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Abstract 

Hereditary Leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by 

inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of 

fumarate. Fumarate accumulation leads to the activation of an anti-oxidant response via 

nuclear translocation of the transcription factor NRF2. The activation of the anti-oxidant 

response is key for cellular survival in FH-deficient cells, yet the extent to which chromatin 

remodelling shapes the anti-oxidant response is currently unknown. Here, we explored the 

global effects of FH loss on the chromatin landscape to identify transcription factor networks 

involved in the highly remodelled chromatin landscape of FH-deficient cells. We identify 

FOXA2 as a key transcription factor which directly regulates anti-oxidant response genes 

and subsequent metabolic rewiring. Moreover, we also find that FOXA2 regulates anti-

oxidant genes independent of the canonical anti-oxidant regulator NRF2. The identification 

of FOXA2 as an anti-oxidant regulator provides new insights into the molecular mechanisms 

behind cell responses to fumarate accumulation, and potentially provides new avenues for 

therapeutic intervention for HLRCC.  
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Introduction 

Fumarate hydratase (FH) catalyses the reversible conversion of fumarate to malate in the 

tricarboxylic acid (TCA) cycle. Inactivating germline mutations in FH have been identified as 

the main cause of hereditary leiomyomatosis and renal cell cancer (HLRCC) (Tomlinson et 

al., 2002), a cancer predisposition syndrome which results in benign skin and uterine lesions 

and an aggressive form of type II papillary renal cell cancer after loss of heterozygosity. 

These tumours metastasise early and are poorly survived (Grubb et al., 2007; Menko et al., 

2014).  

The loss of FH results in a complex rewiring of metabolism, and the accumulation of 

intracellular fumarate (Frezza et al., 2011), which has been previously linked to the 

oncogenic potential of FH loss (reviewed in Schmidt et al., 2020). Many of the effects of 

elevated fumarate are linked to chromatin regulation. Indeed, high levels of intracellular 

fumarate can competitively inhibit α-ketoglutarate dioxygenases (Laukka et al., 2016; Xiao et 

al., 2012), leading to a DNA and histone hypermethylation phenotype. DNA 

hypermethylation is particularly evident in FH-deficient tumours (Sun et al., 2021; The 

Cancer Genome Atlas Research Network, 2016) and fumarate-induced-DNA methylation at 

the mir-200c and mir-200ba429 loci promotes epithelial-to-mesenchymal transition (EMT) in 

FH-deficient cells by activating the repressor ZEB1 (Sciacovelli et al., 2016). Fumarate 

accumulation is also able to covalently react with cysteine residues of proteins in a process 

called succination (Alderson et al., 2006). One of the most well-known targets of succination 

is KEAP1 (Adam et al., 2011; Ooi et al., 2011), a U3-ubiquitin ligase which targets NRF2 

(NFE2L2 gene codes for NRF2) for proteasomal degradation by ubiquitination (Baird and 

Yamamoto, 2020). Once KEAP1 is succinated, it releases NRF2 to activate anti-oxidant 

response genes – another key marker for FH-deficient tumours (Adam et al., 2011; Ooi et 

al., 2011). As FH-deficient cells exists in a persistent oxidative stress environment due to 

high levels of fumarate, the activation and fine-tuning of the anti-oxidant response is 

important for survival (Zheng et al., 2015). This is exemplified by the synthetic lethality of 

Hmox1, a key NRF2 target gene, in FH-deficient cells (Frezza et al., 2011). While the effects 

of FH loss have often been studied separately, these processes likely occur simultaneously 

and influence each other. Yet, it is still unclear to what extent the broad chromatin 

remodelling caused by fumarate synergises with the activation of the above-described 

transcriptional events.  

Chromatin accessibility profiling is well-suited to reflect active signalling pathways that 

converge on chromatin (Yan et al., 2020). Additionally, H3K27 acetylation marks active 

promoters and enhancers genome-wide (Creyghton et al., 2010), therefore we can obtain a 

comprehensive perspective of chromatin regulation by profiling these two features. To 
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ascertain the changes to the chromatin landscape in FH-deficient cells we performed ATAC-

seq and H3K27ac ChIP-seq to profile the chromatin landscape of FH-proficient and FH-

deficient cells. By integrating these data, we uncovered the key chromatin alterations 

associated with FH loss and identified important transcription factors in these processes. 

Unexpectedly, we implicate FOXA2 in the additional regulation of the anti-oxidant response, 

independent of NRF2. FOXA2 knockdown reduces expression of NRF2 target genes and 

altered anti-oxidant related metabolites.  
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Results 

Dynamic changes in the chromatin landscape of FH-deficient cells 

To uncover the regulatory chromatin landscape of FH-deficient cells we performed ATAC-

seq and H3K27ac ChIP-seq in Fh1-proficient (Fh1fl/fl), two Fh1-deficient clones (Fh1-/-CL1 and 

Fh1-/-CL19) and one Fh1 rescue cell line (Fh1-/-CL1+pFh1-GFP). The ATAC-seq data showed 

regular nucleosome periodicity and was deemed good quality (Supplementary Figure 1A). 

The ATAC-seq replicates also correlated well (Supplementary Supplementary Figure 2), as 

did the H3K27ac ChIP-seq replicates (Supplementary Supplementary Figure 3). We first 

called peaks on each replicate and merged the peaks together to create two independent 

union-peak sets for the ATAC-seq dataset (n=112,031) and the H3K27ac ChIP-seq dataset 

(n=32,161). We performed differential accessibility analysis between Fh1-/-CL1 and Fh1fl/fl, 

which identified 12,605 differentially accessible regions (Figure 1A; Supplementary Table 1). 

7,614 regions (60%) were significantly reduced in Fh1-/-CL1, whereas 4,991 (40%) regions 

were significantly increased in Fh1-/-CL1 (Figure 1A). Differential H3K27ac ChIP-seq analysis 

resulted in 12,256 differential regions, of which 6,759 (55%) regions were significantly 

reduced and 5497 (45%) regions were significantly increased in Fh1-/-CL1 compared to Fh1fl/fl 

(Figure 1B; Supplementary Table 2). First, we checked for known oncogenic events in FH-

deficiency, and indeed, Vimentin, a marker of EMT, shows an increase in chromatin 

accessibility and H3K27ac at promoter and distal enhancer regions (Figure 1C), whereas 

Mir-200c shows a marked decrease in H3K27ac and chromatin accessibility at its locus 

(Supplementary Figure 1D), which is consistent with repression. Additionally, Slc7a11, a 

common target gene of the anti-oxidant response in FH-deficient cells, also shows an 

increase in H3K27ac and chromatin accessibility in FH-deficient cells at promoter and 

enhancer regions (Supplementary Figure 1D). These select loci demonstrate that the 

chromatin landscape is reflecting known biology of FH deficiency. We next examined Fh1-/-

CL19 cells, which also show a similar pattern to Fh1-/-CL1 cells, highlighting the ATAC-seq and 

H3K27ac ChIP-seq data is consistent across clones (Supplementary Figure 1E). To assess 

whether these chromatin changes were reversible, we profiled the chromatin accessibility 

and H3K27ac landscape in Fh1-/-CL1 cells stably transfected with a Fh1 expressing plasmid 

(Fh1-/-CL1+pFh-GFP). These cells showed an almost complete rescue of chromatin 

accessibility and H3K27ac levels (Figure 1D) and clustered more closely to Fh1fl/fl cells 

(Supplementary Figure 1B, Supplementary Figure 1C). These results clearly demonstrate a 

dynamic chromatin reprogramming upon FH loss, which can be reversed with the re-

expression of FH. 
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Chromatin changes occur in distinct clusters 

To gain a further understanding into the mechanisms of gene regulation in FH-deficient cells, 

we integrated our ATAC-seq and H3K27ac ChIP-seq datasets using simple logical rules. We 

used the ATAC-seq union-peak set as our reference and assigned to each accessible region 

whether it first, demonstrated an increase, decrease or no change in chromatin accessibility 

