< s < 0.1 for positive selection), under an additive model (h = 0.5)94. The age of the mutation 18 

was randomly selected over the last million years of human evolution (1,000 ya < Age < 19 

1,000,000 ya) and was defined as the point at which the mutation was introduced into the 20 

model in a randomly chosen population. Each observed ancient genome was randomly 21 

sampled from simulated diploid individuals at the generation corresponding to its calibrated, 22 

radiocarbon-based age. For each sampled individual and each polymorphic site, we randomly 23 

sampled one allele to generate pseudohaploid data, mirroring the observed pseudohaploid 24 

aDNA data used. Simulated present-day European individuals were randomly drawn from the 25 

last generation of the simulated population. 26 

 27 

ABC estimation 28 

We applied the ABC approach45 to each of the genetic variants studied, as previously used to 29 

estimate the age (Tage), strength (s) and the time of onset (T) of selection for TYK2 P1104A 30 

(ref.35). Parameter estimates were obtained from 400,000 simulations (for positive or negative 31 

selection) with underlying parameters drawn from predefined uniform prior distributions. 32 

Parameters were estimated from computer simulations best fitting the observed time series 33 

data for allele frequencies. Simulated and empirical time series data were described by a 34 
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vector of K allele frequencies over K epochs, used as the summary statistics to fit the 1 

observed data. For each parameter, posterior distributions, point estimates (i.e., posterior 2 

mode) and the 95% CIs were obtained from the parameter values of the 1,000 simulations 3 

with simulated summary statistics the closest to the empirical ones (‘abc’ R package, method 4 

= “Loclinear”).  5 

 6 

Detection of selection 7 

We used the ABC estimates of the selection coefficient and their 95% CI (under a negative or 8 

positive selection model) to detect selection acting on specific genetic variants. The empirical 9 

threshold for rejecting neutrality (i.e., type I error estimation) was determined by simulating 10 

~500,000 neutral alleles (s = 0) evolving under the same demographic model. We then 11 

estimated selection coefficients and their 95% CIs for each simulated neutral variant to obtain 12 

the distribution of s under neutrality (i.e., the null distribution). Simulated neutral SNPs were 13 

resampled such that the simulated and observed allele frequency spectra were identical. 14 

Finally, we determined empirical thresholds at the 1% nominal level, by calculating the 99th 15 

quantile (Q99) of the resulting s distributions. Rather than using the distribution of s to 16 

determine these thresholds, we used the empirical distribution of the lower bound of the 95% 17 

CI of the selection coefficient (sl), as a more conservative approach to providing empirical p 18 

values (psel) for each SNP. This approach, like all methods for detecting selection at the 19 

variant level, is not designed to infer the distribution of fitness effects (DFE)95 due to the loss 20 

of true selection signals at the high conservative thresholds used to detect robust selection 21 

candidates. 22 

 23 

Empirical p value computation 24 

The significance threshold varied with variant frequency, as expected given that low-25 

frequency variants are less identifiable in terms of selection than more frequent variants. We 26 

therefore excluded the variants with the lowest frequencies (the lower bound of the CI of the 27 

allele frequency <2.5%), for which estimation accuracy was poor. We normalized the data by 28 

calculating the null distribution of the lower bound of the confidence interval of the selection 29 

coefficient by frequency bin, to obtain bin-dependent significance thresholds. For the analysis 30 

of negative selection, we used the following bins: [0.025-0.05]; [0.05-0.1]; [0.1-0.2] and [0.2-31 

0.8], whereas, for positive selection, we used the following bins: [0.025-0.2]; [0.2-0.6] and 32 

