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 Abstract 

 Automated cell segmentation from optical microscopy images is usually the first step in the pipeline of 

 single-cell analysis. Recently, deep-learning based algorithms have shown superior performances for the 

 cell segmentation tasks. However, a disadvantage of deep-learning is the requirement for a large amount 

 of fully-annotated training data, which is costly to generate. Weakly-supervised and self-supervised 

 learning is an active research area, but often the model accuracy is inversely correlated with the amount 

 of annotation information provided. Here we focus on a specific subtype of incomplete annotations, which 

 can be generated programmably from experimental data, thus allowing for more annotation information 

 content without sacrificing the annotation speed. We designed a new model architecture for end-to-end 

 training using such incomplete annotations. We benchmarked our method on a variety of publicly 

 available dataset, covering both fluorescence and bright-field imaging modality. We additionally tested our 

 method on a microscopy dataset generated by us, using machine generated annotations. The results 

 demonstrated that our model trained under weak-supervision can achieve segmentation accuracy 

 competitive to, and in some cases surpassing, state-of-the-art models trained under full supervision. 

 Therefore, our method can be a practical alternative to the established full-supervision methods. 
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 Introduction 

 In the recent literature, deep-learning based cell segmentation methods have demonstrated unparalleled 

 segmentation accuracy  1–6  and are increasingly being  adopted by biomedical researchers as the method 

 of choice for microscopy image analysis  7–9  . However,  a well-known disadvantage of the deep-learning 

 methods is that they are very data-hungry, and require a large amount of annotated training data in order 

 to achieve high model performance. For example, a recent study showed that the accuracy of the cell 

 segmentation models did not reach saturation even after training with >1.6 million cell instances  10  . 

 Training data for cell segmentation are particularly costly to generate, because the annotations have to be 

 produced at the instance level, i.e, the exact boundaries of each cell need to be manually determined, 

 unlike many other machine vision tasks such as image classification, where the annotations were 

 produced at the image level. This drawback with regard to the training data further raises concerns over 

 the scalability of the deep-learning method for three-dimensional microscopy, which is a highly active 

 arena for modern biomedical research, but is even more difficult to produce manual annotations. 

 To alleviate the burden of image annotation, a significant amount of effort has been put into the studies of 

 weakly-supervised learning  11  and self-supervised learning  12  from images. For example, within the general 

 instance segmentation literature, bounding-box  11  ,  scribble  13  and point  14,15  annotations have been 

 proposed as alternatives to the detailed instance masks. Advances have also been made in 

 self-supervised learning  16–19  , which focuses on learning  a useful representation of the image features 

 without focusing on a specific task or using any labels; the learned representations can then be used for 

 more specific downstream tasks, including image segmentation. For biomedical image segmentation, it 

 has been proposed that class-activation maps  20  can  be utilized as a stand-in for segmentation masks  21–23  , 

 because high gradients tend to localize to regions of importance for the modeling objective. This allows 

 the model to be trained on simpler auxiliary tasks, such as image classification, which requires simpler 

 annotation. In addition, for specific microscopy modalities, novel model architecture that intelligently 

 incorporates the prior knowledge regarding the input image data is a successful strategy to 

 reduce/eliminate the need for annotations  24  . 
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 Faster annotation and higher model accuracy, however, are often two conflicting goals: the model 

 accuracy generally improves with the more detailed annotations, which requires longer time to generate, 

 and vice versa. Therefore, in this paper, we will focus on cell segmentation models trained with weak 

 annotations that potentially can be produced programmably or semi-programmably from experimental 

 data. We believe this strategy is the best compromise between the goals of high model accuracy and 

 lesser annotation efforts (Fig. 1a). Specifically, we will focus on two types of annotations: (1) Image-level 

 segmentations (Fig . 1b), which separates the cellular region from the background region.  Such an 

 annotation can be produced by acquiring a fluorescence image of the cellular sample and thresholding 

 the resulting image. (2) Location-of-interests (LOIs), which are the rough locations for each cell present in 

 the image (Fig. 1b). This annotation can be produced by acquiring nucleus images using widely employed 

 labels, such as diamidino-2-phenylindole (DAPI). Nucleus detection from DAPI images is a heavily 

 researched topic. Algorithms yielding accurate results are readily available. By focusing on these two 

 specific annotations, a researcher can potentially generate a large dataset fairly quickly, and still offer 

 annotations with rich informational content for training an accurate segmentation model. 