(±2 fold and q-value < 0.05) and second, whether it demonstrated an increase, decrease or 

no change (±2 fold and q-value < 0.05) in H3K27ac ChIP-seq signal (Figure 2A). This 

resulted in 7 main clusters reflecting the modes of transcriptional regulation (Supplementary 

Table 3). Open activated regions (I) with an increase in chromatin accessibility and 

H3K27ac; activated regions (II) with an increase in H3K27ac only; open (III) have an 

increase in chromatin accessibility only; stable regions (VI) show no change in either 

chromatin accessibility or H3K27ac; closed regions (V) with a decrease in chromatin 

accessibility only; deactivated regions (VI) with a decrease in H3K27ac only; and closed 

deactivated regions (VII) with a decrease in both chromatin accessibility and H3K27ac. A 

number of regions showed an apparent contradictory pattern: nine regions showed an 

increase in chromatin accessibility and a decrease in H3K27ac; and 26 regions showed a 

decrease in chromatin accessibility and an increase in H3K27ac. As these regions 

represented less than 0.0003 % of the total dataset, they were excluded from further 

analyses.  

The increase in ATAC-seq signal was evident in clusters I and III, whereas a decrease in 

ATAC-seq signal was clear in clusters V and VII (Supplementary Figure 2A). Similarly, 

H3K27ac ChIP-seq increases can be seen in clusters I and II, and decreases in clusters VI 

and VII (Supplementary Figure 2B). The distance distribution to the nearest transcription 

start site (TSS) was similar for all clusters and the majority of regions were distal to a TSS 

(Supplementary Figure 2C). Some clusters showed a large proportion of regions falling 

within 3 kb from a TSS, chiefly cluster II (activated) regions. To see whether these changes 

in chromatin accessibility and activation translated into transcriptional changes we 

interrogated previously published RNA-seq datasets from FH-deficient cells (Sciacovelli et 

al., 2016). Importantly, the regions within these clusters are significantly associated with 

transcriptional changes in FH-deficient cells, compared to a random geneset 

(Supplementary Figure 2D). More active regions (clusters I, II and III) are significantly 

associated with upregulated nearby genes, and less-active regions (clusters V, VI and VII) 

are significantly associated with downregulated nearby genes (Supplementary Figure 2), 

showing that the logical rules we set were able to group genes into meaningful clusters.  

Moreover, the clusters demonstrate that underpinning the dynamic chromatin landscape are 
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discrete modes of regulation involving chromatin accessibility and histone modifications that 

are linked to gene expression. 

Transcription factor motifs define clusters 

To assess whether these clusters of regions were associated with distinct sets of genes, we 

performed GO (Gene Ontology) term analysis of the nearest genes associated with each 

region and cluster (Figure 2B). Known activated processes involved in FH-deficiency include 

EMT, anti-oxidant stress signalling and amino acid metabolism. Cluster I regions (open 

activated) were enriched in GO terms involving nucleoside, carbohydrate metabolic 

processes and transmembrane transport. These GO terms are important processes in amino 

acid metabolism and anti-oxidant response in general. Cluster II regions (activated) were 

enriched in migration and cell adhesion related GO terms, which are heavily associated with 

EMT. Cluster III regions (open) were also enriched in metabolite transport, migration and 

GTPase signal transduction GO terms.  

Cluster V, VI and VII regions (closed, deactivated and closed deactivated) were enriched in 

renal development and cell cycle GO terms. Loss of kidney-specific developmental genes is 

perhaps reflecting a dedifferentiation process common in tumours (Friedmann-Morvinski and 

Verma, 2014). Furthermore, the presence of cell cycle GO term enrichment in repressed 

clusters is consistent with previous observations that FH-deficient cells have a proliferative 

defect (Frezza et al., 2011).  

The specific GO terms associated with the clusters indicate that these regions are regulating 

genes involved in specific functions and pathways known in FH deficiency. To link putative 

transcription factors to the regulation of these genes, we performed de novo motif analysis 

on each cluster (Figure 2C; Supplementary Table 4). Strikingly, this revealed very specific 

enrichment of transcription factors for each cluster. Cluster IV regions (stable) were highly 

enriched for CTCF motifs, suggesting that these regions represent stable structural elements 

of the genome. Cluster I and II regions (open activated/activated) were enriched for NRF2 

and ATF4 motifs, transcription factors known to induce the anti-oxidant response , whereas 

cluster III regions (open) were highly enriched in forkhead motifs. In fact, forkhead motifs 

were enriched in both cluster I and II regions, suggestive that forkhead motifs are perhaps 

important for the activity of cluster I transcription factor motifs i.e. NRF2 or ATF4. Cluster V 

regions (closed) were enriched in AP-1 and TEAD motifs. Cluster VI regions (deactivated) 

were enriched in NFKB motifs and cluster VII regions (closed deactivated) were enriched in 

grainyhead-like and ZEB motifs. Grainyhead transcription factors (e.g. GRHL2) specify the 

kidney and maintain its identity (Boivin and Schmidt-Ott, 2020), whereas ZEB is a repressor 

involved in repressing epithelial genes and contributing to EMT (Zhang et al., 2015) – this is 
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consistent with the renal development and migratory GO terms enriched in clusters V, VI and 

VII. We also took advantage of the ATAC-seq data to analyse footprinting around 

transcription factor motifs (a proxy for transcription factor binding). Our analysis shows a 

general increase in footprinting in cluster I and III, especially at forkhead motifs, but also 

ATF4 and NRF2 motifs (Figure 2C; Supplementary Table 4). Conversely, Grainyhead-like 

motifs showed the largest reduction in footprinting. Together, these data link the regulation of 

genes at the chromatin level to presence of specific transcription factors and their motifs, 

and points towards a complex network of transcription factors that underly the response to 

FH loss. 

FOXA2 regulates NRF2 target genes in FH-deficient cells  

We were interested in additional novel transcription factors that respond to FH loss, 

therefore we focussed on a putative forkhead transcription factor that may be acting in 

concert with other transcription factors. We first looked at the level of expression of forkhead 

factors Fh1-/-CL1 cells that showed a significant change in expression compared to Fh1fl/fl cells 

(Supplementary Figure S3A), however there was not clear highly expressed transcription 

factor. Additionally closer inspection of the magnitude of the fold change in gene expression 

changes did not identify a clear single transcription factor (Supplementary Figure S3B). We 

then mined previously published CRISPR-screening data (Valcarcel-Jimenez et al., 2022) – 

here a genome-wide pooled CRISPR screen was performed on Fh1fl/fl and Fh1-/-CL1 cells to 

identify essential genes in cell survival. The two screens were compared to each other to 

identify essential genes specifically in FH-deficient cells. Using this data we were able to 

identify Foxa2 as a key gene important in survival only in Fh1-/-CL1cells (Figure 3A). Foxa2 is 

moderately expressed in Fh1fl/fl cells and its expression is increased in Fh1-/-CL1 cells at the 

mRNA (Figure 3B) and protein level (Figure 3C). Additionally Foxa2 mRNA expression is 

increased on the protein level (Figure 3C). Importantly, the expression of Foxa2 in Fh1-/-

CL1+pFh-GFP cells is completely abrogated, highlighting the reversibility of Foxa2 expression 

with the re-expression of FH.  

We further examined the expression FOXA2 in HLRCC patient samples. Foxa2 was 

overexpressed in FH-deficient human tumours, compared to adjacent normal tissue 

(Supplementary Figure 3C; Crooks et al., 2021). We then examined TCGA data from the 

papillary renal cell carcinoma dataset (KIRP), the histological subtype of HLRCC, and 

compared FH negative and FH positive tumours (see methods). Importantly, Foxa2 

expression was increased in FH negative tumours, underscoring the increase in Foxa2 

expression is seemingly dependent on FH loss (Supplementary Figure 3D).  Overexpression 
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of Foxa2 is also associated with worse overall survival in TCGA KIRP patients 

(Supplementary Figure 3E).  

