New Results
On the automaticity of visual statistical learning
View ORCID ProfileKevin D. Himberger, Amy S. Finn, Christopher J. Honey
doi: https://doi.org/10.1101/2022.07.04.498716
Kevin D. Himberger
aDepartment of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
Amy S. Finn
bDepartment of Psychology, University of Toronto, Toronto, ON, Canada
Christopher J. Honey
aDepartment of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
Posted July 06, 2022.
On the automaticity of visual statistical learning
Kevin D. Himberger, Amy S. Finn, Christopher J. Honey
bioRxiv 2022.07.04.498716; doi: https://doi.org/10.1101/2022.07.04.498716
Subject Area
Subject Areas
- Biochemistry (14110)
- Bioengineering (10771)
- Bioinformatics (34180)
- Biophysics (17591)
- Cancer Biology (14671)
- Cell Biology (20713)
- Clinical Trials (138)
- Developmental Biology (11141)
- Ecology (16449)
- Epidemiology (2067)
- Evolutionary Biology (20753)
- Genetics (13639)
- Genomics (19033)
- Immunology (14179)
- Microbiology (33032)
- Molecular Biology (13769)
- Neuroscience (72126)
- Paleontology (537)
- Pathology (2269)
- Pharmacology and Toxicology (3848)
- Physiology (6081)
- Plant Biology (12354)
- Synthetic Biology (3442)
- Systems Biology (8346)
- Zoology (1904)