 Results 

 Model design.  Fig. 2a shows our model architecture  for the single-cell segmentation task. The overall 

 model contains three sub-modules, all of which are based on fully-convolutional neural network (FCN) 

 design. The backbone employs a standard encoder/decoder structure, and outputs feature 

 representations extracted from the input image at multiple resolutions. The second component, the 

 location proposal network (LPN), is analogous to the region proposal network (RPN) of the popular 

 FastRCNN model for object detection  25  . Its task is  to predict a set of LOIs from the feature outputs of the 

 backbone. Unlike RPN, which computes regression for the object bounding-box (location and size), the 

 LPN does not predict the object size, because the information is unavailable in the annotations. The last 

 component, the segmentation FCN, is responsible for output the single-cell segmentations, taking the 

 high-resolution image features as the input. To allow the network to focus on a specific cell, the image 

 features were first concatenated with small tensors representing the predicted LOIs, one for each cell. 

 This way, the segmentation FCN receives different inputs for different cells, and thus is able to produce 

 4 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498609doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?MvM3Xp
https://doi.org/10.1101/2022.07.03.498609


 variable segmentations even though the image features are constant. To increase the algorithm efficiency, 

 the segmentation FCN only performs computation within a small area around the LOI, as it can 

 reasonably assume that pixels far away from the LOI are not part of the segmentation (see 

 supplementary text for implementation details). Combined, the three modules learn the segmentation task 

 in an end-to-end manner. We name our network architecture location assisted cell segmentation system 

 (LACSS). 

 Even though the model is designed with incomplete annotation in mind, it is actually also able to learn 

 under full supervision (Fig 2b). Under such a configuration, the model loss is the sum of two components. 

 The first is the LPN loss, which measures the differences between the predicted LOIs and the ground 

 truth LOIs. The latter can be computed from the individual cells’ ground truth segmentations. The second 

 is the segmentation loss, which is simply the cross-entropy loss between the predicted cell segmentations 

 and the ground truth cell segmentations. On the other hand, if the model is trained under the configuration 

 of the weak supervision (Fig 2c), the LPN loss can still be calculated, because the LOIs are part of the 

 image annotation. The segmentation loss, on the contrary, is no longer available. Therefore, we used 

 instead a weakly-supervised segmentation loss function (see supplementary text), which computes (i) the 

 consistency between single-cell segmentation with the image-level segmentation, and (ii) the consistency 

 between individual cell segmentations. The latter part aims to minimize overlaps between individual cell 

 segmentations. Detailed mathematical formulations of all loss functions are provided in supplementary 

 text. 

 Cell image library dataset.  As a proof of principle,  we first performed a quick segmentation test on the 

 publicly available Cell Image Library  26  dataset. The  dataset consists of 100 images of dual channel 

 (cytoplasm/nucleus) fluorescence cell images from a single experiment (Fig. 3). The images are of high 

 signal-to-noise ratio and both cell-cell contacts and cell-cell occlusions are rare. Therefore segmentation 

 is relatively easy. We split the data into training(n=89) and validation (n=11) sets, following Stringer et al.  2  l 

 and performed model training using the weak-supervision configuration. The original dataset was 

 pre-annotated with full segmentation masks. We converted the original cell segmentations to image-level 
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 segmentations by combining all cell masks, and used the center-of-mass of the individual cells as the 

 LOIs. 

 To benchmark the segmentation accuracy, we computed average precision (AP) on the validation set, as 

 well as the false negative rate (FNR) as Edlund et. al  10  . Both metrics were computed under a series of 

 intersection-over-unions (IOUs) criteria ranging from 50% to 95%.  The model trainings were run with 

 random initialization for multiple times (n=5). We found the best AP  50  score surpassed 0.93 in all runs, 

 with the best model producing AP  50  =0.933. The complete  benchmarks of the best model is shown in Fig 

 3b. 