To ascertain the role of FOXA2, we performed siRNA-mediated silencing of Foxa2 in Fh1fl/fl, 

Fh1-/-CL1 and Fh1-/-CL19 cells (Supplementary Figure 4A; Supplementary Table 5) and 

performed RNA-seq, The RNA-seq replicates clustered well with each other (Supplementary 

Figure 4B). Differential gene expression analysis between siFoxa2 and siNT in Fh1fl/fl, Fh1-/-

CL1 and Fh1-/-CL19 cells identified 119, 838 and 545 differentially expressed genes (DEGs) 

respectively (Figure 4A). This result highlights the specificity of FOXA2 in FH-deficient cells. 

Importantly, 57% (311/545; P < 7.177e-263 ) of Fh1-/-CL19 siFoxa2 DEGs were also DEGs in 

siFoxa2 treated Fh1-/-CL1 cells (Supplementary Figure 4C), underscoring that the function of 

FOXA2 is similar in both FH-deficient cell-lines.  

To understand what process FOXA2 may regulate, we performed GO term enrichment 

analysis on differentially regulated genes (Figure 4B). siFoxa2 upregulated genes were 

enriched in GO terms for extracellular matrix organisation, migration and renal development 

terms, whereas siFoxa2 downregulated genes were enriched for proliferation, oxidative 

stress response and detoxification GO terms. Although siFoxa2 upregulated GO terms were 

not shared between clones (likely indirect effects), siFoxa2 downregulated GO terms were 

also enriched in Fh1-/-CL19 DEGs (Figure 4B). We then asked whether these DEGs are 

associated with the original clusters identified from the ATAC-seq and H3K27ac ChIP-seq 

data. Downregulated genes after siFoxa2 treatment are significantly associated to clusters I 

and II (open activated/activated), and upregulated genes to clusters VI and VII 

(deactivated/closed deactivated) (Supplementary Figure 4D), suggesting that FOXA2 directly 

regulates key processes associated with FH deficiency.  

FOXA2 is a pioneer factor in multiple cell types (Zaret and Carroll, 2011). To explore 

whether FOXA2 may be regulating genes as a pioneer factor for another transcription factor, 

we used our siFoxa2 downregulated gene list to check whether other transcription factors 

regulate the same genes. Using ChEA (a database that mines public ChIP-seq datasets), 

the top enriched transcription factor was NRF2 (Figure 4C), a master redox transcription 

factor already implicated in FH-deficient cells and tumours (Adam et al., 2011; Ooi et al., 

2011). NRF2 target genes were also highly enriched in our siFoxa2 dataset (Figure 4D). 

These results show that FOXA2 regulates genes involved in active processes in FH-deficient 

cells, and that FOXA2 is able to regulate NRF2 target genes.  

FOXA2-mediated gene regulation is NRF2 independent 

To gain an insight into the mechanism by which FOXA2 regulates NRF2 target genes, we 

performed FOXA2 ChIP-seq in Fh1fl/fl and Fh1-/-CL1 cells. The ChIP-seq replicates correlated 
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well and were merged (Supplementary Figure 5A and S5B). Peak calling identified 385 

FOXA2 peaks in Fh1fl/fl cells and FOXA2 4273 peaks in Fh1-/-CL1 cells (Figure 5A; 

Supplementary Table 6), highlighting its heightened activity in FH-deficient cells. Only 5% 

(213/4273) of peaks overlapped between the datasets, thus we focussed on Fh1-/-CL1 specific 

FOXA2 peaks (Figure 5B). Globally, FOXA2 binding regions coincide with an increase in 

chromatin accessibility and H3K27ac ChIP-seq signal only in Fh1-/-CL1 specific FOXA2 peaks 

and shared peaks (Supplementary Figure 5C).  An example is the Gclc locus, which shows 

increases of H3K27ac ChIP-seq signal and ATAC-seq signal at promoter and upstream 

distal regions. FOXA2 can be seen to bind specifically in Fh1-/-CL1  cells at the most distal 

region, accompanied by an increase in ATAC-seq signal (Figure 5C). Gclc is a NRF2 target 

gene (Li et al., 2009), therefore we analysed whether NRF2 target genes (identified from the 

previous GSEA analysis) were generally bound by FOXA2 in Fh1-/-CL1 cells - FOXA2 ChIP-

seq peaks were indeed significantly enriched nearby NRF2 target genes (Supplementary 

Figure 5D). 

To gain an insight into the mechanism of gene activation by FOXA2, we performed de novo 

motif analysis on Fh1-/-CL1 specific FOXA2 peaks to identify additional enriched. Reassuringly 

the top enriched motif was the forkhead motif, highlighting that the target was correctly 

pulled down. The other enriched motifs were for AP-1, TEAD, RUNX and HNF1 (Figure 5D). 

As the consensus motif for NRF2 was not identified we profiled the occurrence of the NRF2 

motif within Fh1-/-CL1 specific FOXA2 peaks compared with forkhead, AP-1 and CTCF motifs. 

As expected, these peaks were highly enriched in motifs for AP-1 and FOXA2, but 

surprisingly completely devoid of NRF2 motifs (Supplementary Figure 5D). We next 

assessed the connection of Fh1-/-CL1 specific FOXA2 peaks to target genes identified from 

the siFoxa2 RNA-seq data. FOXA2 ChIP-seq peaks were significantly enriched nearby to 

siFoxa2 downregulated genes (Figure 5E), and these regions were likely to house AP-1 

and/or RUNX motifs in addition to a forkhead motif (Figure 5F). 

While this analysis did not identify the NRF2 motifs, FOXA2 could potentially still tether 

NRF2 to its target. To test this hypothesis, we performed rapid immunoprecipitation mass 

spectrometry of endogenous protein (RIME) of FOXA2 in Fh1fl/fl, Fh1-/-CL1 cells to identify 

interactors of FOXA2 on chromatin (Supplementary Table 7). All RIME replicates identified 

FOXA2 highlighting the validity of the datasets, and proteins found in at least 2 or more 

replicates were taken forward. This resulted in 105 Fh1fl/fl specific interactors, 252 shared 

interactors and 399 Fh1-/-CL1 specific interactors (Figure 5G). We further filtered these 

proteins for transcription factors and identified CEPBZ in Fh1fl/fl only, FOXA2 and HNF1B 

shared between both Fh1-/- cell-lines, and AP-1 (FOSL2, JUNB) and RUNX1 only in Fh1-/-CL1  
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cells. Still, we did not identify NRF2 as an interactor in this dataset. Together these data 

suggest that FOXA2 can regulate NRF2 target genes independent of NRF2 itself.  

FOXA2 regulates NRF2 related metabolic pathways 

Thus far the data suggest that FOXA2 converges on similar genes and pathways as NRF2, 

yet the mechanism of action is independent of NRF2. Finally, to assess whether there is a 

functional convergence between the two proteins, we performed metabolomics on Fh1fl/fl, 

Fh1-/-CL1 and Fh1-/-CL19 cells treated with either siNT or siFoxa2 (Supplementary Table 7). The 

knockdown was successful (Figure 6A) and metabolomic replicates clustered together 

(Supplementary Figure 6A). Performing differential metabolite analysis, we identified various 

metabolites whose abundances were significantly altered in siFoxa2 treated cells compared 

to siNT (Figure 6B). Fh1-/- cell lines demonstrated a deeper metabolic reprogramming than 

Fh1fl/fl cells upon Foxa2 silencing, consistent with FOXA2 being more active in FH-deficient 

cells.  