[0.6-0.8]. We identified the bin to which a variant belonged by calculating, for each variant, 33 

the CI for allele frequency estimation at each epoch, according to an approximation to the 34 
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normal distribution of the 95% binomial proportion CI. We obtained the maximum for the 1 

lower bound of these CI for each SNP. Finally, if this maximum lay between 2.5% and 5%, 2 

the variant was considered to belong to the bin [0.025-0.05]. The same rationale was used for 3 

the rest of the bins. We excluded from the analysis of positive selection, any variant for which 4 

the minimum higher bound of the 95% CI of the DAF was >80%, as such variants poorly 5 

matched the simulated data. We ended up with 21,129 candidate variants for positive 6 

selection, and 27,591 for negative selection (psel <0.01). 7 

Finally, as the lowest level of empirical significance depends on the number of neutral 8 

simulations in each frequency bin, we approximated the empirical null distribution with a 9 

known theoretical distribution, to improve discrimination between very small p values. Given 10 

the shape of the empirical null distribution, we compared the null distribution to a gamma, a 11 

beta and a lognormal distribution, for which parameters were estimated with a maximum 12 

likelihood approach (R packages ‘fitdistrplus’ and ‘EnvStats’ (v. 3.6.0)). We generated a 13 

Cullen and Frey graph (kurtosis vs. skewness) with the R package ‘fitdistrplus’ (v. 3.6.0), to 14 

distinguish between our options, and obtained p values for the beta distribution that best 15 

adjusted the null empirical distribution. 16 

 17 

Time of selection onset for positively selected loci 18 

We evaluated the shape of the distribution of the onset of selection estimated for the top 89 19 

positively selected variants (Figure S3A and Table S2, with mean T estimate of 3,327 ya), by 20 

simulating sets of 89 independent variants matching the allele frequency and the selection 21 

coefficient of the most significant variant for each positively selected LD group, and the 22 

estimated onset of selection. We investigated whether the frequency trajectories based on both 23 

ancient and modern DNA samples resulted in biased T estimations, due to differences in 24 

genotype calling between datasets, by re-estimating T values for the variant with the smallest 25 

psel at each of the 89 candidate positively selected loci using frequencies from aDNA only 26 

(Figure S3B). We thus repeated the ABC estimation for frequency trajectories, but we 27 

excluded the last epoch corresponding to current frequencies.  28 

Finally, we assessed the contribution of adaptive admixture, by averaging the Pontic 29 

Steppe proportion of all the carriers of each of the selected alleles (for different psel 30 

thresholds) or that of 89,000 random alleles (Figure S4B). We also checked that Pontic 31 

Steppe ancestry was similar between the carriers of the variant with smallest psel at each of the 32 

89 candidate loci and the simulated carriers of the 1,000 simulated variants used for each 33 

estimation of the evolutionary parameters of such variants (Figure S4A). 34 
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 1 

LD grouping 2 

We took LD into account, by using a LD map for Europeans constructed from whole-genome 3 

sequence data.96 This metric map displays additive “linkage disequilibrium unit” (LDU) 4 

distances, which can be used to define genetic units in which variants are in strong LD. 5 

Genomic windows were then defined as non-overlapping regions of 15 LDUs, referred to as 6 

LD groups. This grouping generated genomic units with a mean size of 660 kb, consistent 7 

with previous studies.43 8 

 9 

Enrichment analyses for positively selected loci 10 

We calculated enrichment for genes (IGs or GO annotations), variants (eQTLs, ASBs, GWAS 11 

variants) and variant annotations (e.g., “missense”), with 2 x 2 contingency tables with two 12 

predefined categories (e.g. variants with psel <0.01 vs. variants with psel ≥ 0.01; missense 13 

variants vs. others), from which we calculated ORs, 95% CIs and Fisher’s exact test p values 14 

(for cells with counts <20) or Chi-squared p values, with the “oddsratio” function of the R (v 15 

3.6.0) package “epitools”. We used independent variants to determine enrichment, by pruning 16 

variants in LD with the plink command --indep-pairwise 100 10 0.6 --maf 0.01, on our aDNA 17 

dataset, thus removing variants with r2 > 0.6 in 100 kb windows, using sliding windows of 10 18 

variants. For the HLA region, considered to lie between hg19 coordinates 27,298,200 and 19 

34,036,446 of chromosome 6, we used a more conservative LD pruning method considering 20 

1,000 kb rather than 100 kb windows (plink command --indep-pairwise 1000 100 0.6 --maf 21 

0.01), for variants with a minor allele frequency (MAF) >1%. Where indicated, we also 22 

matched the DAF distribution of the pruned dataset to that of the studied group of variants 23 