 Both the quantitative benchmarks and visual inspection of the segmentation results (Fig 3a) suggested 

 that our model performs well on this dataset. To our surprise though, our results seem to be even better 

 than previous reports based on segmentation models training with full supervision  2  .  Using the exact 

 same dataset, Stringer et al reported  precisions (IOU=50%) from three different segmentation models 

 (cellpose  2  , MaskRCNN  27  s and stardist  28  ), all of which  are lower than ours by more than ten percent points. 

 We suspect this is simply due to insufficient optimization of the previous models. When we trained LACSS 

 with full supervision, we obtained essentially the same accuracy (best AP  50  =0.937). However we did 

 observe a strong tendency to overfit under full-supervision probably due to the small size of the dataset, 

 which may have contributed to the poorer results reported previously. 

 LIVECell dataset.  Encouraged by the positive outcome  on the cell image library data, we then moved on 

 to test our model performances on a much larger dataset, LIVECell  10  . This is a recently published cell 

 segmentation dataset containing >1.6 million fully segmented cells from eight different cell lines. The 

 imaging modality is phase contrast, which has lower contrast than fluorescence for the purpose of cell 

 detection. The cell lines chosen cover a diverse set of morphologies. Cell-cell contact and cell-cell 

 occlusion are of frequent occurrences. Therefore, this is a more difficult study case for cell segmentation, 

 but is also more representative of real-life problems in biomedical research. In addition, the dataset was 

 pre-splitted into training, validation and testing sets, which allows for more useful benchmarking, and 

 baseline benchmarks were already provided based on two state-of-the-art models, MaskRCNN  27  and 

 CenterMask  29  , trained on full-supervision. 
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 Similar to the Cell Image Library case, we first converted the original cell-level annotations to image-level 

 segmentations and LOIs. We then trained LACSS models with the converted weak annotations. We also 

 train LACSS with full-supervision using the original annotation in order to understand the performance 

 gap between the two configurations. We found that indeed LACSS trained under weak-supervision 

 underperform by a quite large margin (Fig. 4). Among the eight cell lines, the SkBr3 line exhibited the 

 smallest performance gap (AP  50  =0.857 / 0.948 for weakly-supervised/fully-supervised  models), while the 

 SHSY5Y line showed the largest gap (AP  50  =0.128 / 0.520). 

 Manual examination of the segmentation results indicated that the main weakness of the 

 weakly-supervised models is with the determination of the exact cell-cell boundary (supp. Fig. s1). Indeed 

 we noticed that the weakly-supervised model can correctly infer the cell locations as well as the rough 

 sizes and shapes of the cell, but has trouble discerning the detailed shape of the cell border. To correct 

 this issue, we introduced an auxiliary convolutional network (auxnet) during the training specifically to 

 predict the cell boundaries (Fig 2c). Of course the auxnet cannot be directly trained against ground truth, 

 as the cell boundaries are not part of the annotation. Therefore, we train auxnet against the segmentation 

 output from the main LACSS network (Fig. 2c), and the auxnet predictions in turn help to train the LACSS 

 model weights by constraining LACSS outputs. Auxnet is only used during training and is not part of the 

 computation during inference. 

 The concept of using one network to train another network can be found in many other self-supervised 

 training techniques, e.g., generative adversarial network  30  (GAN). Importantly, we purposely designed  the 

 auxnet to be of low field-of-view (FOV). The rationale is that this is also how humans perform cell 

 segmentations. Typically we first scan a relatively large area in order to recognize the cell and understand 

 its rough shape, but when it comes to tracing the exact cell boundaries, we will look at a much smaller 

 area in order to find the exact pixel separating two cells. By designing the auxnet to be of low FOV, we 

 force it to focus on a different set of image features than that of LACSS, which has a much larger FOV. 