To identify metabolic pathways that were altered in FH-deficient cells and dependent on 

FOXA2, we used metabolite set enrichment analysis (Figure 6C). This identified numerous 

pathways, including methionine, glutamate and aspartate metabolism, gluconeogenesis and 

glutathione metabolism. Importantly, these pathways were also enriched in Fh1-/-CL19 cells. 

We then focussed on individual metabolites known to be regulated by NRF2 (DeBlasi and 

DeNicola, 2020). Indeed, cystine and inositol monophosphate (IMP) were significantly 

reduced specifically in siFoxa2 treated Fh1-/- cells, whilst in siFoxa2 treated Fh1fl/fl  cells they 

were not reduced (Figure 6D). The levels of glutathione (GSH) and glutathione-disulfide 

(GSSG) were also reduced in siFoxa2 treated cells, whilst the GSH/GSSG ratio did not 

change (Figure 6E).  

Collectively, these results show that FOXA2 can functionally regulate the output of select 

metabolic pathways associated with NRF2 activation.  
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Discussion 

The consequences of FH loss are still poorly understood after it was identified as the cause 

of HLRCC two decades ago (Tomlinson et al., 2002). Recent studies clearly point to an 

intimate relationship between fumarate and chromatin. Fumarate is able to inhibit DNA 

demethylases and histone demethylases, thereby increasing methylated DNA and histone 

levels (Xiao et al., 2012), the majority of which are repressive marks. The importance of 

increases in DNA methylation is well demonstrated in its role in inducing EMT in FH-deficient 

cells (Sciacovelli et al., 2016). Fumarate’s ability to inhibit histone demethylases also has a 

role in DNA repair. Local generation of fumarate by nuclear FH increases histone H3K36 

levels to promote DNA repair at double strand breaks (Jiang et al., 2015). Additionally, 

protein succination from high fumarate levels has been identified on SMARCC1, a key 

subunit of the SWI/SNF chromatin remodelling complex (Kulkarni et al., 2019). Fumarate is 

also able to activate anti-oxidant transcription factor NRF2 via KEAP1 succination (Adam et 

al., 2011) and  integrated stress response transcription factor ATF4 (Ryan et al., 2021). A 

global outlook on regulatory chromatin dynamics in FH-deficient cells has since been 

overlooked. In this study, we sought to use unbiased approaches to profile the open 

chromatin landscape (ATAC-seq) and its activity (H3K27ac ChIP-seq). Indeed, we show that 

the changes in the chromatin landscape are dynamic and widespread: the majority of 

regions show a decrease in chromatin accessibility (60%) and H3K27ac ChIP-seq (55%); 

and a substantial number of regions show an increase in chromatin accessibility (40%) and 

H3K27ac ChIP-seq (45%). 

By integrating chromatin accessibility and H3K27ac ChIP-seq using logical rules, we were 

able to cluster genomic regions by their apparent increase or decrease in chromatin 

accessibility and activity (H3K27ac). These regions were able to be associated with genes 

involved in processes known to be active in FH-deficient cells e.g. EMT (Sciacovelli et al., 

2016). New associated pathways were also identified, such as renal development. This is 

consistent with a recent appreciation that cell dedifferentiation and loss of cellular identity 

factors are a more common feature of human cancers (Friedmann-Morvinski and Verma, 

2014). We also took advantage of the underlying DNA sequence of these regions and 

identified an array of enriched transcription factor motifs. Among the enriched motifs in more 

active regions were NRF2, ATF4 and MAF motifs. These motifs map to transcription factors 

known to be active in FH-deficient cells (Adam et al., 2011; Ooi et al., 2011; Ryan et al., 

2021). Conversely, ZEB, GRHL and NFKB/RELA motifs were enriched in less active 

regions. Again, since ZEB1 is involved in repression of epithelial genes during EMT (Thiery 

et al., 2009), it is consistent that we find ZEB motifs within repressed regions.  
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We also identified forkhead motifs as enriched in regions associated with opening, 

consistent with the pioneer factor function of forkhead transcription factors (e.g. FOXA) in 

other cell types (Zaret and Carroll, 2011). Importantly, we also specifically identified FOXA2 

as a hit in a comparative CRISPR screen in FH-deficient cells compared to FH-proficient 

cells (Valcarel-Jiminez et al., 2022), and its expression is upregulated in FH-deficient cells. 

FOXA2 expression is also increased in FH-deficient HLRCC tumours, and patients with high 

FOXA2 expression have an overall poorer prognosis than those with low expression.  

FOXA2 is a pioneer factor (Iwafuchi-Doi et al., 2016) and has been associated with 

metabolic regulation in other cell types (Gao et al., 2010; Wolfrum et al., 2004; Zhang et al., 

2005), but never associated with FH loss. Exactly how FH loss results in FOXA2 activation is 

very interested phenomenon and will warrant further study. Here, we implicated FOXA2 in 

the regulation of genes involved in cell growth, kidney development and cellular 

detoxification. More specifically, FOXA2 regulated genes showed substantial overlap with 

classic NRF2-dependent target genes involved in the anti-oxidant response. Usually, NRF2 

regulates its target genes by its inhibitory partner KEAP1 becoming degraded after ROS 

signalling and then translocating into the nucleus to directly bind anti-oxidant response 

elements. Our FOXA2 ChIP-seq dataset fails to identify the NRF2 motif as an enriched motif, 

but does identify the more common AP-1 motif. AP-1 and NRF2 motifs do share the 

canonical TGAC/GTCA motif, and NRF2 ChIP-seq datasets have in fact identified the AP-1 

motif (Malhotra et al., 2010). In this context, perhaps FOXA2 allows NRF2 to bind less 

favourable AP-1 sites. However, our RIME data also fails to identify NRF2 as an interactor, 

but does identify transcription factors that bind enriched motifs in our FOXA2 ChIP-seq data, 

such as RUNX1, FOSL1, and HNF1B. In this context, FOXA2 may function as a transcription 

factor on its own accord, rather than a pioneer factor for other transcription factors, and 

support the anti-oxidant response in concert with canonical anti-oxidant response regulators 

e.g. NRF2. 

FOXA2 can also significantly affect various metabolic pathways. Here we show 

metabolomics data of cells deficient in FH and FOXA2 revealing impaired amino acid import 

and metabolism, with glutathione metabolism also being affected. Slc7a11 codes for a key 

cysteine transporter, which is heavily activated during the anti-oxidant response as cystine is 

used as a precursor to the glutathione pathway (Zheng et al., 2015). Foxa2 knockdown is 

able to reduce the expression of cystine importer Slc7a11 and reduce the levels of 

intracellular cystine, thus impairing the levels of GSH and GSSG overall. The fine-tuning of 

the anti-oxidant response in FH-deficient cells is paramount to cellular survival, and could be 

a key step in early transformation (reviewed in Schmidt et al., 2020). With this in mind, it 
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seems likely that key pathways are supported by multiple regulators, and FOXA2 seems to 

be one of them.  

The novel link between FOXA2, NRF2 and the anti-oxidant response provokes questions 

about whether this is a kidney specific mechanism. In fact, Foxa2 is induced in Nrf2-/- lung 

type II cells when exposed to GSH (Reddy et al., 2007) suggesting a similar mechanism 

might exist in lung cells, where FOXA2 can induce the anti-oxidant response. 

In summary, using a multi-omic approach we have uncovered a role of FOXA2 in regulating 

the anti-oxidant response, independent of NRF2. We have identified new players in the anti-

oxidant response and new avenues for therapeutic exploration in HLRCC. We have also 

highlighted the importance of unbiased, genome-wide techniques in understanding complex 

parallel signalling mechanisms. 
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Methods 

Cell culture 

Fh1fl/fl,Fh1-/-CL1,Fh1-/-CL19 were generated from mouse kidney epithelial cells as described 

previously (Frezza et al., 2011) and Fh1-/-CL1+pFh1-GFP cells were generated by stably 

transfecting Fh1-/-CL1 cells with a plasmid expression Fh1 as described previously (Sciacovelli 

et al., 2016). Cells were cultured in DMEM supplemented with 10% FBS. Cells were 

routinely tested negative for mycoplasma infection and were authenticated by short tandem 

repeat analysis. 

