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Abstract1

Large-effect loci—those discovered by genome-wide association studies or linkage mapping—associated with key traits segregate amidst a background
of minor, often undetectable genetic effects in both wild and domesticated plants and animals. Accurately attributing mean differences and variance
explained to the correct components in the linear mixed model (LMM) analysis is important for both selecting superior progeny and parents in plant and
animal breeding, but also for gene therapy and medical genetics in humans. Marker-assisted prediction (MAP) and its successor, genomic prediction
(GP), have many advantages for selecting superior individuals and understanding disease risk. However, these two approaches are less often integrated
to simultaneously study the modes of inheritance of complex traits. This simulation study demonstrates that the average semivariance can be applied to
models incorporating Mendelian, oligogenic, and polygenic terms, simultaneously, and yields accurate estimates of the variance explained for all relevant
terms. Our previous research focused on large-effect loci and polygenic variance exclusively, and in this work we want to synthesize and expand the
average semivariance framework to a multitude of different genetic architectures and the corresponding mixed models. This framework independently
accounts for the effects of large-effect loci and the polygenic genetic background and is universally applicable to genetics studies in humans, plants,
animals, and microbes.
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Introduction1

Today, LMMs are routinely applied in breeding and quantitative2

genetics research and are used for the prediction of genetic values3

in plants and animals (VanRaden 2008; Hayes et al. 2009; Albrecht4

et al. 2011; Endelman 2011; Crossa et al. 2014; Meuwissen et al.5

2016), or polygenic risk scores (PRSs) in humans (de los Campos6

et al. 2010; Dudbridge 2013; Wray et al. 2019; Truong et al. 2020;7

de Los Campos et al. 2013; Lello et al. 2018, 2019), to estimate the8

heritability of traits in target populations (Visscher et al. 2006, 2008;9

de los Campos et al. 2015; Lehermeier et al. 2017; Legarra 2016),10

and to estimate ecological and evolutionary genetic parameters11

of behavioral traits (Walsh and Lynch 2018; Walsh et al. 2020; Ol-12

droyd 2012; Hemani et al. 2013; Ariyomo et al. 2013). Genetic13

values are constructed from a combination of genetic effects; in-14

cluding Mendelian factors; which may have both additive effect15

and dominance deviations (Pincot et al. 2018, 2022), oligogenic16

factors consisting of few genetic factors and their epistatic inter-17

actions appropriate for marker-assisted prediction (MAP) (Tang18

et al. 2006), a polygenic term consisting of a dense genome-wide19

framework of markers assumed to have minor effects appropriate20

for genomic prediction (GP); which may also account of additive21

and dominance sources of variance (Pincot et al. 2020; Brandariz22

and Bernardo 2019), and a residual genetic term consisting of all23

genetic effects not accounted for by the previous genetic factors24

(Rutkoski et al. 2014; Rice and Lipka 2019; DeWitt et al. 2021). The25

ultimate objective in breeding applications is, typically, predict- 26

ing the genotypic value, e.g., breeding value or genetic merit of a 27

candidate individual (Knapp 1998; Piepho et al. 2008; Piepho 2009; 28

VanRaden 2008; Luby and Shaw 2001; Collard and Mackill 2007). 29

For loci to provide actionable gains or diagnoses, they must ex- 30

plain a significant proportion of phenotypic and genetic variation 31

in a population with alleles in segregation at target loci. 32

Candidate gene discovery through genome-wide association 33

studies (GWAS) and quantitative trait locus (QTL) mapping is 34

prolific in plant and animal populations (Lander and Botstein 35

1989; Lander and Schork 1994; Visscher et al. 2012, 2017; Korte 36

and Farlow 2013; Yu et al. 2006). Despite decades of directional 37

selection in many plant populations, loci impacting traits of interest 38

still segregate, even in advanced breeding materials, and these 39

genome-wide analyses have succeeded in implicating numerous 40

genes and genomic regions in the control of a wide variety of 41

both simple and complex traits (Tang et al. 2006; Pincot et al. 2018; 42

Wassom et al. 2008; Demmings et al. 2019a; Rutkoski et al. 2014; Rice 43

and Lipka 2019; DeWitt et al. 2021; Han et al. 2018; Xin et al. 2020; 44

Kim and Reinke 2019; Gage et al. 2020; Visscher et al. 2012, 2017; 45

Andersson 2001; Hayes and Goddard 2001; Anderson et al. 2007; 46

Septiningsih et al. 2009; Hayes et al. 2010; Saatchi et al. 2014; Seabury 47

et al. 2017), although the utility of such marker-trait associations 48

may not be fully realized (Bernardo 2004, 2016). Large-effect and 49

statistically significant loci typically only explain a fraction of the 50

genetic and phenotypic variance in a population (Feldmann et al. 51
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2 Complex traits and candidate genes

