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Abstract

Using brain activity directly as input for assistive tool control can cir-
cumvent muscular dysfunction and increase functional independence
for physically impaired people. Most invasive motor decoding stud-
ies focus on decoding neural signals from the primary motor cortex,
which provides a rich but superficial and spatially local signal. Initial
non-primary motor cortex decoding endeavors have used distributed
recordings to demonstrate decoding of motor activity by grouping elec-
trodes in mesoscale brain regions. While these studies show that there
is relevant and decodable movement related information outside the
primary motor cortex, these methods are still exclusionary to other
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mesoscale areas, and do not capture the full informational content of
the motor system. In this work, we recorded intracranial EEG of 8
epilepsy patients, including all electrode contacts except those con-
tacts in or adjacent to the central sulcus. We show that executed and
imagined movements can be decoded from non-motor areas; combining
all non-motor contacts into a lower dimensional representation pro-
vides enough information for a Riemannian decoder to reach an area
under the curve of 0.83 ± 0.11. Additionally, by training our decoder
on executed and testing on imagined movements, we demonstrate that
between these two conditions there exists shared distributed informa-
tion in the beta frequency range. By combining relevant information
from all areas into a lower dimensional representation, the decoder was
able to achieve high decoding results without information from the pri-
mary motor cortex. This representation makes the decoder more robust
to perturbations, signal non-stationarities and neural tissue degradation.
Our results indicate to look beyond the motor cortex and open up the
way towards more robust and more versatile brain-computer interfaces.

Keywords: Motor Decoding, Low-dimensional Representation, Distributed
Recordings, Riemannian Geometry, Brain-computer interfaces
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1 Introduction

Motor neuron diseases, aging-related diseases and accidents can lead to los-
ing a part of or complete muscle control: in the Netherlands alone, 415.000
people are experiencing severe physical disability (2011)[1, 2]. A main pre-
dictor of their life satisfaction is their functional independence [3, 4], which
could be regained with appropriate assistive tools. An intuitive way to increase
functional independence again is to circumvent muscular dysfunction by using
brain activity directly as input for control of assistive tools [5, 6]. For a user
to achieve sufficient control, the decoder that translates user intent to device
motor output needs to have access to rich movement-related neural informa-
tion. Traditionally, the primary motor cortex has been the primary target,
as it has direct downstream output to muscle actuators [7–10]. For example,
implantations of microelectrode arrays (MEA) in the hand-knob area of the
human primary motor cortex have resulted in state-of-the-art decoders that
can decode imagined handwriting at speeds comparable to regular smartphone
typing[11].

Electrodes in the primary motor cortex are bringing brain-computer inter-
faces (BCIs) significantly closer to clinical application, as they provide a rich,
spatially local signal from the cortical surface. While the primary motor cor-
tex is widely known for its descending motor neurons and concrete motor
commands, there also exist non-direct processes in motor control like feed-
back processing and attention[12]. Inversely, the descending motor neurons
and concrete motor commands do not originate only from the primary motor
cortex[13], illustrating that an overly narrow focus on the primary motor cor-
tex in the invasive motor decoding space. It excludes decoding endeavors in a
large part of the motor system and fails to take advantage of other potentially
informative (sub)cortical areas.

For example, an important area involved in key motor processes are the
basal ganglia [14, 15]. The importance of this area is described not only by
anatomical and physiological studies, but also by lesions or impairments in this
area, caused by diseases such as Parkinsons’ disease. Deep brain stimulation
research shows that stimulation in the globus pallidus interna or subthalamic
nucleus restores motor function in Parkinsonian patients. From a decoding
perspective, it is demonstrated that the signal from the subthalamic nucleus
or globus pallidus interna [16] can be used to decode finger clicking, as well as
real-time grasp force level decoding from the subthalamic nucleus [17].

Decoding motor processes from non-primary motor areas is explored
increasingly more. Recently, several studies demonstrated significant motor
decoding results in humans in many different areas, such as the ventral pre-
motor cortex [18], posterior parietal cortex [19–21], somatosensory cortex
[18], supramarginal gyrus [18, 20], temporal areas [22], insula [20, 22] and
hippocampus [20, 22].