ATAC-seq  

ATAC-seq was carried out as described previously (Corces et al., 2017). 5x105 Fh1fl/fl cells 

or 1x106 Fh1-/- cells were plated onto 6-cm dishes and once reached 80% confluency, 

detached using trypsin (0.25% in PBS-EDTA). 1x104 cells were then resuspended in cold 

lysis buffer (10mM TrisCl pH 7.4, 10mM NaCl, 3mM MgCl2, Nonidet P40 0.1%) on ice and 

centrifuged at 500 rcf/10 min. The cell pellet was then mixed and incubated at 37˚C for 1h 

min with the transposition reaction mix prepared using Illumina Tagment DNA Enzyme and 

Buffer kits (Illumina, 20034197). DNA was then purified using DNA Clean and Concentrator 

kit (Zymo, D4013) and library preparation and purification performed using KAPA HiFi Hot 

Start DNA Polymerase (KAPA Biosystems, KK2500) and Ampure XP beads (Beckman 

Coulter, A63880 ). Library quality was finally assessed using Bioanalyzer high sensitivity 

DNA kit (Agilent). Paired-end sequencing was performed on a NextSeq 550 platform 

(Illumina). 

Reads were quality checked using FastQC (available at: 

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) and aligned to mm10 using Bowtie2 

v2.4.2 (Langmead and Salzberg, 2012) with the following options: -X 2000 –dovetail. Unique 

reads (>q30) aligned to chromosomes 1–19 and chromosome X were retained. Peaks were 

called using MACS2 v2.2.7.1 (Zhang et al., 2008) with the following parameters: -q 0.01 –

nomodel --shift −75 --extsize 150 -B –SPMR. Peaks called from individual samples were 

merged using mergePeaks.pl from the HOMER package v4.11 (Heinz et al., 2010) to 

generate a peak set on which to perform differential accessibility analyses. bedGraph files 

were converted into BigWig files using bedGraphtoBigWig and visualised in the UCSC 

Genome Browser (Kent et al., 2002). featureCounts v2.0.1 (Liao et al., 2014) was used to 

count reads within peaks from ATAC-seq samples and these were used an input for DESeq2 

v1.34.0 to calculate differential binding using default settings. Counts were normalised using 

reads in peaks (RIP). A linear fold change of ±2 and a q-value of <0.05 were used as a cut-

off for further analyses.  
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ChIP-seq  

Samples were prepared using iDeal ChIP-seq kit for Histones (Diagenode, C01010051). 

Briefly, 1x106 Fh1 fl/fl or 2x106 Fh1 -/- cells were plated onto 15-cm dishes (Nunc) and allowed 

to reach 80% confluency. Cells were then washed twice in PBS and detached using trypsin 

(Gibco, 0.25% in PBS-EDTA). After inactivating trypsin with complete medium, cells were 

filtered through 70μm cell strainers (Fisher Scientific) and counted with Cell Counter CASY 

(OmniLife Sciences). Following an additional wash in PBS, 7x106 cells were resuspended in 

500 μl of PBS and crosslinked using formaldehyde (Thermo Fisher) at 1% final 

concentration. Crosslinking was stopped using glycine solution after 10 min and 3 washes 

were carried in cold PBS before storing the pellets at -80˚C. Further processing of the 

samples was carried out accordingly to the iDeal ChIP-seq kit for Histones protocol. 10-15 

cycles of sonication (30 sec ON, 30 sec OFF) were carried using the Bioruptor Pico 

sonicator device (Diagenode). H3k27ac antibody was obtained from Abcam (ab4729) and 

used at the ratio 1μg/sheared chromatin derived from 1x106 cells. Control rabbit IgG were 

purchased from Sigma. DNA Library was generated using NEB Next Ultra II DNA library kit 

(NEB, E7645S) following the manufacturer’s protocol. Library quality was assessed using 

Bioanalyzer high sensitivity DNA kit (Agilent). Single-end sequencing was performed on a 

NextSeq 550 platform (Illumina). 

Reads were trimmed using Trimmomatic v0.34 (Bolger et al., 2014), quality checked using 

FastQC (available at: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) and reads were 

aligned to mm10 and dm6 using Bowtie2 v2.4.2 (Langmead and Salzberg, 2012). Only 

reads with a mapping quality >q30 were retained. Peak calling was performed on merged 

replicates using MACS2 v2.2.7.1 (Zhang et al., 2008) using default parameters with 

additional –SPMR parameter and using the IgG sample as a control. bedGraph files were 

converted to bigwig using BedGraphtoBigWig script and visualised in the UCSC Genome 

Browser. featureCounts v2.0.1 (Liao et al., 2014) was used to count reads within peaks from 

ChIP-seq samples and these were used an input for DESeq2 v1.34.0 to calculate differential 

binding using default settings. Counts were normalised using reads in peaks (RIP). A linear 

fold change of ±2 and a q-value of <0.05 were used as a cut-off for further analyses.  

Data integration 

The ATAC-seq peakset, originating from all cell-lines, was used as a reference. Peaks were 

separated into whether they showed a significant increase, decrease or no change between 

Fh1fl/fl and Fh1-/-CL1 cells. Peaks were further separated into whether they overlapped a 

region displaying a significant increase, decrease or no change in H3K27ac ChIP-seq signal. 

Overlaps were calculated using intersect from BEDTools v2.30.0 (Quinlan and Hall, 2010) 
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using parameters -wa -u to obtain positive overlaps, and parameters -v to obtain regions with 

no overlaps.  

Transcription factor motif analysis 

To analyse multiple regions for enriched transcription factor motifs, genomic coordinates 

were analysed using gimme maelstrom from the GimmeMotifs v0.16.0 package (Bruse and 

Heeringen, 2018; van Heeringen and Veenstra, 2011) using the default motif database. To 

analyse single datasets, findMotifsGenome.pl from the HOMER package was used (Heinz et 

al., 2010) with –cpg –mask parameters.  

Footprinting analysis  

To analyse footprinting signatures in ATAC-seq data the TOBIAS v0.12.12 package was 

used (Bentsen et al., 2020). Merged BAM files from each condition were processed using 

ATACorrect, footprint scores calculated using FootprintScores and differential footprinting 

analysis was performed using BINDetect using only regions identified from each cluster. The 

difference in footprinting between Fh1fl/fl and Fh1-/-CL1 from each cluster was visualised in the 

heatmap.  

CRISPR screen analysis 

Comparative pooled CRISPR screen data between Fh1fl/fl and Fh1-/-CL1 was obtained from 

Valcarcel-Jiminez (2022). Volcano plots were plotted using MAGeCKFlute v1.14.0 (Wang et 

al., 2019). 

Patient survival analysis 

Patient survival was calculated using the kidney renal papillary cell carcinoma mRNA TCGA 

dataset (KIRP) from kmplot.com (Nagy et al., 2021) using default settings.  

siRNA transfection 

5 x 104 Fh1fl/fl and 1 x 105 Fh1-/-CL1 and Fh1-/-CL19 cells were reverse transfected in 6-well 

plates with 50 pmol of either control siNT (Horizon, D-001810-10-05) or siFoxa2 (Horizon, L-

043601-00-0005) siRNA using 2.5 µl RNAiMAX per well. Cells were incubated for 72 hours 

before either RNA or protein were extracted. 