2021), along with the polygenic fraction (Feldmann et al. 2022),1

except in extreme scenarios when Mendelian factors wholly control2

a trait.3

Discovered loci rarely, if ever, explain 100% of the genetic vari-4

ance, and understanding the multiple sources of variation and5

how they relate can help breeders and research prioritize targets6

and mitigate risk (Bernardo 2004, 2014). Genes with significant7

effects often dominate the ’non-missing heritability,’ but they can8

also mask or obscure the effects of other quantitatively acting9

genes and pleiotropically affect multiple quantitative phenotypes10

(Mackay 2001; Mackay et al. 2009; Lorenz and Cohen 2012; De Ville-11

mereuil et al. 2018; Eichler et al. 2010). For example, mutations12

in the BRCA2 gene can have large effects, but be incompletely13

penetrant, interact with other genes, and may be necessary but14

insufficient for predicting breast, ovarian, and other cancer risks in15

women (Gaudet et al. 2010). Accurately partitioning the Mendelian,16

oligogenic, and polygenic sources of variance allows researchers17

to assess how much value, or risk, specific loci confer.18

Here, we use simulations to show that the ASV provides accu-19

rate variance component estimates (VCEs) and variance compo-20

nent ratios for all relevant genetic terms regardless study design21

or population type, e.g., outbred or inbred. We sought to marry22

the our previously published works (Piepho 2019; Feldmann et al.23

2021, 2022) and to present a fully realized ASV approach for typical24

LMM analyses in human, plant, animal, and microbial genetics.25

We demonstrate how these models can be extended to handle more26

complex genetic structures, including adding multiple explanatory27

loci and marker-marker interactions, incorporating non-additive28

dominance and epistasis variance, and partitioning marker vari-29

ance into additive and dominance components. We provide ex-30

amples of expressing the different models and extensions in the31

freely available sommer R package (Covarrubias-Pazaran 2016). We32

believe that the average semivariance is a powerful tool for an-33

swering these questions regardless of the organism, population, or34

trait.35

Linear mixed model analysis and the average semivari-36

ance37

The average semivariance (ASV) estimator of total variance38

(Piepho 2019) and the variance of single markers and marker-39

marker interactions (Feldmann et al. 2021) is half the average total40

pairwise variance of a difference between entries and can be de-41

composed into independent sources of variance, e.g., genetic and42

residual. In this article, we assume that researchers are able to in-43

dependently replicate entries—as in clonally propagated or inbred44

crop species—or can collect repeated measures on entries (e.g.,45

individuals, families, or strains)—as in humans and animals—and46

then estimate the least square means (LSMs), best linear unbiased47

estimators (BLUEs), or other adjusted entry means in the first stage48

of a two-stage analysis (Piepho et al. 2012; Schulz-Streeck et al. 2013;49

Damesa et al. 2017, 2019).50

The key idea here is that the adjust entry means, in general, are51

considered the "phenotype" since we assume independent replica-52

tion. In animal breeding, "de-regressed" best linear unbiased pre-53

dictors (BLUPs) are used in GBLUP and GWAS analysis (Strandén54

and Mäntysaari 2010; Ricard et al. 2013; Calus et al. 2016; Konstanti-55

nov and Goddard 2020). The two-stage approach is commonly56

applied for GWAS and GP studies in plants (Pincot et al. 2018, 2020;57

Damesa et al. 2017; Dias et al. 2020; Gogel et al. 2018). For simplicity58

in our demonstration, we assume that the error variance of the59

observation is R = Inσ2
ε , where n is the number of entries (e.g.,60

individuals, accessions, genotypes, lines, or animals). The more61

general approach is to assume a general variance-covariance ma- 62

trix R and, importantly, the average semivariance can efficiently 63

deal with more general forms of R and integrated directly into 64

single-stage or multi-stage analyses. We explore ASV in a fully 65

efficient two-stage analysis below in this article. 66

The form of the linear mixed model (LMM) for this analysis 67

assuming only one explanatory marker is: 68

y = 1µ + Zmm + Ig + IGR + ε (1)

where y is the vector of LSMs with y ∼ N (µ, V), µ is the popula- 69

tion mean and the only fixed effect, m is the random effect of the 70

main-effect locus with m ∼ N (0, Iσ2
m), g is the random additive ge- 71

netic effect associated with the genome-wide framework of marker 72

excluding m with g ∼ N (0, KASVσ2
g), GR is the random residual 73

genetic term—the portion of the total genetic effect not accounted 74

for by m or g—with GR ∼ N (0, Iσ2
GR

), and ε is the random residual 75

term with ε ∼ N (0, R). We then calculated KASV as: 76

KASV =
X̄X̄T

(n− 1)−1tr(X̄X̄T)
(2)

where X̄ = PX is the mean-centered marker matrix, K̄ = X̄X̄T
77

is the realized genomic relationship or kinship matrix, P = I− 78

n−11n1T
n is the idempotent mean-centering matrix, and tr(·) is the 79

trace. Zm is a n× nm dimension design matrix linking levels of the 80

explanatory locus to LSMs in y, where nm is the number of marker 81

genotypes. 82

The ASV definition of total variance from LMM (1) is: 83

θASV
y = (n− 1)−1tr(VP) (3)

= θASV
m + θASV

g + θASV
GR

+ θASV
ε̄

where θASV
y is the total phenotypic variance, V is the variance- 84

covariance among observations, θASV
m is the average semivariance 85

of the simple genetic term, θASV
g is the average semivariance of the 86

polygenic term, θASV
GR

is the average semivariance of the residual 87

genetic term, and θASV
ε̄ is the average semivariance of the residuals. 88

The ASV definition of the genomic variance is: 89

θASV
g = (n− 1)−1σ2

g tr(XXTP) (4)

=

[
tr(K̄)

n− 1

]
σ2

g

In general, we replace the unknown parameter values (σ2
g ) with 90

their REML estimates (σ̂2
g ) to obtain the ASV estimates (θ̂ASV

g ). 91

Following this form, it is possible to extend LMM (1) to include 92

dominance and epistatic sources of variance (see below). The ASV 93

definition of the marker associated genetic variance is: 94

θASV
m = (n− 1)−1σ2

mtr(ZmZT
mPm) (5)

=

[
(n− n−1 ∑h n2

G:mh
)

n− 1

]
σ2

m

= kmσ̂2
m

It is possible to extend this using the approach for multi-locus 95

models as in (8), with and without marker-marker interactions, 96

described in (Feldmann et al. 2021). The ASV definition of the 97

residual genetic variance is: 98
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Figure 1 Effect of n and r on the relative bias of variance components and ratios in simulated outbred populations. Phenotypic obser-
vations were simulated for 100 samples with n = 500, 1, 000, and 1, 814 (left to right) genotyped for m = 5, 000 SNPs and the average
heterozygosity H = 0.38. The relative bias of marker heritability, genomic heritability estimates (ĥ2

g), broad sense heritability, genomic
variance, marker variance, residual genetic variance, and residual variance heritability when the number of replicates of each entry
(r) = 1 (upper panel), 2 (middle panel), and 4 (lower panel). The upper and lower halves of each box correspond to the first and third
quartiles (the 25th and 75th percentiles). The notch corresponds to the median (the 50th percentile). The upper whisker extends from the
box to the highest value that is within 1.5× IQR of the third quartile, where IQR is the inter-quartile range, or distance between the first
and third quartiles. The lower whisker extends from the first quartile to the lowest value within 1.5× IQR of the quartile. The dashed
line in each plot is the true value from simulations.