These results indicate that there is decodable movement-related activity in
many different areas distributed throughout the brain, however, they decoders
only reach performance statistically above chance. It appears as though these
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areas separately do not provide sufficient information for high-performance
decoders. However, all available information might be leveraged by combining
activity from multiple areas into a single lower dimensional representation,
ultimately increasing the decoders performance [23, 24].

Simultaneously, the decoder could become more robust to perturbations,
signal non-stationarities or brain tissue degradation, which is especially impor-
tant in the target population [25]. This includes people with progressive
diseases and/or multiple co-morbidities, meaning that brain regions can
become impaired and stop contributing to the decoder. By combining infor-
mation into a lower dimensional representation, the decoder can compensate
for the loss of information from impaired areas and will still have access to
sufficient information from other contributing areas.

There are indications that an informative lower dimensional represen-
tation of movement related activity exists [24, 26, 27]. Specifically, neural
activity might be well represented by a stable general movement related man-
ifold, together with specific sub-manifolds tailored to specific movements [28].
Importantly, this means that there exists a stable covariance structure across
movements from distributed recordings, which could be useful for movement
decoders.

Therefore, in this work, we expand from the movement decoders based
on individual brain areas to a lower dimensional representation of brain-
wide distributed stereotactic-electroencephalographic (sEEG) recordings, as
these electrodes provide high-spatial and temporal resolution throughout the
brain [29]. We implemented a Riemannian decoder that directly harnesses the
covariance structure of the lower dimensional representation. This way, mini-
mal interference from data transformation or feature synthesis approaches is
required. This decoder classifies trials directly based on the distance of the
sample covariance matrix per trial to the geometric mean covariance matrix
per class (figure 1A). We show significant above chance performance for both
executed and imagined movements for nearly all amounts of principal com-
ponents (figure 2), without the need for areas surrounding the central sulcus.
Additionally, we demonstrate that there is similar information in the lower
dimensional representation of the lower frequencies between executed and
imagined movements (figure 4).

2 Results

Eight participants executed and imagined 30 left and 30 right continuous hand
grasping movements (figure 1A). We removed all contacts locations surround-
ing the central sulcus (section 5.1.5), extracted beta and high-gamma frequency
components and reduced the data to 3 to 50 principal components. We then
trained a Riemannian classifier [30] using 10-fold cross validation on a binary
move vs rest task. The model performance was evaluated by the area under
the receiver operator characteristic (AUC), and outcomes of statistical tests
are corrected for multiple testing.
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Fig. 1 A) Overview experimental protocol. B) Contact locations of all participants warped
onto an average brain. Each color represents contacts from one participant. C) Low-
dimensional representation of the average movement (blue) and rest (orange) trial. For both
trajectories the covariance matrix of the first three components is shown in the colored
boxes. The trajectories shown are smoothed by a low pass filter, the unsmoothed trajecto-
ries are shown in supplementary figure 1. Note that the trajectories are clearly separated in
the space spanned by the first three components.

2.1 Executed and imagined movement can be decoded
from distributed non-motor brain areas.

The classifier decoded executed movements from rest periods significantly
above chance for all amount of principal components and frequency features,
except beta using 3 or 5 components. The highest performance was achieved
by combining beta and high-gamma activity with 45 principal components
(0.83 ± 0.11 AUC ± SD, figure 2). Using only beta and high-gamma reached
0.81±0.12 and 0.75±0.10, respectively. As for the imagined movement task, the
decoder reached above chance performance for most amounts of components
for both beta and beta + high-gamma. However, including only high-gamma
produced barely any significant decoding results. Lower amounts of principal
components did not reach above chance decoding, specifically: 3 and 5 in beta,
3, 5 or 10 in beta + high-gamma. Overall, performance of decoding imagined
movements is lower than executed movements. The maximum performance
for imagined movements using beta, high-gamma or beta + high-gamma was
0.68± 0.08, 0.63± 0.08 and 0.66± 0.06, respectively.
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Fig. 2 Decoder performance for different movement tasks, frequency features and number
of components. The rows show the results of the executed or imagined movement task and
the columns each frequency feature set used as input for the decoder. The x-axis depicts
the amount of principal components extracted from the data set and the y-axis the AUC
score. The light grey lines show the individual average scores over all folds per participant
and the black circles are the average scores for a each amount of components. A filled black
circle represents an average score that is significantly above chance (corrected for multiple
testing), whereas an empty circle is not significant. The grey shaded area shows the standard
deviation over participants and the dotted line the chance level (0.5 AUC).