Protein extraction and immunoblotting 

Cells were lysed directly in cold RIPA buffer, supplemented with protease inhibitor cocktail 

and benzonase and were incubated on ice for at least 10 minutes. Lysate was transferred to 

a microcentrifuge tube and an aliquot was used in a BCA assay to determine protein 

concentration. LDS loading buffer was added to the lysate at a final 1x concentration and 
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samples were heated to 70 °C for 10 minutes. Equal amounts of protein were loaded onto a 

4-12% PAGE gel and then transferred to a nitrocellulose membrane. Total protein was 

stained for using and scanned. Membranes were blocked in a 5% BSA/TBS solution for 1 

hour and incubated with anti-Foxa2 or anti-FH antibody overnight at 4 °C. IRDye secondary 

antibodies were incubated at room temperature for 1 hour and membranes were imaged on 

a Licor scanner. Membranes were washed in 1x TBS with 0.1% Tween-20. 

Cell growth assay 

5 x 104 cells were reverse transfected with 12.5 pmol siRNA (siNT or siFoxa2) and were 

allowed to settle at room temperature for up to an hour. Plates were transferred into an 

Incucyte® machine and confluence was monitored every six hours for 5 days. 9 images 

were taken per well per timepoint. Images were processed by Incucyte® Base Analysis 

Software using default settings. 

RNA-seq and analysis  

RNA was extracted from cells using a RNeasy Plus RNA extraction Kit (Qiagen, 74136) and 

quality checked using Nanodrop 1000 (ThermoFisher). Single-end RNA-seq libraries were 

generated using TruSeq stranded mRNA library kit (Illumina) and sequenced on a NextSeq 

550 platform (Illumina) by the Cambridge Genomics Services. 

Reads were trimmed using Trimmomatic v0.39 (Bolger et al., 2014), quality checked using 

FastQC (available at: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) and aligned to 

mm10 using STAR v2.7.9a using default parameters (Dobin et al., 2013). Reads aligned to 

chromosomes 1–19 and chromosome X were retained. Counts for genes were determined 

using featureCounts v2.0.1 (Liao et al., 2014) and DESeq2 v1.34.0 (Love et al., 2014) was 

used to perform differential gene expression analysis. Significant gene expression changes 

were defined by a fold change of ±20.5 and a q-value of <0.05. 

RNA-seq data from Fh1fl/fl, Fh1-/-CL1+Fh1-GFP, Fh1-/-CL1 and Fh1-/-CL19 cells were obtained 

from Sciacovelli et al., 2016 (GSE77542). RNA-seq data for FH-deficient tumours were 

obtained from Crooks et al., 2021 (GSE157256). To stratify TCGA KIRP (The Cancer 

Genome Atlas Research Network, 2016) tumour samples into FH positive and negative, 

samples were ranked according to FH expression, then the top 25% were classed as FH 

high and the bottom 25% were classed as FH low and then compared with DESeq2 v1.34.0 

(Love et al., 2014).  

ChIPmentation and analysis 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.07.04.498412doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.04.498412
http://creativecommons.org/licenses/by-nd/4.0/


20 

 

ChIPmentation was carried out as described previously (Schmidl et al., 2015). 1 x 106 Fh1fl/fl 

and 2 x 106 Fh1-/-CL1 cells were cultured for 48 hours in 15 cm dish and crosslinked for 10 

minutes in 1% formaldehyde. Cross-linking was quenches by 0.125 M glycine for at least 5 

minutes. Cells were washed twice in 1 x PBS and scraped into ice-cold 1 x PBS with 

protease inhibitor cocktail and flash frozen and stored at -80°C until needed. 2.5 µg anti-

FOXA2 antibody (abcam, ab256493) and 2.5 µg normal IgG antibody was used (Merck, 12-

370). 1 µg Spike-In antibody (Active Motif, 61686) was also added to each replicate. 20 ng 

Spike-in Drosophila chromatin (Active Motif, 53083) was supplemented to chromatin preps 

for Spike-in normalisation, as described previously (Egan et al., 2016). DNA libraries were 

prepared using TruSeq ChIP sample prep kit (Illumina) and sequenced on a NextSeq 550 

(Illumina) platform. 

Reads were trimmed using Trimmomatic v0.34 (Bolger et al., 2014), quality checked using 

FastQC (available at: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) and reads were 

aligned to mm10 and dm6 using Bowtie2 v2.4.2 (Langmead and Salzberg, 2012). Reads 

aligning to the Drosophila genome were counted and used to generate scale factors. BAM 

files were then scaled to the sample with the lowest number of Drosophila reads. Only reads 

with a mapping quality >q30 were retained. Peak calling was performed on merged 

replicates using MACS2 v2.2.7.1 (Zhang et al., 2008) using default parameters with 

additional –SPMR parameter and using the IgG sample as a control. bedGraph files were 

converted to bigwig using BedGraphtoBigWig script and visualised in the UCSC Genome 

Browser. 

Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) 

RIME was carried out as described previously reported (Glont et al., 2019; Papachristou et 

al., 2018).  2 x 106 Fh1fl/fl and 4 x 106 Fh1-/-CL1 cells were cultured for 48 hours in 2 x 15 cm 

plates and were then dual crosslinked with 2mM DSG for 20 minutes, and then 1% 

formaldehyde for 10 minutes. Cross-linking was quenched by 0.125 M glycine for at least 5 

minutes. Cells were washed twice in 1 x PBS and scraped into ice-cold 1 x PBS with 

protease inhibitor cocktail and flash frozen and stored at -80°C until needed. 5 µg anti-

FOXA2 antibody (abcam, ab256493) and 5 µg normal IgG antibody was used. 

Beads were digested with a concentration of 15 ng/µl Trypsin (Pierce) overnight at 37°C. 

The next day Trypsin was added again for a second 4 hr digestion at 37°C. The peptides 

were acidified with 5% formic acid, purified using the Ultra-Micro C18 Spin Columns 

(Harvard Apparatus), and dried with a vacuum concentrator. The samples were reconstituted 

in 0.1 % formic acid then analysed on a Dionex Ultimate 3000 UHPLC system coupled with 

a Q Exactive HF (Thermo Scientific) mass spectrometer. The full MS scans ran in the 
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orbitrap with the range 400 – 1600 m/z at 60 K resolution. The 10 most intense precursors 

were selected for MS2 at resolution 30 K with an isolation window of 2.0 m/z and HCD 

collision energy at 28 %. The HCD spectra were processed with Proteome Discoverer 1.4 

using the SequestHT search engine and a mouse uniprot database with over 17000 entries. 

The parameters for the analysis included: maximum of 2 missed cleavage sites, Precursor 

Mass Tolerance 20ppm, Fragment Mass Tolerance 0.02Da, and dynamic modifications 

deamidation of N/Q (+0.984Da) and Oxidation of M (+15.995Da). The percolator node was 

applied using a decoy database search. Peptides were filtered for a Target FDR with q-

value<0.01. Specific interactors were from all three sample replicates but didn’t occur in the 

corresponding IgG injections. One of the Fh1-/-CL1 IgG samples was removed from the 

analysis as it was a clear outlier. 

Metabolomics and analysis  

5 x 104 Fh1fl/fl and 1 x 105 Fh1-/-CL1 and Fh1-/-CL19 cells were plated the onto 6-well plate and 

reverse transfected with siRNA. Before extraction, cells were counted using a separate 

counting plate. After that, cells were washed at room temperature with PBS twice and then 

kept on cold bath with dry ice and methanol. Metabolite extraction buffer (50% methanol, 

30% acetonitrile, 20% ultrapure water, 5 µM final concentration valine-d8) was added to 

each well following the proportion 1×106 cells/0.5 ml of buffer. Plates were kept at −80°C and 

kept overnight. The following day, the extracts were scraped and mixed at 4°C for 15 min. 

After final centrifugation at max speed for 10 min at 4°C, the supernatants were transferred 

into LC-MS vials. 