θASV
GR

= (n− 1)−1σ2
GR

tr(InIT
n Pn) (6)

= σ2
GR

Importantly, all terms are estimated on the same scale as the1

residual variance θASV
ε and are estimates on an entry-mean basis.2

The ASV definition of the residual variance is:3

θASV
R = (n− 1)−1σ2

ε tr(InIT
n Pn) (7)

= σ2
ε

Linear mixed model extensions incorporating the average 4

semivariance 5

While an important model, LMM (1) only covers a narrow scope of 6

the possible genetic models and experiments that might exist, and 7

we want to provide researchers with a clear strategy for expanding 8

this approach to more complex systems. This section demonstrates 9

how to partition the additive and dominance variance from a single 10

marker, incorporate multiple explanatory loci, their interactions 11

into the model, and non-additive polygenic terms, and achieve a 12

fully efficient two-stage analysis. Depending on the population, 13

trait, environment, etc. the unique components of the models 14

demonstrated here can be hybridized and merged to accurately 15

and holistically decompose the multitude of potential sources of 16

genetic variation. The code to execute these models using the som- 17

mer v4.1.7 (Covarrubias-Pazaran 2016) is provided in the methods. 18
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Figure 2 Effect of n and r on the relative bias of variance components and ratios in simulated inbred populations. Phenotypic obser-
vations were simulated for 100 samples with n = 500, 1, 000, and 1, 814 (left to right) genotyped for m = 5, 000 SNPs and the average
heterozygosity H = 0. The relative bias of marker heritability, genomic heritability estimates (ĥ2

g), broad sense heritability, genomic vari-
ance, marker variance, residual genetic variance, and residual variance heritability when the number of replicates of each entry (r) = 1
(upper panel), 2 (middle panel), and 4 (lower panel). The upper and lower halves of each box correspond to the first and third quartiles
(the 25th and 75th percentiles). The notch corresponds to the median (the 50th percentile). The upper whisker extends from the box to
the highest value that is within 1.5× IQR of the third quartile, where IQR is the inter-quartile range, or distance between the first and
third quartiles. The lower whisker extends from the first quartile to the lowest value within 1.5× IQR of the quartile. The dashed line in
each plot is the true value from simulations.

Extension #1: Incorporating multiple target loci and1

locus-locus interactions2

It is common for multiple QTL to be implicated from genetic stud-3

ies (Tang et al. 2006; Rutkoski et al. 2014; Vasconcellos et al. 2017;4

Lopdell et al. 2019; Legare et al. 2000; Cockerton et al. 2019; Rice5

and Lipka 2019; Demmings et al. 2019b), the utility of which is not6

always certain (Bernardo 2001, 2004). While the simulations in this7

paper rely exclusively on LMM (1), this model can be easily ex-8

panded to include multiple explanatory loci and their interactions9

or statistical epistasis (Moore and Williams 2005; Álvarez-Castro10

and Carlborg 2007), as demonstrated by (Feldmann et al. 2021). For11

example, the LMM with three main-effect loci, denoted m1, m2,12

and m3, is:13

y = 1nµ +
3

∑
i=1

Zmi mi +
2

∑
i=1

3

∑
j=2

i<j

Zmij mij (8)

+ Zm123 m123 + Ig + IGR + ε

where mi is the random effect of the i-th main-effect marker, mij 14

is the random effect of the two-way interaction between the i-th 15

and j-th markers, and m123 is the random effect of the three-way 16

interaction between the three main-effect loci. Zmi , Zmij , and Zm123 17

are design matrices that link levels of the explanatory marker and 18

interactions to LSMs in y. The rest of the terms have the same 19

definitions. 20
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Extension #2: Partitioning θASV
m into additive (θASV

mα
) and1

dominance (θASV
mδ

) components2

The factor coding of the Mendelian and oligogenic markers is a3

different approach than is standard in GWAS (Korte and Farlow4

2013; Visscher et al. 2012, 2017). In GWAS, markers are typically5

treated as fixed and coded numerically, e.g., the dosage model.6

Assuming that a researcher is working with an outbred species7

(H 6= 0), the dominance deviations can be significant, and par-8

titioning the additive and dominance sources of variance from9

significant markers can be helpful in hybrid crop breeding and dis-10

ease risk prognoses. Our goal is to partition θASV
m into its additive11

(θASV
mα

) and dominance (θASV
mδ

) components.12

Here, we demonstrate an LMM that can be used to partition13

the additive and dominance sources of variance of the main ef-14

fect marker. The form of the linear mixed model (LMM) for this15

analysis assuming only one explanatory marker is:16

y = 1µ + Zmα mα + Zmδ mδ + Ig + IGR + ε (9)

where mα is the random effect of the main-effect locus with mα ∼17

N (0, Iσ2
mα

) and mδ is the random effect of the main-effect locus18

with mδ ∼ N (0, Iσ2
mδ
). Zmα is an n × 3 design matrix linking19

marker genotypes to observations and Zmδ is an n × 2 design20

matrix linking genotypic state, either homozygous (AA and aa) or21

heterozygous (Aa), to observations. Other terms are as defined in22

LMM (1).23

The average semivariance associated with mα is obtained as in24

(5) by:25

θ̂ASV
mα

= (n− 1)−1σ̂2
mα

tr(Zmα ZT
mα

Pmα ) (10)