(e.g., eQTLs or GWAS variants), using 5% frequency bins.  24 

We calculated enrichment in IGs97 or GO annotations,98 by considering, for each LD group 25 

with >9 variants (4,134 LD groups), a binary variable, indicating whether the locus included 26 

an immunity gene or a gene with a given GO annotation, respectively. This was done to 27 

eliminate spurious enrichments due to the presence of gene clusters in a given LD group. For 28 

eQTLs analyses, we used data from a meta-analysis of whole-blood cis-eQTLs.99 We also 29 

used ENCODE data64 and DNase hypersensitive sites100 to estimate enrichment in positively 30 

selected variants for ENCODE tissues. Finally, for the study of hematopoietic traits, we 31 

retrieved GWAS data for counts or proportions of different blood cell types (36 hematopoietic 32 

traits) from UK Biobank and INTERVAL study data.14 33 

 34 
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Calculations of polygenic scores 1 

For the analysis of inflammatory and infectious traits, we calculated genetic values for each 2 

ancient individual as proposed elsewhere.40 Specifically, we weighted the presence/absence 3 

status of the most significant GWAS Bonferroni-significant variant (p < 5.0 × 10-8) by the 4 

GWAS-estimated effect size, for each LD group. Coverage was variable across ancient 5 

samples, and some SNPs were not present in all samples. We accounted for missing 6 

information by calculating a weighted proportion in which the estimated score was divided by 7 

the maximum possible score given the SNPs present in the sample. We then used weighted 8 

(on coverage) linear regression to investigate the association between polygenic score and 9 

ancient sample age. We included ancestry as a covariate in the model, by including the first 10 

four Factor components, and the geographic location of each sample (latitude and longitude). 11 

We compared the full model to a nested model without sample age, by performing a 12 

likelihood ratio test [R anova(nested model, full model, test = ‘Chisq’)] to obtain a p value. 13 

For the stratified analysis, we divided the capture dataset into mutually exclusive ancestry 14 

groups. We categorized individuals as western European hunter-gatherers, Anatolian farmers, 15 

or Pontic steppe herders if they carried over 75% of the estimated respective ancestry 16 

component (for steppe individuals, we also required the individual to be <5,000 years old). 17 

We also conducted this analysis for individuals classified as being from before or after the 18 

beginning of the Bronze Age.  19 

For the analyses of hematological traits, we used the same method, summing alleles 20 

increasing the count or the proportion of the studied hematological trait, weighted by their 21 

effect. Genetic correlations between all 36 traits were estimated using ‘ldsc’ (ref.101) (Figure 22 

S5).  23 

For all analyses, we checked that, despite the consideration of only one variant per LD 24 

group, none of the variants were in LD with each other. We acknowledge that the PRS 25 

obtained are proxies for the actual PRS across time because, variants that have reached 26 

fixation may not be detectable by GWAS. 27 

 28 

Overlap between infectious and autoimmune GWAS variants 29 

We looked for significant overlaps between aDNA variants tagging lead GWAS SNPs for 30 

infectious and autoimmune/inflammatory diseases or traits, by retrieving summary statistics 31 

for (i) 40 GWAS of infectious diseases and (ii) 30 GWAS of inflammatory/autoimmune 32 

phenotypes (Table S4). We identified lead infectious or autoimmune disease-associated SNPs 33 

by retaining the variant with the highest GWAS effect size (OR) in consecutive 200 kb 34 
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genomic windows. We then used aDNA variants to tag (r2 >0.6) the lead GWAS-significant 1 

variants (usually absent from the aDNA array) with the plink command: plink --show-tags 2 

aDNA_variant_list --list-all --tag-r2 0.6 --tag-kb 1000. We obtained a list of aDNA variants 3 

tagging infectious and/or autoimmune disease-associated lead SNPs. We then performed 4 

1,000 samplings of random SNPs, matched for DAF and number of LD groups, from aDNA 5 

variants tagging either infectious or autoimmune traits. For each replicate, we calculated the 6 

number of overlapping variants and found that none was higher than the observed overlap (p 7 

< 10-3). We also used a different approach to test for an enrichment in pleiotropic variants, 8 

based on the pruning of aDNA-tagged SNPs (r2 = 0.6 and windows of 1 Mb) and the 9 

calculation of a classic OR for the resulting list of independent tagged SNPs. We assessed the 10 

enrichment in selection signals in the observed overlapping variants, by performing a 11 