 Introducing the auxnet in the training significantly improved the model accuracy (Fig. 4). For three of the 

 cell lines (BV2, SKOV3 and SkBr3), the differences between the weakly-supervised models and 
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 fully-supervised models are within one percent point. For the rest of the cell lines, the weakly-supervised 

 models still underperform, but the gaps are much smaller. 

 We also compare our results with the previously published baselines (Table 1) and find our results to be 

 competitive. For BV2 and SkBr3 lines, our models trained with incomplete annotations actually had AP50 

 scores slightly higher than the previous models trained with the full annotations. When using more 

 stringent IOU criteria (e.g. 75%) our results are slightly worse, which is expected because achieving high 

 IOU often requires the model to have some knowledge of the annotation bias of the exact annotators, 

 which our training pipeline has no access to. Our results showed the highest performance gap in the 

 SHSY5Y cell line (Table 1). However, for this cell line, the LACSS model performs poorly even when 

 trained under full supervision (AP  50  =0.520), suggesting  that the weakness stems from the model 

 architecture and not from the training strategy. One possibility is that for SHSY5Y, a neuroblastoma with 

 particularly complex shapes, our model backbone (Resnet-50  31  )  does not have sufficient expressibility 

 compared to the baseline models, which are based on Resnet-200  31  . 

 Fig. 5 showed examples of segmentation results on the eight cell lines. It can be seen that the model 

 generally was able to trace the boundary between cell-cell contacts, despite the fact the training data 

 contains no such information. The model also to a degree recaptured certain annotation biases. For 

 example, for BV2 cells, the annotator chose not to label dying cells with an abnormal appearance, and the 

 model similarity avoided their detections. On the contrary, for BT474 cells, the annotator frequently 

 avoided labeling cells at the center of the colonies, probably due to poor contrast. However, this 

 preference was not learned by the model. 

 Efficient training pipeline with semi-automatic annotation.  Finally we turn to test a training pipeline, in 

 which the annotation is generated semi-programmably (Supp. Fig. s2). To do that, we acquired a dataset 

 on cultured A431 cells using fluorescence microscopy. The cell line is chosen for its tendency to grow in 

 large colonies with closely packed cells, which means that there will be significant loss of information 

 going from the full segmentation annotation to the image-level segmentation. This allows for a more 

 stringent test of our training strategy. The cells were immuno-fluorescently labeled using anti-PY100 

 antibody, which localize to both cell membrane and cell cytosol (Fig. 6), producing a useful contrast to 
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 identify individual cells. Additionally, nucleus images were acquired on a separate channel with DAPI 

 staining. We acquired 500 images of 512x512 pixels using an automated microscope, which served as 

 the training set. Furthermore, using the same protocol but in a separate experiment, we acquired 25 more 

 fluorescence images, which we manually segmented to serve as the validation set. 

 To generate the LOIs for the training set, we performed nucleus detection on the DAPI images. For this 

 purpose, we used a very simple blob detection algorithm based on the difference-of-Gaussian filter, even 

 though much more sophisticated algorithms are available  3,32  .  This is to minimize the dependencies on 

 external training data. Even with such a simple algorithm, the results were accurate enough: we estimated 

 that both false positive and false negative rates to be around 1% based on the visual inspections. We also 

 opted to  not  manually correct these mistakes, in order  to evaluate the model performance in a more 

 streamlined pipeline. To generate image-level segmentations, we used an existing graph-cut software to 

 process all 500 fluorescence images. Because each image requires a slightly different threshold value for 

 correct segmentation, we automatically generated five sets of segmentation results using a preset series 

 of threshold values. An annotator then manually examined the results to pick one for each input image 

 that is considered the best. 

 In Fig. 6 we showed representative examples of the segmentation results. The model shown here 

 achieved an AP  50  of 0.84 (Fig 6b), which we consider  to be of practical use for various research tasks, 

 such as single-cell analysis. The main advantage is that our model was established with a much faster 

 speed than the traditional pipelines that relies on manually generated single-cell annotations. The result 

 also confirms that the exact nature of the LOIs can be flexible. In previous tests, we used the locations of 

 the center-of-mass of cell segmentations, because the dataset was already pre-segmented. Here the 

 nucleus locations were typically off-center to the cell and randomly localized. Neither are the LOIs center 

 of the nucleus, as the results depend on the exact intensity distributions of the DAPI signal. However, 

 these features did not seem to prevent training of the segmentation model. 