=

n− n−1 ∑h n2
G:mαh

n− 1

 σ̂2
mα

where nG:mαh
is the number of entries nested in the h-th marker26

genotype (Feldmann et al. 2021). The average semivariance associ-27

ated with mδ is obtained by :28

θ̂ASV
mδ

= (n− 1)−1σ̂2
mδ

tr(Zmδ ZT
mδ

Pmδ ) (11)

=

n− n−1 ∑i n2
G:mδi

n− 1

 σ̂2
mδ

where nG:mδi
is the number of entries nested in the i-th genetic29

state. The sum of
[
kmα σ̂2

mα
+ kmδ σ̂2

mδ

]
=
[
θ̂ASV

mα
+ θ̂ASV

mδ

]
= θ̂ASV

m30

and
[
θ̂ASV

mα
+ θ̂ASV

mδ

]
− θ̂ASV

m = 2.21× 10−5. θ̂ASV
m is an unbiased31

estimate of the variance explained by a marker (Feldmann et al.32

2021). The likelihood ratio (LR) between LMM (1) and (9) was33

LR ≈ 0 and was not significant in any simulated populations34

(PLR > 0.2), suggesting that there is no appreciable difference35

between the model likelihood of (1) and (9). The same marker36

variance is estimated in both LMMs, (1) and (9), and the estimates37

are equal. Note that we were not able to fit LMM (9) in all software38

and had to use either sommer::mmer() or asreml::asreml().39

Extension #3: Incorporating additional polygenic terms40

for dominance (gδ) deviations41

LMM (1) can also be extended to include both additive (gα) and42

dominance (gδ) sources of genomic variance (Vitezica et al. 2013;43

Kumar et al. 2015; Vitezica et al. 2017; Xiang et al. 2018; Sun et al.44

2014; Ali et al. 2020; Zhang et al. 2021; Martini et al. 2016). The form 45

of the LMM for analysis with both gα and gδ assuming only one 46

explanatory marker M is: 47

y = 1µ + Zmm + Igα + Igδ + IGR + ε (12)

where gα and gδ are random effect vectors for the additive 48

and dominance polygenic effects, respectively, with gα ∼ 49

N (0, KASVσ2
gα
) and gδ ∼ N (0, KD

ASVσ2
gδ
). The average semivari- 50

ance dominance kernel is: 51

KD
ASV =

W̄W̄T

(n− 1)−1tr(W̄W̄T)
(13)

where W = 1− |X|, assuming X is coded [-1,0,1], and W̄ = PW. 52

This is a feasible approach to improve genetic performance in 53

crossbred populations with large dominance genetic variation 54

(Nishio and Satoh 2014; Vitezica et al. 2017; Xiang et al. 2018; Wolfe 55

et al. 2021). Both KASV and KD
ASV have the matrix properties 56

proposed by Speed and Balding (2015); i.e., n−1tr(K) = 1 and 57

n−2 ∑i ∑j Kij = 0. Not surprisingly, the dominance variance es- 58

timated with KD
ASV were accurate and the relative bias from 100 59

simulated populations was −3.32%. 60

Further extensions for additive-by-additive A× A or additive- 61

by-dominance A × D polygenic interactions are also possible 62

(Nishio and Satoh 2014; Covarrubias-Pazaran 2016; Vitezica et al. 63

2017). These matrices are often calculated as the Hadamard prod- 64

uct (element-wise multiplication, ◦) of KASV and/or KD
ASV , where 65

the additive-by-additive epistasis GRM is KI
ASV = KASV ◦KASV . 66

This matrix has the same essential properties as KASV , and so we 67

hypothesize that the ASV estimted variance components will be 68

accurate for these terms as well. 69

Extension #4: Stage-wise LMM analysis for multi- 70

environment trials (METs) and meta-analysis in plant 71

breeding 72

Two-stage, or stage-wise, analyses are the status quo in plant breed- 73

ing trials in both academic studies and seed industry (Piepho et al. 74

2012; Damesa et al. 2017, 2019; Endelman 2022). The reason for 75

this is that plant breeders are often not interested in the perfor- 76

mance per se of a line or hybrid within a specific location, unless the 77

presence of cross-over (rank change) G× E is very large enough 78

to make data from one target environment non-informative in an- 79

other target environment. Instead, plant breeders are often more 80

interested in the ranking and performance of entries averaged 81

across all environments (Bernardo 2020). It is common then to fit a 82

first model that accounts for the variation of random design ele- 83

ments, e.g., locations, years, blocks, and fixed genotype effects to 84

obtain the estimated marginal means (EMMs) or best linear unbi- 85

ased estimators (BLUEs) as adjusted entry means. These adjusted 86

entry means are then used as the phenotype or response variable 87

in GWAS and genomic prediction studies. However, the naive 88

approach is not "fully efficient" (Piepho et al. 2012) and assumes 89

that adjusted entry means are IID; i.e., R = Iσ2
R. However, due 90

to incomplete block and augmented designs, missing data, and 91

changes in experiment designs over time and location, IID entry 92

means are rarely observed in practice. To fully utilize the data, 93

however, the variance-covariance matrix of the estimates from 94

Stage 1 must be included in Stage 2 (Piepho et al. 2012; Damesa 95

et al. 2017), which is not possible with many software packages for 96

genomics-assisted breeding. 97

The LMM for stage one is: 98

y = XG + Zu + εe (14)
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6 Complex traits and candidate genes

where X is the fixed effect design matrix linking observations to1

entries, Z is the random effect design matrix for design (e.g., blocks)2

elements within each environment (e.g., years and locations), and3

εe are the residuals and εe ∼ N (0, Re), where Re is the residual4

variance-covariance matrix estimated in the e-th environment. Re5

can be estimated with or without spatial or autoregressive correla-6

tions (Farfan et al. 2015; Rodríguez-Álvarez et al. 2018; Anderson7

et al. 2018; Selle et al. 2020). This model is fitted for each environ-8

ment independently. From these models, we obtain the adjusted9

entry means ȳ and the residual variance covariance matrices Re10

from each of e = 1,..., ne environments, where ne are the number of11

environments. For CRD or experiments without design elements12

the obtained variance-covariance matrix will be diagonal. Assume13

that we have two environments, we will obtain R1 from environ-14

ment 1 and R2 from environment 2. We can then construct the15

2n× 2n block-diagonal stage-one Ω matrix as:16

Ω =

R1 0

0 R2

 (15)