Chromatographic separation of metabolites was achieved using a Millipore Sequant ZIC-

pHILIC analytical column (5 µm, 2.1 × 150 mm) equipped with a 2.1 × 20 mm guard column 

(both 5 mm particle size) with a binary solvent system. Solvent A was 20 mM ammonium 

carbonate, 0.05% ammonium hydroxide; Solvent B was acetonitrile. The column oven and 

autosampler tray were held at 40 °C and 4 °C, respectively. The chromatographic gradient 

was run at a flow rate of 0.200 mL/min as follows: 0–2 min: 80% B; 2-17 min: linear gradient 

from 80% B to 20% B; 17-17.1 min: linear gradient from 20% B to 80% B; 17.1-23 min: hold 

at 80% B. Samples were randomized and the injection volume was 5 µl. A pooled quality 

control (QC) sample was generated from an equal mixture of all individual samples and 

analysed interspersed at regular intervals.  

Metabolites were measured with Vanquish Horizon UHPLC coupled to an Orbitrap Exploris 

240 mass spectrometer (both Thermo Fisher Scientific) via a heated electrospray ionization 

source. The spray voltages were set to +3.5kV/-2.8 kV, RF lens value at 70, the heated 

capillary held at 320 °C, and the auxiliary gas heater held at 280 °C. The flow rate for sheath 
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gas, aux gas and sweep gas were set to 40, 15 and 0, respectively. For MS1 scans, mass 

range was set to m/z=70-900, AGC target set to standard and maximum injection time (IT) 

set to auto. Data acquisition for experimental samples used full scan mode with polarity 

switching at an Orbitrap resolution of 120000. Data acquisition for untargeted metabolite 

identification was performed using the AcquireX Deep Scan workflow, an iterative data-

dependent acquisition (DDA) strategy using multiple injections of the pooled sample. In brief, 

sample was first injected in full scan-only mode in single polarity to create an automated 

inclusion list. MS2 acquisition was then carried out in triplicate, where ions on the inclusion 

list were prioritized for fragmentation in each run, after which both the exclusion and 

inclusion lists were updated in a manner where fragmented ions from the inclusion list were 

moved to exclusion list for the next run. DDA full scan-ddMS2 method for AcquireX workflow 

used the following parameters: full scan resolution was set to 60000, fragmentation 

resolution to 30000, fragmentation intensity threshold to 5.0e3. Dynamic exclusion was 

enabled after 1 time and exclusion duration was 10s. Mass tolerance was set to 5ppm. 

Isolation window was set to 1.2 m/z. Normalized HCD collision energies were set to stepped 

mode with values at 30, 50, 150. Fragmentation scan range was set to auto, AGC target at 

standard and max IT at auto. Xcalibur AcquireX method modification was on. Mild trapping 

was enabled.  

Metabolite identification was performed in the Compound Discoverer software (v 3.2, 

Thermo Fisher Scientific). Metabolites were annotated at the MS2 level using both an in-

house mzVault spectral database curated from 1051 authentic compound standards and the 

online spectral library mzCloud. The precursor mass tolerance was set to 5 ppm and 

fragment mass tolerance set to 10 ppm. Only metabolites with mzVault or mzCloud best 

match score above 50% and 75%, respectively, and RT tolerance within 0.5 min to that of a 

purified standard run with the same chromatographic method were exported to generate a 

list including compound names, molecular formula and RT. The curated list was then used 

for further processing in the Tracefinder software (v 5.0, Thermo Fisher Scientific), where 

extracted ion chromatographs for all compound were examined and manually integrated if 

necessary. False positive, noise or chromatographically unresolved compounds were 

removed. The peak area for each detected metabolite was then normalized against the total 

ion count (TIC) of that sample to correct any variations introduced from sample handling 

through instrument analysis. The normalized areas were used as variables for further 

statistical data analysis. 

Data analysis and visualisation 
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All visualisation of ATAC-seq and ChIP-seq was done using the deepTools2 v3.5.1 package 

(Ramírez et al., 2016). ATAC-seq fragment size was visualised using bamPEFragmentSize. 

Correlation plots between technical replicates were visualised using multiBamSummary and 

plotCorrelation. Tag density plots and heatmaps were generated using computeMatrix and 

plotProfile or plotHeatmap tools. 

Euler diagrams were generated using eulerr.co. Heatmaps were generated using the 

ComplexHeatmap v2.10.0 R package (Gu et al., 2016) and volcano plots were generated 

using the enhancedVolcano v1.12.0 R package (Blighe et al., 2018). 

Peaks were assigned to their closest TSS/gene using the seq2gene function from the 

ChIPSeeker v1.30.3 R package (Yu et al., 2015). GO term enrichment was performed using 

the clusterProfiler v4.2.2 R package (Wu et al., 2021). Gene Set Enrichment Analysis was 

performed using the fgsea v1.20.0 R package (Korotkevich et al., 2021). Associating 

genomic regions to genes was done using PEGS v0.6.4 (Briggs et al., 2021). Random gene 

sets were generated using https://molbiotools.com/randomgenesetgenerator.php.  

P-values were calculated in GraphPad Prism v9.0 using the student’s T-test with Welch’s 

correction, unless otherwise stated.  

Code 

Code and scripts to reproduce the analyses are available at 

https://github.com/connorrogerson/FH_Foxa2 and 

https://github.com/ArianeMora/foxa2_kirp_kirc 

Data availability  

All sequencing data is available from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) 

using the following identifiers: E-MTAB-11789 for ATAC-seq data; E-MTAB-11790 for the 

H3K27ac ChIP-seq data; E-MTAB-11782 for the siFoxa2 RNA-seq data and E-MTAB-11785 

for the FOXA2 ChIPmentation data. The proteomics data is available at the PRIDE 

repository (https://www.ebi.ac.uk/pride/) with the dataset identifier PXD034141. The siFoxa2 

metabolomics is available at Metabolomics Workbench 

(https://www.metabolomicsworkbench.org) under the accession ST002199. 
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Figure Legends 

Figure 1 FH-deficiency coincides with chromatin rewiring 

(A) MA plot of differential ATAC-seq analysis in Fh1-/-CL1 cells compared to Fh1fl/fl cells. 

Regions with a linear fold change of ± 2 and q-value of less than 0.05 are highlighted in red. 

(B) MA plot of differential H3K27ac ChIP-seq analysis in Fh1-/-CL1 cells compared to Fh1fl/fl 

cells. Regions with a linear fold change of ± 2 and q-value of less than 0.05 are highlighted 

in red. (C) H3K27ac ChIP-seq and ATAC-seq genome browser tracks from Fh1fl/fl and Fh1-/-

CL1 cells around the Vim locus. (D) Normalised ATAC-seq signal (upper) and H3K27ac ChIP-

seq signal (lower) from Fh1fl/fl (blue), Fh1-/-CL1 (red), and Fh1-/-CL1+pFh1-GFP (grey) at 

significantly increased (left) or decreased regions (right). 

Figure 2 Integrating ATAC-seq and H3K27ac data identify distinct clusters of regulation  

(A) Sankey diagram of the process of classifying each accessible region in clusters 

depending on an increase, decrease or no change in ATAC-seq signal and an increase, 

decrease or no change in H3K27ac ChIP-seq signal. (B) Dot plot of enriched gene ontology 

(GO) terms of genes located near to regions of clusters I – VII. Size of dots represents 

proportion of differentially expressed genes in a given GO term (GeneRatio) and colours 

represents significance (p.adjust) (C) Heatmap of enrichment of transcription factor motifs 

(left) and differential footprinting score (right) within regions I – VII. 

Figure 3 Whole genome CRISPR screen identifies FOXA2 as an important transcription 

factor  

(A) Volcano plot of genes enriched in a whole genome CRISPR screen in Fh1fl/fl and Fh1-/-CL1 

cells. The comparison was made between Fh1fl/fl and Fh1-/-CL1 cells to identify lethal genes 

dependent on FH-deficiency. Points highlighted in blue are significantly depleted hits and 

labelled points are high confidence hits (defined as enriched compared to control cells taking 

into account original plasmid). (B) Expression of Foxa2 in Fh1fl/fl (blue), Fh1-/-CL1+pFh1-GFP 

(grey), Fh1-/-CL1 (red) and Fh1-/-CL19 (orange). (C) Immunoblot of protein lysate from Fh1fl/fl, 

Fh1-/-CL1+pFh1-GFP , Fh1-/-CL1 and Fh1-/-CL19 cells probed with antibodies against FOXA2 and 

FH. 