 Discussion 
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 Annotation burden is a well-known problem of deep learning methods. The issue is particularly 

 challenging for single-cell segmentation tasks. Most of the existing works dealing with this problem 

 focused on the goal of reducing the amount of annotation as much as possible, which we believe may not 

 be the most productive venue. Instead, we focus on utilizing annotations that can be generated 

 automatically or semi-automatically, leveraging on experimental resources that are commonly available in 

 biological research labs. This allows us to retain as much annotation information as possible, while not 

 being slowed down by manual annotations. We believe this is the best chance to create an efficient model 

 building pipeline, without sacrificing too much with regard to the model accuracy, which is one of the top 

 priorities for most of the biological researchers. 

 In particular, we demonstrate here that segmentation models can be built by utilizing two types of weak 

 annotations: the whole-image level segmentation and the location-of-interests, both of which are 

 incomplete descriptions of the cell segmentation, but combined provided sufficient information to achieve 

 good model accuracies. Indeed, we showed several examples, where models build our incomplete 

 annotations performed on par with models trained with full supervision. On the other hand, even in cases 

 where our method slightly underperforms, LACSS model may still be a good compromise due to the 

 significantly reduced cost for the model building. 

 In conclusion, we provided a practical alternative for efficiently building single-cell segmentation 

 deep-learning models, which would be of interest to biological researchers in need of performing 

 single-cell analysis from microscopy images. 

 Methods 

 Image acquisition.  For this study we experimentally  acquired a small microscopy dataset on the human 

 squamous-cell carcinoma line A431 (ATCC CRL1555). Cells were seeded on glass substrate and grown 

 to ~80% confluence in standard growth media before fixation for imaging. Cells were labeled with the 

 standard immunofluorescence protocol: They were washed with a blocking buffer (2% BSA in PBS, 1% 

 TX100), incubated with Alexa647-labeled anti-PY100 (1:500 in blocking buffer containing DAPI) for 2 h 

 while rocking at 4  o  C. Images were acquired on an automated  inverted fluorescence microscope (Olympus 
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 IX) with an 20x objective. Images were captured on a camera with a 512x512 sensor. The per pixel 

 dimension is 0.8 micrometer under this configuration. 

 Image annotation.  Only the lab-acquired A431 cell  data were annotated by us. All other dataset used in 

 this study was previously segmented manually. To annotate the A431 training set, we use the existing 

 GraphCut function of the FIJI software to produce image-level segmentation. All images were segmented 

 at five different intensity thresholds and a human annotator later manually examined the output to pick 

 one out of five for each input image. To produce LOIs, we first apply a difference-of-Gaussian filter to the 

 DAPI images, with the σ values of 4.2 and 5 pixels. We then searched for all local maxima with 

 four-connectivity and used their locations as LOIs. To annotate images in the validation set, we used the 

 online annotation software described by Stringer et. al  2  to generate single-cell segmentations for all  cells 

 in the image. The software takes polygon input indicated by mouse clicks and converts the inputs into 

 single-cell segmentations. 

 Model training.  Here we provide a general outline  of the model training procedure. See suppl. text for 

 detailed descriptions of the model architectures, the hyperparameter choices and the training procedures 

 of each model. 

 Models for the cell image library dataset were all trained with random initialization of model weights. The 

 experiments were repeated five times and the best model was chosen based on the highest AP  50  score 

 on the validation set. Models for LIVECell dataset were also trained with random initialization of weights, 

 i.e., without pretraining on external datasets. Best models were chosen based on benchmarks on the 

 validation set. The testing set was not involved in any manner for choosing models. For the lab-acquired 

 dataset, the model was pretrained on the LIVECell dataset, then continuously trained on the lab-acquired 

 A431 cell training data and evaluated on the validation set. All models were trained using a single NVIDIA 

 Tesla A100 GPU. ADAM optimizer was used for all experiments. 