2.2 A lower dimensional representation is beneficial for
decoding from distributed recordings.

We trained and tested our Riemannian decoder based on multiple amounts of
principal components, ranging from 3 to 50 components. The minimum amount
of components that reached above chance decoding was 10 components for all
feature sets in executed movement and 15 components in imagined movements
(figure 2), except for high-gamma, where only 30 and 40 components reached
above chance decoding. In both movement tasks, the decoder performance
increased with more components included. From about 15 to 25 components
the increase in performance was saturated, though still slowly increasing: the
maximum performance was always reached between 35 to 50 components. The
informational contribution per electrode to the first principal component, as
visualized by the orange and red spheres in figure 3, shows a distributed pattern
throughout the brain, illustrating that the sources of the information used by
the decoder are not provided by a single area.

2.3 Executed and imagined movement share distributed
information

If the underlying pattern of executed and imagined movements share informa-
tion, then the low-dimensional representation should capture similar patterns
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Fig. 3 Multi-angle view of all contacts of all participants warped to an average brain for
either the beta or high-gamma frequency in the imagined movement task. All contacts in
motor cortical areas are excluded (section 5.1.5). Visually, some seem to be located around
the central sulcus, which is an artifact most likely caused by warping contacts to an average
brain. The color indicates the contribution of that contact to the first principal component,
scaled to the explained variance of that component. Yellow means low contribution and red
mean high contribution. The image shows that orange and red colors are not bound to a
specific area, illustrating the wide distribution of information. Important to note is that a
multitude of components is required to achieve the results presented in this work (figure 2,
section 2.1), while only the first component is shown in this figure.

and achieve above chance decoding. Therefore, we trained the decoder on
executed movements, as this signal achieved higher decoding performance,
and tested it on imagined movements. For 10 to 30 components in the beta
frequency, the decoding performance was significantly above chance. For all
other components and in all other frequency bands, the decoder was not able
to decode movements above chance (figure 4). This is not surprising, as the
decoder was rarely able to decode above chance in imagined movement using
only high-gamma, thus indicating that the high-gamma band did not contain
much relevant neural information. Further, combining beta and high-gamma
resulted in a larger dimensionality without increasing informational content,
as indicated by the large increase in standard deviation in beta + high-gamma,
thus making it harder for the decoder to fit the data well.

3 Discussion

In this work, eight participants implanted with sEEG electrodes performed
executed and imagined movements. We trained a decoder that was able to
predict executed and imagined movements based on a lower dimensional
representation of distributed non-motor brain areas
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Fig. 4 Cross-task results. Decoders are trained on executed movement and tested on
imagined movement. Beta yielded above chance decoding for 10 to 30 components, while
high-gamma and beta + high-gamma decoding was not above chance.

Our results contribute to the growing interest in latent motor-related rep-
resentations in areas other than the primary motor cortex [12]. So far, most
studies have either utilized data from local areas using MEAs or ECoG, or
used brain-wide recordings using sEEG electrodes but only investigated con-
tributions from grouped contact per mesoscale cortical area [7, 11, 18–20]. Our
results extend these investigation by combining the movement-related neural
information from all electrodes into a single lower dimensional representation.
Decoding from this representation yields good decoding results, specifically in
executed movements.