Wilcoxon test to compare the s distribution of the observed overlapping variants to that of the 12 

1,000 randomly sampled controls. Finally, the PRS and respective p and beta values of the 13 

regression model were obtained for the lead GWAS SNPs present in the aDNA genotyping 14 

array, either for all infectious or for all autoimmune diseases considered together. PRS and the 15 

corresponding p and beta values for CD, IBD, COVID A2 and COVID B2 were obtained for 16 

all GWAS-significant variants, because this information was available for such phenotypes. 17 

Of note, whereas no significant genetic correlations were found between non-overlapping 18 

infectious phenotypes (e.g. COVID_A2 and COVID B2 were considered as overlapping) nor 19 

between non-overlapping inflammatory phenotypes, formal testing for genetic correlation, as 20 

done for hematopoietic traits, was not possible since for the majority of traits we only had 21 

access to the lead GWAS-significant SNPs. 22 

  23 

Detection of negatively selected variants 24 

We excluded positively selected variants from our list of candidate negatively selected 25 

variants, by calculating four haplotype-based statistics used to detect recent positive selection: 26 

iHS102, iHH103, nSL104 and DIND105. This was done for all SNPs with a DAF >0.2 in 27 

Europeans of the 1,000 Genomes Project,92 with selink (http://github.com/h-e-g/selink) and a 28 

100 kb genomic window. We computed the 99% quantiles (Q99) of each of the four 29 

distributions and the proportion of SNPs with scores higher than the respective Q99, in 200 kb 30 

sliding windows. Only windows with >9 variants were considered. We then retrieved all the 31 

genomic windows enriched for at least one of the four selection statistics, i.e., those with 32 

proportions on the top 1% of at least one of the four distributions. LD groups overlapping, 33 
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completely or partially, at least one of these windows were then removed from the analysis of 1 

negative selection.  2 

 3 

Site-directed mutagenesis and transient transfection for LBP 4 

Site-directed mutagenesis was performed on the LBP-WT pCMV6 plasmid (#RC221961, 5 

OriGene) with appropriate primers (Table S9) and the Pfu Ultra II Fusion HS DNA 6 

(#600674, Agilent) polymerase, followed by digestion with DpnI (#R0176L, New England 7 

Biolabs). Plasmids were amplified in NEB-10 β competent E. coli (#C3019H, New England 8 

Biolabs) and purified with the HiSpeed Plasmid Maxi Kit (#12663, Qiagen). Transient 9 

transfection was carried out in HEK293T cells transfected with 1 µg of plasmid DNA in the 10 

presence of X-tremeGene9 DNA transfection reagent (#6365809001, Merck), according to 11 

the manufacturer’s instructions. Transfected cells were cultured at 37°C, under an atmosphere 12 

containing 5% CO2, in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% 13 

fetal bovine serum. After 48 h, supernatants and whole-cell lysates were collected for 14 

subsequent experiments.  15 

 16 

RNA isolation and RT-qPCR  17 

Total RNA was extracted with the Quick-RNA MicroPrep Kit (#R1051, Zymo) according to 18 

the manufacturer’s instructions. Residual genomic DNA was removed by in-column DNase I 19 

digestion. We reverse-transcribed 1 µg of RNA with the High-Capacity RNA-to-cDNA Kit 20 

(#4387406, Thermo Fisher Scientific), and performed quantitative qPCR with PowerUp 21 

SYBR Green Master Mix (#A25742, Thermo Fisher Scientific) and the ViiA7 system 22 

(Thermo Fisher Scientific) with primers for LBP (PrimerBank ID 31652248c1 and 23 

31652248c2) and GAPDH (PrimerBank ID 378404907c1) obtained from the PrimerBank 24 

database.106 Normalization of LBP mRNA was performed for each sample with GAPDH 25 

(ΔcT) and values are expressed as 2- ΔcT.  26 

 27 

Protein isolation and western blotting  28 

Whole-cell protein lysates were extracted in modified radioimmunoprecipitation assay buffer 29 

supplemented with protease inhibitors (#5892970001, Merck) and phosphatase inhibitor 30 

cocktail (#4906837001, Merck), 0.1 mM dithiothreitol (DTT; Life Technologies), and 1 mM 31 