 Model benchmarks.  To evaluate model accuracy, we relied  primarily on the average precision (AP) 

 metrics, which were widely used in the instance segmentation literature. 
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 𝐴𝑃    =  1 
 𝐶    

 𝑘 = 1 

 𝑛 

∑  𝑃 ( 𝑘 ) 𝑇 ( 𝑘 )

 where  C  is the total number of ground truth cells,  n  is the total number of detections,  is a  indicator  𝑇 ( 𝑘 )

 function of whether the  k  -th detection is positive  (  ) or negative (  ), and  is  the  𝑇 ( 𝑘 ) =  1  𝑇 ( 𝑘 ) =  0  𝑃 ( 𝑘 )

 precision of the first  k  detections. Whether a detection  is considered positive is determined by the 

 intersection-over-union (IOU) of the detection against the ground truth. We use the notation AP  IOU  to 

 denote the AP values at a specific IOU threshold, i.e, AP  50  is the average precision when the positive 

 detection requires a minimal IOU of 50%. We also use the notation mAP to denote the average AP over a 

 series of IOU thresholds. In our study, we chose IOU thresholds from 0.5 to 0.95 (inclusive) in a 0.05 step 

 size. Per convention of instance detection literature, we do not allow multiple detections to match against 

 the same ground truth instance. 

 A secondary metric we used is the false negative ratio (FNR), which is simply 

 𝐹𝑁𝑅 =  1 −  #     𝑜𝑓     𝑡𝑟𝑢𝑒     𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒     𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
 𝐶 

 The metric measures the percent of cells that were missed by the model. As in AP metric, we used the 

 notation  FNR  IOU  to distinguish  FNRs  at different IOU  thresholds, and we used  AFNR  to denote average 

 FNR at all thresholds. 

 Code availability 

 All software source code is available at  https://github.com/jiyuuchc/lacss 
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 Figure 1  . Comparison of various training data annotations  for single-cell segmentation models. (  a  ) 

 Diagram illustrating the conflicting goals of faster annotation and higher model accuracy, and how 

 experimentally acquired annotations offer a better compromise. (  b  ) Examples of annotations. The top 

 image shows a representative microscopy image of cells. The second row shows the corresponding full 

 annotation of single-cell segmentations, which is expensive to generate. The bottom two rows showed 

 two types of incomplete annotations that can potentially be generate programmably: (1) image-level 

 segmentation, which labels the pixels of all cells in the image, and (2) location-of-interests annotation, 

 which a subtype of the point annotation that denotes rough locations of individual cells. 
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 Figure 2.  LACSS model. (  a  ) Model architecture showing  all three components of the model: backbone, 

 location proposal network(LPN) and segmentation FCN. (  b  ) Schematic diagram of LACSS model training 

 under full-supervision. (  c  ) Schematic diagram of LACSS  model training under semi-supervision. 

 14 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.03.498609


 Figure 3.  Segmentation of cell image library dataset  with a LACSS model trained with incomplete 

 annotations. (  a  ) A representative example of segmentation  results showing the input image (left), the 

 ground-truth segmentation (middle) and model prediction (right). The pseudo colors were generated via 

 skimage’s label2rgb function for visual clarity and carried no extra meaning. (b) Model performances 

 quantified by average precisions and false negative rates at various IOU thresholds. 
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 Figure 4.  LACSS model accuracy trained with LIVECell  dataset. Models were trained either under 

 full-supervision using the original single-cell annotation (supervised, solid blue line), under 

 semi-supervision using synthetic annotation but without auxnet (semi, dash line), or under 

 semi-supervision with boundary-defining auxnet (semi-auxnet, dotted line). AP values were computed for 

 eight cell lines at increasing IOU thresholds from 50% to 95%. The results showed significant 

 improvements in model accuracy by introducing auxnet in the training for models trained with 

 semi-supervision. 
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 Figure 5.  Segmentation examples for LIVECell dataset  using LACSS models trained with the 

 semi-supervision configuration. Examples for all eight cell lines were shown. The input phase contrast 