Using a low-dimensional representation has several advantages: 1) The
transformation to component space combines the movement-related informa-
tion from all electrodes into a single representation. While each contact might
not contain enough information for good decoding results, combining all these
bits of information into a single representation increases the decoders perfor-
mance. 2) Decreasing dimensionality increases the decoders efficiency, which
is essential for translation to a closed-loop system. The amount of calcula-
tions for the Riemannian decoder grows exponentially with the amount of
dimensions, thus reducing the amount of dimensions drastically improves the
computational performance. 3) Combining movement-related information from
all contacts makes the decoder more robust to perturbations. Especially in a
clinical context, the target population includes many people with progressive
brain diseases. This means that the brain tissue could functionally change or
deteriorate, potentially causing specific brain regions to decrease or to stop
their contribution to the decoder. However, since the representation is a com-
bination of all electrodes, missing one or a few contact is less likely to decrease
the decoder performance.

The presented methods utilize any signal that is relevant for the move-
ments performed within the used paradigm, thus no selection is made based on
any mechanistic presumption. The relevant signal could also include any other



Motor decoding from non-motor areas 9

motor related signal, like motor planning, sequencing or decision-making, as
well as non-motor information such as attention, stimulus processing, stimulus
comprehension or spatial information. While the focus in previous litera-
ture is traditionally mostly on motor control, our results indicate that many
more information sources could be taken advantage of. However, we consider
it unlikely that a single non-motor related process is responsible, since the
average amount of used contacts per participants is 95.

We showed that executed and imagined movement share distributed infor-
mation in lower dimensional space, by training our decoder on executed
movements and testing it on imagined movements. This shows that there is
similarity between the two tasks and indicates that the underlying processes
are also similar. Our results suggest that only the beta frequency is able to
capture imagined movements, as it rarely reached above chance decoding in
the high-gamma frequency band (figure 2). This is in agreement with a recent
brain-wide intracranial speech production study [31], where both beta and
high-gamma was informative in overt speech, but only beta activity in imag-
ined speech. Within the beta band, there seems to be an optimum of amount of
components that captures the shared information between executed and imag-
ined movements (10 to 30 components, figure 4). Overall, the performance in
the cross task decoding is lower. This is not surprising, as we are decoding the
shared information, meaning that the decoder utilizes a subset of the infor-
mation from executed movements. Additionally, the decoder performance in
imagined movement was lower when trained and tested on imagined movement
in the first analysis. We also identified two technical differences that might
influence the results. First, in the cross-task performance, we used executed as
training set and imagined as test set, as opposed to the 10-fold cross validation
used in the main analysis. Since cross validation generally averages out data
set specific noise, this is not the case for a regular train-test setup, which could
be a reason for the increased variation in the cross task analysis. Secondly, it
is important to note that we did not optimize for performance. In order to
investigate the effect of different numbers of components, we chose a decoder
that classifies directly on the sample covariance matrix per trial. Through this
implementation, we aimed to not further conflate effects on the results with
data transformations or feature synthesis required by the decoder. While this
provides a better answer to our initial questions, it does mean that if there
is relevant high-gamma activity in imagined movements, our decoder pipeline
might not be able to capture it.

3.1 Limitations

All our participants are diagnosed with refractory epilepsy, a disease of which
we do not have a clear picture on how it influences our decoding results. During
the monitoring phase in which we perform our measurements, our participants
are expected to have as much seizures as possible, albeit no seizures occurred
during one of the experimental sessions. After a few days of settling in the
monitoring center, medication is reduced and eventually the participants are



10 Motor decoding from non-motor areas

stimulated in various forms to elicit seizures. Therefore participants often feel
drowsy and experience post-ictal discharges. We try to reduce influences as
much as possible by visiting as early in their treatment as possible, but we
are dependent on the clinical schedule of the patient. Additionally, while we
perform our experiments with epilepsy patients, the eventual target population
for movement decoders are people with movement impairments. It is unknown
if the neural signal in participants that cannot (fully) move anymore is similar
enough to decode as well as in epilepsy patients. However, successful studies
in paralyzed patients indicates that motor activity can still be decoded [9, 10].
Lastly, we did not objectively control for movements using EMG electrodes
during the imagined movement task. This could mean that micromovements
or increased muscle tension was present, thus inflating the decoder results.