This block-diagonal form indicates that the residuals among entries17

are uncorrelated among environments. For simplification, Re can18

be approximated by diagonal matrices in several different ways19

(Smith et al. 2001; Möhring and Piepho 2009; Welham et al. 2010;20

Piepho et al. 2012; Moehring et al. 2014), but here we use to the full21

variance-covariance matrix from each experiment e. Importantly,22

we need to carry Ω over from the stage-one analyses to stage-two23

of the analysis.24

The LMM for stage two is then:25

ȳ = 1µ + XE + Zmm + Zgg + ZGR GR + ε2 (16)

where ȳ are the adjusted entry means from stage-one, µ is the26

population mean, X is the fixed effect design matrix linking en-27

vironments to adjusted entry means, E are the fixed environ-28

mental effects, g is the random additive genetic effect associated29

with the genome-wide framework of marker excluding m with30

g ∼ N (0, KASVσ2
g), GR is the random residual genetic term—the31

portion of the total genetic effect not accounted for by m or g—32

with GR ∼ N (0, Inσ2
GR

), and ε2 is the structured residual term33

from stage-one with ε2 ∼ N (0, Ω) This approach is accessible to34

researchers via the sommer, asreml, and StageWise packages in R35

(Covarrubias-Pazaran 2016; Butler 2021; Endelman 2022) and in36

SAS.37

We created 100 simulated population (n = 1, 000; m = 5, 000)38

using a similar approach to the other simulations in this experi-39

ment. However, in this experiment we included Environmental40

and Block within Environment effects. We estimates the variance41

explained by the polygenic background, a large effect locus, the42

residual genetic variance, and non-genetic residual. The single43

stage analysis yielded relative biases of −0.67%, −0.33%, −0.67%,44

and 0.41% for the marker variance (σ̂2
m), genomic variance (σ̂2

g ),45

residual genetic variance (σ̂2
GR

), and residual variance (σ̂2
R), respec-46

tively (Fig 3). The two stage analysis yielded relative biases of47

−0.83%, −4.08%, 0.15%, and 0.16% for the marker variance (σ̂2
m),48

genomic variance (σ̂2
g ), residual genetic variance (σ̂2

GR
), and resid-49

ual variance (σ̂2
R), respectively (Fig 3).50

Extension #5: Incorporating kM directly into LMM analy-51

ses52

In (Feldmann et al. 2021), we introduced ASV into LMMs for in-53

dividual markers in genetic analysis as a post hoc adjustment of54
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Figure 3 Single versus multi Stage analysis with two environ-
ments. The relative bias of genomic variance (σ̂2

g ), marker vari-
ance (σ̂2

m), residual genetic variance (σ̂2
GR

), and residual variance
(σ̂2

R) analysed in a single stage (left panel) or in two stages (right
panel). The upper and lower halves of each box correspond to
the first and third quartiles (the 25th and 75th percentiles). The
notch corresponds to the median (the 50th percentile). The up-
per whisker extends from the box to the highest value that is
within 1.5 × IQR of the third quartile, where IQR is the inter-
quartile range, or distance between the first and third quartiles.
The lower whisker extends from the first quartile to the lowest
value within 1.5× IQR of the quartile. The dashed line in each
plot is the true value from simulations.

the variance explained by a marker by kM (5). This directly led to 55

(Feldmann et al. 2022), in which we showed that ASV estimates of 56

the genomic variance could be obtained by scaling the genomic 57

relationship prior to the LMM analysis and introduced KASV , elim- 58

inating the need for any post hoc adjustment. Using statistical pack- 59

ages such as sommer (Covarrubias-Pazaran 2016), we can directly 60

apply kM to the variance-covariance matrix for large effect loci M 61

and their interaction in our model. Typically, the identity matrix is 62

used as the variance-covariance matrix and levels of the random 63

effect are assumed to have the same variance and no covariance. In 64

(Feldmann et al. 2021) we multiplied the average marginal variance 65

component by kM to obtain the ASV component. Instead, if we 66

define KM = InM k−1
M , where KM is nM× nM and nM is the number 67

of marker genotypes. We can essentially think of KM in the same 68

way that we think of genomic relationship matrices; e.g., KASV , 69

except that we apply KM to the levels of the marker genotype 70

instead of entries. With this approach, we maintain the levels of 71

the factor come from the same variance and zero covariance, but 72

our scaling factor embedded directly in the model eliminating the 73

need for adjustment. Embedding kM in the LMM analysis using 74

KM is equivalent to the post hoc adjustment that we proposed in 75

(Feldmann et al. 2021), and so it is up to the user to determine 76

which approach they prefer. 77

Results and Discussion 78

Candidate Genes and Complex Traits 79

Bernardo (2014) was the first to propose an integration of MAP and 80

GP and since then empirical studies have validated the methodol- 81
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Feldmann et al 7