 images (left) were overlaid with model predictions drawn as yellow contours. The ground truth 

 segmentations were shown on the right, for which the model predictions were also shown as white 

 contours for comparison. 
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 Figure 6.  LACSS model trained with incomplete annotations.  (  a  ) Examples of training data and 

 accompanying annotations generated semi-programmably. (  b  ) Examples of model inferences showing 

 input fluorescence image (left), the model prediction as yellow contours (middle), and comparison of 

 model prediction with manual segmentation of the same input image (right). The bottom example 

 represented a more challenging case with atypical image contrasts. 
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 Table 1.  Comparison of LACSS model and the baselines.  All baseline models were trained with the 

 complete annotation, whereas LACSS models were trained using the incomplete annotation. Bold font 

 indicated cases where the LACSS model performed better than the baselines. 
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 IOU%  50  55  60  65  70  75  80  85  90  95  mAP/AFNR 

 AP  0.8385  0.7981  0.7254  0.6267  0.4883  0.2813  0.0843  0.007  0  0  0.38496 

 FNR  0.1373  0.1665  0.2192  0.2878  0.3903  0.5532  0.7629  0.9325  0.9965  1  0.54462 

 Table 2.  Benchmarking LACSS models trained with lab-generated  image data and annotations. The 

 training dataset includes 500 immunofluorescence images of A431 cells at high density. All annotations 

 were derived from experimental data semi-programmably. See text for more details. 

 20 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.03.498609


 References 

 1.  Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image 

 Segmentation. in  Medical Image Computing and Computer-Assisted  Intervention – MICCAI 

 2015  (eds. Navab, N., Hornegger, J., Wells, W. M.  & Frangi, A. F.) 234–241 (Springer 

 International Publishing, 2015). 

 2.  Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for 

 cellular segmentation.  Nat Methods  18  , 100–106 (2021). 

 3.  Caicedo, J. C.  et al.  Nucleus segmentation across  imaging experiments: the 2018 Data 

 Science Bowl.  Nat Methods  16  , 1247–1253 (2019). 

 4.  Al-Kofahi, Y., Zaltsman, A., Graves, R., Marshall, W. & Rusu, M. A deep learning-based 

 algorithm for 2-D cell segmentation in microscopy images.  BMC Bioinformatics  19  , 365 

 (2018). 

 5.  Wolny, A.  et al.  Accurate and versatile 3D segmentation  of plant tissues at cellular resolution. 

 eLife  9  , e57613 (2020). 

 6.  Guerrero-Pena, F. A.  et al.  Multiclass Weighted  Loss for Instance Segmentation of Cluttered 

 Cells. in  2018 25th IEEE International Conference  on Image Processing (ICIP)  2451–2455 

 (2018). doi:10.1109/ICIP.2018.8451187. 

 7.  LeCun, Y., Bengio, Y. & Hinton, G. Deep learning.  Nature  521  , 436–444 (2015). 

 8.  Moen, E.  et al.  Deep learning for cellular image  analysis.  Nat Methods  16  , 1233–1246 

 (2019). 

 9.  Gupta, A.  et al.  Deep Learning in Image Cytometry:  A Review.  Cytometry A  95  , 366–380 

 (2019). 

 10.  Edlund, C.  et al.  LIVECell—A large-scale dataset  for label-free live cell segmentation. 

 Nat Methods  18  , 1038–1045 (2021). 

 11.  Khoreva, A., Benenson, R., Hosang, J., Hein, M. & Schiele, B. Simple Does It: Weakly 

 21 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498609doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://doi.org/10.1101/2022.07.03.498609


 Supervised Instance and Semantic Segmentation. (2016) doi:10.48550/arXiv.1603.07485. 

 12.  Caron, M., Bojanowski, P., Joulin, A. & Douze, M. Deep Clustering for Unsupervised 

 Learning of Visual Features. (2019) doi:10.48550/arXiv.1807.05520. 

 13.  Lin, D., Dai, J., Jia, J., He, K. & Sun, J. ScribbleSup: Scribble-Supervised Convolutional 

 Networks for Semantic Segmentation. (2016) doi:10.48550/arXiv.1604.05144. 