4 Conclusion

In conclusion, we showed that both executed and imagined movements can be
decoded from distributed non-motor brain areas using a lower dimensional rep-
resentation. This shows that there is relevant movement-related information in
many areas that might be utilized for decoding purposes, potentially improv-
ing BCI applications. Future work should focus on maximizing performance
by implementing different decoders and explore more methods to generate a
lower dimensional representation. Lastly, future endeavors could transfer to a
closed-loop approach to take a further step towards any clinical application.
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5 Methods

5.1 Experiment

5.1.1 Participants

Eight participants were included in this work (age 35.8 ± 14.2 years, mean
± SD; 5 male, 3 female, supplementary table 1). All participants are refrac-
tory epilepsy patients undergoing presurgical assessment for resection surgery.
They were implanted with sEEG electrodes for two to three weeks to monitor
seizures and identify the epileptogenic zone. The electrode placement and tra-
jectories were determined solely based on their clinical needs. Participants were
implanted with 5 to 14 electrodes containing 42 to 125 recordable contacts.

5.1.2 Ethical approval

The experimental protocol was approved by the institutional review board
of Maastricht University and Epilepsy Center Kempenhaeghe (METC 2018-
0451). All experiments were in accordance with the local guidelines and regu-
lations and under supervision of experienced healthcare staff. All participants
joined the study voluntarily and gave written informed consent.

5.1.3 Protocol

Each participant was asked to continuously open and close their hand for 3
seconds per trial follow by a 3 second rest period. 30 trials were cued per hand,
resulting in 60 move and 60 rest trials (figure 1A). The stimuli were presented
in random order on a laptop screen that was resting on the participants lap or
on a table in front . We ran the protocol for executed and imagined grasping
movements.

Participants were instructed to only move their hands and to keep the
rest of their body still during executed grasping. For imagined movements,
the participants were asked to remain completely still, and the experimenter
visually checked if the participants adhered to the instruction. We did not use
stricter or more objective methods like electromyography (EMG) to measure
any micro-movements or increased muscle tension [32].

In our experience, participants often find it challenging to imagine move-
ments. Therefore, we always preceded the imagined grasping task with the
executed grasping task to provide the participant with a fresh memory of the
kinematic and proprioceptive sensation of a grasping movement. We assumed
it was easier for our participant to recall a mental image of the grasping
movement, helping them to perform the imagery task as good as possible.
Additionally, the experimenter briefly introduced two potential imagery strate-
gies: kinesthetic or visual [33], but the participants were free to use any strategy
that they thought was most effective for them.
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5.1.4 Data Recording

Neural activity was recorded by platinum-iridium sEEG electrodes (Microdeep
intracerebral electrodes; Dixi Medical, Beçanson, France) using two stacked
64-channel Micromed SD LTM Amplifiers (Micromed S.p.A., Treviso, Italy).
The electrodes are 0.8mm in diameter and contain 5 to 18 contacts. The con-
tacts are 2mm in length and have a 1.5mm inter-contact distance and are
referenced to a white matter electrode that did not show epileptic activity,
visually determined by the epileptologist. All recordings and stimuli were syn-
chronized using LabStreamingLayer[34]. For clarity, throughout this work we
refer to ’electrode’ as the implanted shaft and ’contact’ for each location on
each electrode where activity is measured.

5.1.5 Imaging

The anatomical locations for each contact were determined using the img pipe
Python package [35] and parcellation based on the Destrieux atlas [36].
To do so, we coregistered a pre-implantation anatomical T1-weighted MRI
scan, parcellated using Freesurfer (https://surfer.nmr.mgh.harvard.edu/), and
a post-implantation CT scan. For visualization purposes, the electrodes were
warped to average brain from the CVS average-35 atlas in MNI152 space.