PMSF (#10837091001, Merck). Protein extracts and supernatants were resolved by 32 

electrophoresis in Criterion TGX 10% precast gels (Bio-Rad), with the resulting bands 33 

transferred onto PVDF membranes (#1704157, Bio-Rad) with the Transblot turbo system 34 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498543doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498543
http://creativecommons.org/licenses/by-nc/4.0/


 24 

(Bio-Rad). Membranes were probed by incubation for 1 hour at room temperature with 1 

antibodies against LBP (#AF870-SP, R&D Systems, 1:2,000), DDK (#A8592, Merck, 2 

1:10,000) and GAPDH (#sc-47724, Santa Cruz Biotechnology, 1:5,000). Proteins were 3 

detected by chemiluminescence with Clarity Western ECL substrate (#1705061, Bio-Rad) 4 

reagents.  5 

 6 

ELISA for LBP and bacterial ligand binding  7 

Supernatants from transfected HEK293T cells were analyzed for their LBP content by Human 8 

LBP DuoSet ELISA (#DY870-05, R&D Systems) according to the manufacturer’s 9 

instructions. Bacterial ligand binding was assessed on microtiter plates coated with 30 µg/mL 10 

LPS derived from E. coli O111:B4 (#LPS25, Merck) or Pam2CSK4 (#tlrl-pm2s-1, InvivoGen) 11 

in 100 mM Na2CO3 (pH 9.6) for 18 hours at 4°C. The plates were blocked by incubation with 12 

0.005% Tween and 1% bovine serum albumin in PBS for 1 hour at room temperature. Plates 13 

were then incubated with cell supernatants at various concentrations. Bound LBP was 14 

detected with the detection antibodies from the Human LBP DuoSet ELISA kit. Absorbance 15 