 14.  Cheng, B., Parkhi, O. & Kirillov, A. Pointly-Supervised Instance Segmentation. (2022) 

 doi:10.48550/arXiv.2104.06404. 

 15.  Zhao, T. & Yin, Z. Weakly Supervised Cell Segmentation by Point Annotation.  IEEE 

 Transactions on Medical Imaging  40  , 2736–2747 (2021). 

 16.  He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. Momentum Contrast for Unsupervised 

 Visual Representation Learning.  arXiv:1911.05722 [cs]  (2020). 

 17.  Noroozi, M. & Favaro, P. Unsupervised Learning of Visual Representations by Solving 

 Jigsaw Puzzles. in  Computer Vision – ECCV 2016  (eds.  Leibe, B., Matas, J., Sebe, N. & 

 Welling, M.) 69–84 (Springer International Publishing, 2016). 

 doi:10.1007/978-3-319-46466-4_5. 

 18.  Ji, X., Henriques, J. F. & Vedaldi, A. Invariant Information Clustering for Unsupervised 

 Image Classification and Segmentation. in  Proceedings  of the IEEE/CVF International 

 Conference on Computer Vision (ICCV)  (2019). 

 19.  Hwang, J.-J.  et al.  SegSort: Segmentation by Discriminative  Sorting of Segments. in 

 Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)  (2019). 

 20.  Selvaraju, R. R.  et al.  Grad-CAM: Visual Explanations  from Deep Networks via 

 Gradient-based Localization.  Int J Comput Vis  128  ,  336–359 (2020). 

 21.  Nguyen, H.-G.  et al.  A novel segmentation framework  for uveal melanoma in magnetic 

 resonance imaging based on class activation maps. in  Proceedings of The 2nd International 

 Conference on Medical Imaging with Deep Learning  370–379  (PMLR, 2019). 

 22.  Bilodeau, A.  et al.  Microscopy analysis neural  network to solve detection, enumeration 

 22 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498609doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://doi.org/10.1101/2022.07.03.498609


 and segmentation from image-level annotations.  Nat Mach Intell  4  , 455–466 (2022). 

 23.  Zheng, T., Wang, Q., Shen, Y., Ma, X. & Lin, X. High-resolution rectified gradient-based 

 visual explanations for weakly supervised segmentation.  Pattern Recognition  129  , 108724 

 (2022). 

 24.  Han, L. & Yin, Z. Unsupervised Network Learning for Cell Segmentation. in  Medical 

 Image Computing and Computer Assisted Intervention – MICCAI 2021  (eds. de Bruijne, M. et 

 al.) 282–292 (Springer International Publishing, 2021). doi:10.1007/978-3-030-87193-2_27. 

 25.  Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards Real-Time Object 

 Detection with Region Proposal Networks. (2016) 

 doi:https://doi.org/10.48550/arXiv.1506.01497. 

 26.  Weimiao Yu, H. K. L. CCDB:6843, mus musculus, Neuroblastoma. (2019) 

 doi:10.7295/W9CCDB6843. 

 27.  He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. (2018) 

 doi:10.48550/arXiv.1703.06870. 

 28.  Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell Detection with Star-convex 

 Polygons. in vol. 11071 265–273 (2018). 

 29.  Lee, Y. & Park, J. CenterMask : Real-Time Anchor-Free Instance Segmentation. (2020) 

 doi:10.48550/arXiv.1911.06667. 

 30.  Goodfellow, I.  et al.  Generative Adversarial Nets.  in  Advances in Neural Information 

 Processing Systems  vol. 27 (Curran Associates, Inc.,  2014). 

 31.  He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. 

 (2015) doi:10.48550/arXiv.1512.03385. 

 32.  Berg, S.  et al.  ilastik: interactive machine learning for (bio)image analysis.  Nature 

 Methods  16  , 1226–1232 (2019). 

 23 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498609doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://www.zotero.org/google-docs/?7pMqNf
https://doi.org/10.1101/2022.07.03.498609


 24 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.03.498609