To remove motor cortical areas we excluded all contacts of which the deter-
mined anatomical label contained the word ’motor’ or ’central’ (supplementary
data 1). This was a strict exclusion of contacts, meaning that contacts in
white matter close to the central sulcus and primary (sensori-)motor cortex are
removed as well. Note that the white matter anatomical labels in the Destrieux
atlas are based on proximity to labeled grey matter area, introducing some
uncertainty of the exact location.

5.1.6 Electrode coverage

In total, 956 contacts on 82 electrodes were implanted in our participants,
with electrodes containing a minimum of 5 and a maximum of 18 contacts per
electrode. All contacts across participants covered a total of 59 unique grey
matter areas with 448 contacts, where the superior insular sulcus is covered
the most (n = 25) followed by the superior temporal sulcus (n = 23) and the
middle frontal gyrus (n = 23). The remaining contacts are located in white
matter (n = 408) or unknown areas (n = 100). Unknown areas are areas that
could not be identified due to various technical reasons. See section 5.1.5 for
a technical explanation and supplementary figure 2 for a graphical overview
of all areas. Because of a limited number of channels (n=128) that can be
recorded by the amplifiers, not all contact could be recorded, reducing the total
amount of recorded contacts by 71 (supplementary table 1). The selection of
which contacts should be included was made by the epileptologist for clinical
reasons. The amount of recorded contacts left after motor and noise removal
are shown in supplementary table 1
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5.2 Decoding

5.2.1 Preprocessing

The data quality of each contact was assessed for excessive noise. First, con-
tacts were flagged if the 50 Hz frequency band power exceeded two times
the interquartile range of the signal. Additionally, contacts with a z-scored
log square mean value that was significantly higher (p < 0.05, assuming nor-
mal distribution) than the values in other contacts were flagged for abnormal
amplitude (supplementary table 1).

The remaining contacts were detrended, demeaned and band-stop filtered
for 50 Hz line noise its and harmonics up to and including 200Hz, using a finite
impulse response filter implemented in the MNE python package [37]. Then,
we extracted beta (12-30Hz) and high-gamma (55-90Hz) envelope by taking
the absolute of the Hilbert transform on the band-passed filtered signal. These
frequency bands are chosen as they are known to be movement related and have
shown to be effective in decoding studies [7, 38–40]. After preprocessing, the
data was split into trials. Left and right hand movement trials were combined
into a single movement class.

5.2.2 Decoder

A decoder was trained and tested for [3, 5, 10, ..., 50] principle components and
beta, high-gamma and beta + high-gamma bands. One participant had less
than 50 contacts and could therefore not be evaluated with 50 components.
Each component and band combination was trained and evaluated as follows:
first, the data was split using 10-fold cross validation. On the training data,
the data was standardized over all included trials per fold and a principal com-
ponent analysis was performed. The learned transformation was subsequently
used to transform the training and test fold to the specific amount of prin-
cipal components. For the cross task performance, the decoder used all data
per participant from the executed movement task as training set and all data
from the imagined movement task as test data.

After transformation into the components space, the sample covariance
matrix for each trial was calculated and regularized by the ledoit-wolf lemma
[41]. Then, the geometric mean per class was calculated based on the Kullback-
Leibler divergence. Trials were then classified by selecting the class with the
shortest distance to class geometric mean. For the calculations, we used the
pyRiemann implementation [42].

We choose a Riemannian approach as these decoders have shown promising
results by using straightforward methods in surface EEG [30, 43], though no
application has been published using sEEG thus far. Additionally, because
Riemannian decoders classify directly on the sample covariance matrix, it does
not require any further transformations or feature synthesis. As motor behavior
should be captured by the covariance in the neural recordings, we hypothesized
that these decoders would also perform well on our invasive data.
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5.2.3 Evaluation

We evaluated the decoder by the area under the receiver operator character-
istics (AUC). For both the main decoder and cross task results, we tested
statistical significance against chance level (mean AUC = 0.5) using a one sam-
ple t-test and corrected for multiple testing using Bonferroni correction. For
the control analysis for motor cortical areas, we used a Wilcoxon signed rank-
test (bonferroni corrected, n = 66) to compare the difference in performance
with and without motor cortical areas.
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