ogy (Rutkoski et al. 2014; Zhang et al. 2014; Rice and Lipka 2019;1

Spindel et al. 2016) while others have shown little-to-no improve-2

ment over GP (Li et al. 2015; Galli et al. 2020), suggesting that3

modeling significant markers can improve prediction accuracy4

only when markers explain a significant portion of both genetic and5

phenotypic variance (Galli et al. 2020). With the high densities of6

genome-wide markers commonly assayed in gene finding studies,7

investigators often identify markers tightly linked to candidate or8

known causal genes as exemplified by diverse real world examples9

(Andersson 2001; Hayes and Goddard 2001; Anderson et al. 2007;10

Gaudet et al. 2010; Hayes et al. 2010; Jensen et al. 2012; Visscher11

et al. 2012; Septiningsih et al. 2009; Saatchi et al. 2014; Visscher et al.12

2017; Freebern et al. 2020; Li et al. 2021; Korte and Farlow 2013).13

The candidate marker loci are nearly always initially identified14

by genome-wide searches using sequential (marker-by-marker)15

approaches such as GWAS and QTL analysis. Following the dis-16

covery of statistically significant marker-trait associations from17

a marker-by-marker genome-wide scan, the natural progression18

would be to analyze single- or multi-locus genetic models where19

the effects of the discovered loci are simultaneously corrected for20

the effects of other discovered loci, e.g., polygenic variation (Stroup21

et al. 2018; Gbur et al. 2020).22

A marker will not explain a large portion of variance if that23

marker does not have a large, detectable effect and, thus, markers24

that explain a large portion of genetic variance will be the most25

useful for MAP. For example, consider Fusarium wilt resistance in26

strawberry which is conferred by a single dominant acting locus27

Fw1 (Pincot et al. 2018, 2022). This locus explains nearly 100% of28

both the phenotypic and genetic variance and the mean differences29

delineate resistant vs susceptible genotypes, and thus there is30

almost no added benefit of a genome-wide sample of markers over31

the single-marker assay (m) for product delivery and germplasm32

improvement. While variance explained is directly linked to the33

effect size, it is not a direct substitute. However, the random effect34

machinery allows for researchers to obtain variance component35

estimates and effect sizes (e.g., BLUPs) simultaneously (Searle et al.36

1992) eliminating the need for multiple statistical models to assess37

the variance explained and the effect size of a target locus. The38

BLUP procedure is directly applied in this model, so it is natural to39

use the same statistical machinery to estimate GEBVs by GBLUP40

and the genetic effect of a locus.41

As a point of contrast, yield in maize (Zea mays) is heritable42

but no single locus explains any appreciable amount of pheno-43

typic or genotypic variance (Heffner et al. 2009, 2010; Yang et al.44

2017; Brandariz and Bernardo 2019; Gage et al. 2020; Zhang et al.45

2019). For improvement of yield in maize, GP is potentially a more46

valuable approach because the researcher, or breeder, can predict47

the polygenic value (g) without relying on any one particular lo-48

cus, but instead capturing variation of a genome-wide sample of49

markers. The more challenging scenario is the intermediate case50

in which a trait is controlled by both loci that are discernible from51

the polygenic background and the polygenic background itself52

(Rutkoski et al. 2014; Rice and Lipka 2019; DeWitt et al. 2021).53

The ratio between the variance explained by the oligogenic and54

polygenic terms with the total genetic or phenotypic variance is55

likely a a major factor determining the cost-benefit of incorporating56

MAP, GP, or both into a breeding or diagnostic program. Modeling57

a individual loci can be advantageous when the proportion of the58

phenotypic and genetic variance explained by the locus is reason-59

ably large and not partially captured by other markers in linkage60

disequilibrium (LD) with the target (Bernardo 2014; Rutkoski et al.61

2014; Rice and Lipka 2019; Pincot et al. 2018, 2022). Ideally, the62

targeted markers should not fit the marker effect size distribu- 63

tion assumptions, e.g., that all marker effects contribute equally to 64

the genomic variance and are drawn from the same distribution 65

(Piepho 2009; Endelman 2011; Habier et al. 2007) and should not 66

be in high LD with a large number of other markers. With ASV, 67

researchers can accurately estimate these parameters directly in 68

LMM analyses. 69

Simulations confirm that ASV yields accurate estimates 70

of all genetic variance components and ratios 71

As we show in our previous studies (Piepho 2019; Feldmann et al. 72

2021, 2022), ASV is ideal for estimating the variance explained 73

by both single loci and GRMs. In our simulations, we included 74

variation in population size, e.g., n = 500, 1, 000, and 1, 814, and 75

replication of entries, e.g., r = 1, 2, and 4 for both outbred (Fig 1) 76

and inbred populations (Fig 2). We can see that the same pattern 77

that has emerged as in previous studies; the ASV approach yields 78

accurate, unbiased estimates of variance components and variance 79

component ratios from LMM analyses regardless of the constitu- 80

tion of the population or the study design. Even when there is 81

only one replicate per entry (r = 1) all of the explanatory genetic 82

terms are still accurately partitioned from the total variance. As n 83

increased from 500 to 1, 814, the precision of estimates increased 84

dramatically (the sampling variance decreases). Increasing r from 85

1 to 4 did not affect precision or accuracy of genomic and marker 86

associated variances. However, increased numbers of replicates 87

did improve the precision of residual variance components. This is 88

because entries are replicated among plots (n · r), but markers and 89

other genetic components are replicated among entries (n). Our 90

simulations, in conjunction with our previous results (Piepho 2019; 91

Feldmann et al. 2021, 2022), demonstrate that in most populations— 92

human, animal, plant, or microbe—the average semivariance will 93

yield accurate and easily interpreted estimates of different variance 94

components. 95

Average semivariance in quantitative genetics and be- 96

yond 97

ASV is a strategy that can be used for estimating and partition- 98

ing the total variance into components (Piepho 2019), such as the 99

variance explained by loci and locus-locus (Feldmann et al. 2021) 100

and the genomic variance (Feldmann et al. 2022). The approach 101

we are suggesting shares some common threads with the current 102

thinking in quantitative genetics, particularly as it relates to ge- 103

nomic relatedness, genomic heritability, and genomic prediction 104

(VanRaden 2008; Yang et al. 2010; Kang et al. 2010; Habier et al. 105

2013; Hayes et al. 2009; Meuwissen et al. 2001; Isik et al. 2017; Zas 106

and Sampedro 2015; Potti and Canal 2011; Roff and Fairbairn 2015; 107

Swarts et al. 2021; Nietlisbach et al. 2016; Ulrich et al. 2021; Fan 108

et al. 2021) but it also deviates from the classic quantitative genetic 109

model conceptually in that it assumes that marker effects are ran- 110

dom variables (Falconer and Mackay 1996; Lynch and Walsh 1998; 111

Bernardo 2001). We have demonstrated that these are a statistically 112

valid set of assumptions, even though they deviate from the classic 113

quantitative genetics perspective. 114

ASV has several beneficial elements that make ASV a viable 115

option for quantitative genetics, but more importantly, it is appro- 116

priate for any quantitative discipline where variance components 117

are of interest from plant and microbial biology to psychology and 118

infant research. Namely: 119

1. The definitions of the variance components using average 120

semivariance are additive and sum to the phenotypic vari- 121
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8 Complex traits and candidate genes