Figure 4 FOXA2 controls NRF2 target genes 

(A) Volcano plots of differentially expressed genes in Fh1fl/fl (left), Fh1-/-CL1 (middle) and Fh1-/-

CL19 (right) cells treated with siFoxa2 compared to siNT. (B) Gene ontology enrichment of 

differentially expressed genes in Fh1-/-CL1 (left) and Fh1-/-CL19 (right) cells. (C) Transcription 

factor enrichment (ChEA) from publicly available ChIP-seq datasets nearby differentially 
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expressed genes in Fh1-/-CL1 cells treated with siFoxa2 compared to siNT. (D) Enrichment of 

NRF2 target genes (NFE2L2.V2 gene set) among differentially expressed target genes in 

Fh1-/-CL1 cells treated with siFoxa2 compared to siNT. 

Figure 5 FOXA2 binds chromatin in FH-deficient cells independent of NRF2 

(A) Venn diagram of FOXA2 ChIP-seq peaks shared between (purple) and specific to Fh1fl/fl 

(blue) and Fh1-/-CL1 cells (red). (B) Heatmap of FOXA2 ChIP-seq signal across 10 kb regions 

centered at FOXA2 peaks in Fh1fl/fl (blue) and Fh1-/-CL1 cells (red). (C) H3K27ac ChIP-seq, 

ATAC-seq and FOXA2 ChIP-seq from Fh1fl/fl (blue) and Fh1-/-CL1 cells (red) at the Gclc locus. 

Fh1-/-CL1 specific FOXA2 peak upstream of Gclc highlighted in red. (D) Enriched motifs from 

de novo motif analysis of FOXA2 peaks specific for Fh1-/-CL1 cells with enrichment P-values 

and matched transcription factor names and match scores. (E) Heatmap of enrichment P-

values (hypergeometric test) of differentially expressed genes from siFoxa2 treatment to 

FOXA2 ChIP-seq peaks at increasing distances from the TSS. (F) Heatmap of enrichment 

P-values (hypergeometric test) of differentially expressed genes from siFoxa2 treatment to 

FOXA2 ChIP-seq peaks with the presence additional transcription factor motifs at increasing 

distances from the TSS. (G) Venn diagram comparing proteins identified from FOXA2 RIME 

in Fh1fl/fl (blue) and Fh1-/-CL1 cells (red). Proteins from each section that are annotated as a 

transcription factor are stated, and highlighted if their motif was identified from the de novo 

motif analysis.  

Figure 6 FOXA2 regulates NRF2 associated metabolism  

(A) Immunoblot of protein lysate from Fh1fl/fl, Fh1-/-CL1 and Fh1-/-CL19 cells treated with either 

siNT or siFoxa2 probed with antibodies against FOXA2. (B) Volcano plots of differentially 

abundant metabolites in Fh1fl/fl (left), Fh1-/-CL1 (middle) and Fh1-/-CL19 (right) cells treated with 

siFoxa2 compared to siNT. (C) Metabolite set enrichment analysis of significantly changed 

metabolites in Fh1-/-CL1 cells treated with siFoxa2 compared to siNT. Colour of dots represent 

enrichment in altered metabolites in Fh1-/-CL19 cells treated with siFoxa2 compared to siNT. 

(D-E) Normalised abundances of indicated metabolites in Fh1fl/fl, Fh1-/-CL1 and Fh1-/-CL19 cells 

treated with either siNT or siFoxa2. 

Supplementary Figure 1 

(A) Histogram of fragment length of ATAC-seq sequencing data from Fh1fl/fl, Fh1-/-CL1+pFh1-

GFP, Fh1-/-CL1, Fh1-/-CL19 replicates. (B) Pearson correlation of ATAC-seq replicate data from 

Fh1fl/fl, Fh1-/-CL1+pFh1-GFP, Fh1-/-CL1, Fh1-/-CL19 cells (C) Pearson correlation of ChIP-seq 

replicate data from Fh1fl/fl, Fh1-/-CL1+pFh1-GFP, Fh1-/-CL1, Fh1-/-CL19 cells. (D) Normalised 

H3K27ac ChIP-seq and ATAC-seq signal at the Mir200c (upper) and Slc7a11 (lower) loci. 
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(E) Normalised ATAC-seq (upper) and H3K27ac ChIP-seq signal (lower) from from Fh1fl/fl 

and Fh1-/-CL19 cells at differentially accessible and differentially bound regions. 

Supplementary Figure 2 

(A) Heatmap of normalised ATAC-seq signal at clusters I – VII. (B) Heatmap of normalised 

H3K27ac ChIP-seq signal at clusters I – VII. (C) Bar chart of the percentage of regions within 

intervals of distance from the nearest transcription start site (TSS). (D) Heatmap of 

enrichment P-values (hypergeometric test) of differentially expressed genes in Fh1-/-CL1 

compared to Fh1fl/fl associated with clusters I - VII at increasing distances from the TSS. 

Supplementary Figure 3 

(A) Expression of forkhead factors in Fh1-/-CL1 cells ranked from lowest expression to the 

highest. (B) Log2(Fold change) of significantly differentially expressed forkhead factors in    

Fh1-/-CL1 compared to Fh1fl/fl cells. (C) Box plot of FOXA2 expression in human FH-deficient 

papillary renal cell carcinoma compared to adjacent normal tissue (Crooks et al., 2021). (D) 

Box plot of FOXA2 expression in FH-high and FH-low papillary renal cell carcinoma tissue 

(TCGA KIRP) (E) Kaplan-Meier curves of overall patient survival for high (above median; 

red) or low (below median; black) expression of FOXA2 in renal papillary cell carcinoma. 

Supplementary Figure 4 

(A) Immunoblot of protein lysate from Fh1fl/fl, Fh1-/-CL1 and Fh1-/-CL19 cells treated with either 

siNT or siFoxa2 probed with antibodies against FOXA2. (B) Pearson correlation of RNA-seq 

replicate data from Fh1fl/fl, Fh1-/-CL1 and Fh1-/-CL19 cells treated with either siNT or siFoxa2. (C) 

Euler diagram of DEGs from Fh1fl/fl, Fh1-/-CL1 and Fh1-/-CL19 cells treated with either siFoxa2 

compared to siNT. (D) Heatmap of enrichment P-values (hypergeometric test) of 

differentially expressed genes from siFoxa2 treatment associated with clusters I - VII at 

increasing distances from the TSS. 

Supplementary Figure 5 

(A) Scatter plot of FOXA2 ChIP-seq signal between replicates in Fh1fl/fl cells. R2 value 

shown. (B) Scatter plot of FOXA2 ChIP-seq signal between replicates in Fh1-/-CL1 cells. R2 

value shown. (C) Normalised ATAC-seq signal (upper) and H3K27ac ChIP-seq signal 

(lower) from Fh1fl/fl (blue), Fh1-/-CL1 (red) cells at Fh1-/-CL1 specific peaks (left), shared peaks 

(middle) and Fh1fl/fl specific peaks (right). (D) Heatmap of enrichment P-values 

(hypergeometric test) of NRF2 target genes (NFE2L2.V2 gene set) to FOXA2 ChIP-seq 

peaks at increasing distances from the TSS. (E) Line plot of normalised abundances of 

FOXA2, AP-1, NRF2 and CTCF motifs across Fh1-/-CL1 specific peaks. 
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Supplementary Figure 6 

PCA plot of normalised metabolomics replicates from Fh1fl/fl, Fh1-/-CL1, Fh1-/-CL19 cells treated 

with either siNT or siFoxa2. 
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