was read at 450 nm with a Victor X4 plate reader (Perkin Elmer).  16 

  17 
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Figure 1. Genome-wide detection of positive selection in Europe since the Neolithic 
(A) Test for positive selection (-log10(psel)) and selection coefficient estimates (s) for each 
genomic marker in the capture dataset with psel < 0.1. The empirical null distribution was 
approximated by a beta distribution (Methods) Variants with psel < 10-4 outside the 89 
enriched loci are colored in gray. Several candidate genes for positive selection are indicated, 
and host defense genes are highlighted in bold. Upward-pointing pink triangles and 
downward-pointing yellow triangles correspond to the 89 SNPs with the smallest psel at each 
of the 89 candidate loci selected before and after the beginning of the Bronze Age, 
respectively. The time of selection onset was estimated as the mean T across all SNPs with 
psel <0.01 at each locus.  
(B-C) Frequency trajectory of the most significant variant at (B) the LCT locus (rs4988235) 
and (C) the ABO locus (rs8176635). Gray shading around the frequency trajectory indicates 
the lower and upper bounds of the 95% CI for variant frequency estimation in each epoch.  
(D) Mean number of times a single randomly selected candidate SNP per LD group had an 
estimated T before or after the beginning of the Bronze Age, across 1,000 replicates. The error 
bar for each bar plot indicates the standard deviation of the distribution obtained. We also 
included the estimate based on the mean T of all SNPs with psel <0.01 (as for the Manhattan 
plot) for each of the 89 LD groups (rectangles), or based on the SNP with the smallest psel for 
each LD group (circles). 
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Figure 2. Genetic variants and host defense traits targeted by positive selection 
(A) Enrichments in missense, whole blood cis-eQTL or ASB variants for variants with psel 
<10-2 and psel <10-4, across the genome (‘All loci’) or within the 89 candidate positively 
selected loci (‘89 loci’). Only variants of transcripts annotated as ‘protein-coding’ were 
considered for the analysis of variant annotations. The three eQTL groups were defined on the 
basis of the statistical significance of the eQTL association, peQTL < 5 × 10-8, <10-15 or <10-50.  
(B) Significant associations (p <10-5; https://genetics.opentargets.org) in PheWAS between 
positively selected missense variants overlapping host defense genes and hematopoietic traits, 
infections or inflammatory disorders.  
(C) Enrichments in variants associated with the 36 hematopoietic traits studied for variants 
with psel <10-2, across the genome (‘All loci’) or within the 89 candidate positively selected 
loci (‘89 loci’). Red and black circles indicate significant and non-significant enrichments, 
respectively. Orange and gray triangles indicate significant and non-significant enrichments, 
respectively, after exclusion of the HLA locus.  
(D) Left: mean polygenic score (Methods) across four equally spaced epochs for each of the 
hematopoietic traits. Right: -log10 p values for the significant increases or decreases in each 
hematopoietic trait over the last 10,000 years (dot), before (upward-pointing triangle) or after 
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(downward-pointing triangle) the beginning of the Bronze Age. Light gray symbols represent 
non-significant trajectories. The inset shows the decrease in polygenic score over time for 
platelet counts, which has the highest -log10 p value. The black line is the regression line. (C-
D) Traits followed by ‘_p’ indicate the percentage of the cell type considered, whereas other 
traits are absolute counts. 
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Figure 3. Resistance to infection and risk of inflammation have increased since the 
Neolithic  
(A) Polygenic scores for infectious and autoimmune traits as a function of time, over the last 
10,000 years. COVID A2 and B2 indicate critical COVID-19 cases vs. the general population 
and hospitalized COVID-19 cases vs. the general population, respectively. Dot size scale with 
the number of SNPs genotyped in the individual. Dark gray lines are the regression lines for a 
model adjusted for ancestry and geographic location. P-values indicate the significance of the 
regression model, over the last 10 millennia (p), before the Bronze Age (pBefore BA) or since the 
beginning of the Bronze Age (pAfter BA) (Methods). Beta values for the regression model 
considering only samples dating from before (bBefore BA) or after (bAfter BA) the beginning of the 
Bronze Age are shown. Green, pink and blue dots indicate individuals with >75% Western 
hunter-gatherer, Anatolian or Pontic Steppe ancestry, respectively. Individuals with mixed 
ancestries are shown in gray.  
(B) Polygenic score for Crohn's disease as a function of the geographic location and age of 
the samples, obtained with the “bleiglas” package of R version 3.6.2. Individuals with >75% 
Anatolian ancestry are represented by triangles, and the others are represented by circles.  
(C) Polygenic risk score for Crohn's disease as a function of time, after removal of the SNPs 
most significantly associated with sample age.  
(D) Presence or absence of the CD-risk allele rs2188962>T as a function of the geographic 
location and the age of ancient samples.  
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Figure 4. Genome-wide detection of negative selection since the Neolithic 
(A) Test for negative selection (-log10(p)) and selection coefficient estimates (s) for each 
genomic marker in the capture dataset. Red and yellow triangles indicate missense variants at 
conserved positions (GERP score >4) under negative selection, starting before or after the 
beginning of the Bronze Age, respectively. The triangles for the six candidate negatively 
selected variants of immunity genes (IGs) are outlined in black.  
(B-C) Frequency trajectory for the strongest candidate negatively selected variant, LBP 
D283G, and the missense variant IL23R R381Q.  
(D) Number of candidate variants under negative selection beginning before or after the 
beginning of the Bronze Age. 
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Figure 5. LBP D283G is hypomorphic in an overexpression system 
(A) RT-qPCR for LBP on cDNA from HEK293T cells non-transfected (NT) or transfected 
with an empty plasmid (EV), or plasmids encoding wild-type (WT), or mutated LBP. Dots 
indicate three independent experiments and the height of each bar their mean values.  
(B) Western Blot of whole cell lysates or cell culture supernatants from HEK293T cells either 
left NT, transfected with an EV, or C-terminally tagged plasmids expressing WT or mutated 
LBP. LBP was detected with a polyclonal anti-LBP antibody and an antibody against the C-
terminal DDK tag. An antibody against GADPH was used as loading control. The results 
shown are representative of three independent experiments.  
(C) LBP concentration in cell culture supernatants from transfected HEK293T cells as 
measured by ELISA. Dots indicate three independent experiments and the height of each bar 
their mean values.  
(D) Binding of WT or mutant LBP collected from cell culture supernatant at increasing 
concentrations to LPS and Pam2CSK4 assessed by a binding assay. Each point represents the 
mean of two biological replicates ± SD. 
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