ance. This means that the LMM can be extended to incorpo-1

rate all explanatory components, e.g., dominance, epistasis,2

transcriptomic, and will yield accurate VCEs for all terms3

(Nishio and Satoh 2014; Vitezica et al. 2017; Xiang et al. 2018;4

Krause et al. 2019). This is not necessarily true for all defini-5

tions of variance components (Piepho 2019).6

2. ASV is well suited for mutli-stage analyses At the center of7

ASV, is the idea that the "entry mean" is the phenotype per se,8

and not the observations (Piepho 2019; Feldmann et al. 2022).9

One interpretation is that individuals, not observations, are10

the primary source of variation. ASV yields accurate estimates11

of the genetic and genomic variance components in unrepli-12

cated, or partially replicated, designs common in humans and13

agricultural plants and animals (Cullis et al. 2006; Moehring14

et al. 2014; Cullis et al. 2020; Butler et al. 2014; González-Barrios15

et al. 2019). ASV also yields accurate estimates in the two-16

stage approaches to GP and GWAS in plants (Piepho et al.17

2012; Damesa et al. 2017, 2019).18

3. ASV does not affect or impact the BLUPs or breeding value19

predictions. ASV is only used to obtain accurate VCEs20

(Piepho 2019; Feldmann et al. 2022). It has been demonstrated21

that marker coding and different strategies for scaling and22

centering Z and K do not impact BLUPs or prediction accu-23

racy (Strandén and Christensen 2011; Legarra 2016; Legarra24

et al. 2018), and, because ASV essentially works through a25

set of scalar coefficients determined by the experiment and26

population, this feature directly applies to this work.27

4. ASV works under many model assumptions in GLMM28

analyses beyond the often-assumed variance-covariance29

structure in this study, e.g., R = Iσ2
ε . ASV can be applied to de-30

signs accounting for spatial structure through auto-regressive31

correlations or spline-models (Rodríguez-Álvarez et al. 2018;32

De Resende et al. 2006; Selle et al. 2019, 2020; Burgueño et al.33

2000; Borges et al. 2019; Hoefler et al. 2020). ASV can also34

be applied to data sets where the observational units lead to35

non-normality of residuals; i.e., ordinal disease scores and36

proportion scores (Piepho 2019).37

As substantiated by our simulations in this study and in the con-38

text of our previous work, ASV with REML estimation of the under-39

lying variance components yields accurate estimates for oligo and40

polygenic effect, both individually and collectively, and BLUPs of41

the the additive and dominance effects of marker loci (Piepho 2019;42

Feldmann et al. 2021, 2022). ASV directly yields accurate estimates43

of genomic heritability in the observed population and can be used44

to adjust deviations that arise from other commonly used methods45

for calculating genomic relationships regardless of the population46

constitution, such as inbred lines and F1 hybrids, unstructured47

GWAS populations, or animal herds and flocks. We believe that48

KASV provides a powerful approach for directly estimating ge-49

nomic heritability for the observed population regardless of study50

organism or experiment design (Visscher et al. 2006, 2007, 2008,51

2010). In conclusion, our recommendation is that the average semi-52

variance approach be considered for general adoption by genetic53

researchers working in humans, microbes, or (un)domesticated54

plants and animals.55

Methods and Materials56

Computer Simulations57

We generated 18 experiment designs with different population58

sizes of n = 500, 1, 000, and 1, 814 and number of clonal repli-59

cates per entry r = 1, 2, and 4 for outbred H = 0.38 and inbred60

H = 0.0 populations. Clonal replicates are a special case common 61

in plant genetics of hybrid (e.g., maize, rice, and sorghum) crop- 62

ping systems and in clonally propagated species (e.g., strawberry, 63

potato, and apple). In all examples, 100 populations genotyped 64

at m = 5, 000 loci. These 5, 000 SNPs were used to generate the 65

purely additive polygenic background and one locus for the sim- 66

ple genetic effect. Marker genotypes, e.g., alleles, were drawn 67

from a multivariate normal distribution with to replicate the pop- 68

ulation structure of the 1,814 mice from Valdar et al. (2006) using 69

MASS::mvrnorm() and transformed such that the population was 70

heterozygosity H = 0.38. We then estimated KASV and excluded 71

the targeted locus from the calculation of KASV . We also sim- 72

ulated residual genetic and residual effects each from a normal 73

distribution with µ = 0 and σGR =
√

20 and σR =
√

30 · r using 74

stats::rnorm(). A single explanatory locus was simulated with 75

a segregation ratio of approximately 1 : 2 : 1 for AA:Aa:aa marker 76

genotypes was simulated with µ = 0 and σm =
√

kM · 25 using 77

stats::rnorm(). We did not control for the portion of additive vs 78

dominance variance for the single marker. We simulated marker 79

effects for all m = 5, 000 loci following a normal distribution µ = 0 80

and σg =
√

40/5000. When multiplied by the centered marker 81

genotypes and summed, the score is taken as the true additive 82

genetic value g of each individual. For each simulated population 83

we expressed LMM (1) using asreml::asreml() Butler (2021). In 84

the second set of simulations, we used the same approach and 85

same mean and variance parameters. However, in this example 86

we simulated full inbred lines in the background polygenic mark- 87

ers (H = 0.0) and in the foreground markers, e.g., 1 : 0 : 1 for 88

AA:Aa:aa. All plots are made with the ggplot2 package Wickham 89

(2016) in R 4.1.0 R Core Team (2020). 90

Model statements in R/sommer v4.1.7: 91

Incorporating One Target Locus into GBLUP LMM (1) is ex- 92

pressed as: 93

mmer(fixed = Y ~ 1,
random = ~ M +

vsr(G, Gu = Kasv) +
GR,

rcov = ~ units,
data = data)

where data is a n× 4 matrix containing the phenotypic observa- 94

tions Y, a factor coding levels of M, a factor coding entries G, and 95

a factor coding levels of GR. The variable units is inferred by 96

sommer::mmer() and can be considered as a column with as many 97

levels as rows in the data (Covarrubias-Pazaran 2016). The factor 98

levels of G and GR are equivalent. 99

The version of this model with kM embedded is expressed as: 100

mmer(fixed = Y ~ 1,
random = ~ vsr(M, Gu = KM) +

vsr(G, Gu = Kasv) +
GR,

rcov = ~ units,
data = data)

where KM is the matrix KM = InM k−1
M . All other variables are the 101

same as previously defined. 102

Incorporating Multiple Target Loci into GBLUP. LMM (8) is ex- 103

pressed as: 104

mmer(fixed = Y ~ 1,
random = ~ M1 + M2 + M3 +
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M12 + M13 + M23 + M123 +
vsr(G, Gu = Kasv) +
GR,

rcov = ~ units,
data = data)

where data is a n× 10 matrix containing the phenotypic observa-1

tions Y, seven columns corresponding to the marker effects and2

interactions, a factor coding entries G, and a factor coding levels3

of GR. The factor coding of mα has three levels corresponding4

to AA : Aa : aa and a factor coding levels of mδ has two levels5

corresponding to homozygous and heterozygous.6

Partitioning Marker Variance into Additive and Dominance Com-7

ponents. LMM (9) is expressed as:8

mmer(fixed = Y ~ 1,
random = ~ Ma + Md +

vs(G, Gu = Kasv) +
GR,

rcov = ~ units,
data = data)

where data is a n× 5 matrix containing the phenotypic observa-9

tions Y, a factor coding levels of mα, a factor coding levels of mδ,10

a factor coding entries G, and a factor coding levels of GR. The11

factor coding of mα has three levels corresponding to AA : Aa : aa12

and a factor coding levels of mδ has two levels corresponding to13

the genetic state—either homozygous or heterozygous.14

Incorporating a Genomic Dominance Relationship Matrix into15

GBLUP. LMM (12) is expressed as:16

mmer(fixed = Y ~ 1,
random = ~ M +

vsr(Ga, Gu = Kasv) +
vsr(Gd, Gu = Kasv_D) +
GR,

rcov = ~ units,
data = data)

where data is a n × 5 matrix containing the phenotypic obser-17

vations Y, a factor coding levels of M, and three factors coding18

entries, e.g., Gα, Gδ, and GR. The factor levels of Gα, Gδ, and GR19

are equivalent.20

Incorporating Stagewise Meta-analysis into GBLUP. LMM (14) is21

expressed as:22

mmer(fixed = Y ~ G,
rcov = ~ units,
data = data)

where data is a n× 2 matrix containing the phenotypic observa-23

tions Y and one factor coding G for the entry ID. Blocks and other24

within location design elements can be incorporated as random25

effects using the random = syntax. In sommer, Res are obtained26

from each location as the ‘VarBeta‘ matrix in the sommer::mmer()27

output. Specially, ‘VarBeta‘ is the name of the model estimated28

variance covariance matrix among entry means in sommer. The29

Res are then bound corner-to-corner, which is accomplished using30

sommer::adiag1() to obtain Ω. We then take the inverse of Ω31

using base::solve().32

The LMM for stage 2 (16) is expressed as:33

mmer(fixed = Estimate ~ Env - 1,
random = ~ vsr(M, Gu = KM) +

vsr(G, Gu = Kasv) +
G:Env + GR,

rcov = ~ vsr(units,
Gti = matrix(invSigma2,1,1),
Gtc = matrix(3,1,1)),

nIters = 25,
emWeight = rep(1,25),
W = invOmega,
data = data)

where where data is a n× 5 matrix containing the adjusted entry 34

means from stage 1 Y, a factor coding levels of M, two equivalent 35

factors coding entries, e.g., G and GR, and one factor coding envi- 36

ronments Env. In this approach, we must fix the residual variance 37

component equal to 1 so that the residual so that all the scaling 38

of the invOmega = Ω−1 is unaffected by the model estimation 39

process. Within the vs() argument, the Gti() and Gtc() argu- 40

ments are used to set the initial value of the variance component 41

equal to the inverse of the variance among adjusted entry means 42

(invSigma2 = σ̂−2) and to constrain the variance component esti- 43

mation to a fixed value by setting the first argument equal to 3 44

(Covarrubias-Pazaran 2022). In this example we use 25 iterations 45

of 100% expectation-maximization algorithm; however, the EM 46

and NR methods can be exchanged or averaged, by changing the 47

emWeight argument. 48

Data Availability 49

Zenodo repository coming soon. For now, code is available by 50

request. 51
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