
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Building an Open Representation for Biological Protocols

BRYAN BARTLEY, JACOB BEAL, and MILES ROGERS, Raytheon BBN Technologies, USA

DANIEL BRYCE and ROBERT P. GOLDMAN, SIFT, LLC, USA

BENJAMIN KELLER, University of Washington, USA

PETER LEE, Ginkgo Bioworks, USA

VANESSA BIGGERS and JOSHUA NOWAK, Strateos, Inc., USA

MARK WESTON, Netrias, Inc., USA

Laboratory protocols are critical to biological research and development, yet difficult to communicate and reproduce across projects,
investigators, and organizations. While many attempts have been made to address this challenge, there is currently no available
protocol representation that is unambiguous enough for precise interpretation and automation, yet simultaneously abstract enough to
enable reuse and adaptation. The Protocol Activity Markup Language (PAML) is a free and open protocol representation aiming to
address this gap, building on a foundation of UML, Autoprotocol, and SBOL RDF. PAML provides a representation both for protocols
and for records of their execution and the resulting data, as well as a framework for exporting from PAML for execution by either
humans or laboratory automation. PAML is currently implemented in the form of an RDF knowledge representation, specification
document, and Python library, can be exported for execution as either a manual “paper protocol” or Autoprotocol, and is being further
developed as an open community effort.

CCS Concepts: •Applied computing→ Life andmedical sciences; • Computing methodologies→Knowledge representation
and reasoning.

Additional Key Words and Phrases: protocol, biology, representation, UML, RDF, SBOL

ACM Reference Format:
Bryan Bartley, Jacob Beal, Miles Rogers, Daniel Bryce, Robert P. Goldman, Benjamin Keller, Peter Lee, Vanessa Biggers, Joshua Nowak,
and Mark Weston. 2022. Building an Open Representation for Biological Protocols. 1, 1 (January 2022), 23 pages. https://doi.org/TBD

1 INTRODUCTION

Laboratory protocols are critical to biological research and development. However, protocols are often difficult to
communicate or reproduce, given the differences in context, skills, instruments, and other resources between different
projects, investigators, and organizations. One of the necessary preconditions for effectively addressing these challenges
is for there to be at least one commonly used data representation for describing laboratory protocols that is unambiguous
enough for precise interpretation and automation, yet simultaneously abstract enough to support reuse and adaptation.

Authors’ addresses: Bryan Bartley, bryan.a.bartley@raytheon.com; Jacob Beal, jakebeal@ieee.org; Miles Rogers, miles.rogers@raytheon.com, Raytheon
BBN Technologies, Cambridge, MA, USA; Daniel Bryce, dbryce@sift.net; Robert P. Goldman, rpgoldman@sift.net, SIFT, LLC, Minneapolis, MN, USA;
Benjamin Keller, bjkeller@uw.edu, University of Washington, Seattle, WA, USA; Peter Lee, plee@ginkgobioworks.com, Ginkgo Bioworks, Cambridge,
MA, USA; Vanessa Biggers, vanessa.biggers@strateos.com; Joshua Nowak, josh.nowak@strateos.com, Strateos, Inc., Menlo Park, CA, USA; Mark Weston,
weston@netrias.com, Netrias, Inc., Cambridge, MA, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

HTTPS://ORCID.ORG/0000-0002-1663-5102
HTTPS://ORCID.ORG/0000-0002-5851-4851
https://doi.org/TBD
https://orcid.org/0000-0002-1663-5102
https://orcid.org/0000-0002-5851-4851
https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Bartley, et al.

While there has been much prior work on representations for protocols, prior approaches have generally been limited
either by their dependence on natural language or in the expressiveness of their representation. Many protocol represen-
tations focus on simplifying the capture and distribution of descriptions in natural language, such as protocols.io [27]
and the many commercial electronic laboratory notebook products. A similar approach is used for recording protocol
execution information with community-defined minimum information standards such as MIAME [7], MIFlowCyt [14],
and STRENDA [28]. Much of the key information in such approaches is encoded using natural language, which is
easier to solicit from experimentalists, but cannot be readily interpreted by machines. As a consequence, protocols
and protocol execution records captured with such representations cannot be automatically validated and are often
ambiguous, incorrect, or lacking key information. For the same reasons, such protocols cannot generally be executed by
laboratory automation systems.

Other protocol representations have focused specifically on automation-assisted execution. In many cases, these are
highly specific solutions tied to specific hardware, often proprietary and tied to particular vendors. Some representations
have been made applicable to a broader set of automation systems, however, such as Autoprotocol [17] and Antha [25],
or instead use laboratory technicians as their automation, as in the case of Aquarium [12]. All of these representations,
however, have been generally “low level” in their description of protocols, focusing on very specific details of each
operation. This specificity, which on the one hand enables automated execution, on the other hand poses barriers to
adoption and to generalization and reuse, since this level of detail often obscures understanding and is too tied to the
specifics of a particular laboratory to readily transfer into different environments. Such representations are typically
also difficult to translate into more “human-friendly” forms.

Finally, there are a number of workflow languages that solve similar problems in business logic or information
processing, such as UML [19], the Common Workflow Language [2], Taverna [30], and Cromwell [8], not to mention
biology-specific workflow systems such as Toil [29] and Galaxy [11]. The execution models of such systems are in some
cases are general enough to be applied to the description and execution of laboratory protocols, but to the best of our
knowledge such an application has not previously been implemented. Further, their very generality can make it more
difficult for a domain expert to see how to apply them to protocols, given the large gap between abstract task execution
concepts and the specifics of particular tasks that must be performed in a laboratory.

Here, we present a unified approach to protocol representation that addresses all of these disparate needs and bridges
prior approaches through the development of the Protocol Activity Markup Language (PAML), a free and open protocol
representation building on a foundation of UML [19], Autoprotocol [17], and SBOL3 RDF [3, 16]. In Section 2, we
elaborate on the design goals for PAML, its three foundations, and the approach taken for implementation. Section 3
outlines the key elements of PAML’s representation for protocols, libraries of primitive actions, and execution records.
Section 4 then discusses the current prototype implementation of PAML and the execution environments it supports,
and Section 5 discusses ongoing plans for development.

2 ARCHITECTURE

We begin by elaborating a minimal set of design requirements necessary for any broadly applicable representation
of biological protocols. These requirements led us to identify a set of core representational ingredients sufficient to
address these requirements.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Building an Open Representation for Biological Protocols 3

2.1 Design Requirements

Information about laboratory protocols is used for a wide range of purposes in research and development, at many
different stages of experiment design, execution, data analysis, interpretation, and communication and sharing with
other groups. As such, to be effective as a broadly shared community standard, we argue that any protocol representation
will need to be able to support at least the following goals:

• Execution by either humans or machines: When available, laboratory automation can greatly improve the
productivity of researchers, so protocols should be specified in sufficient detail to enable them to be mapped for
machine execution. Many laboratories, however, do not have automation available. Moreover, even when some
degree of automation is available, it is common for protocols to incorporate both automated and manual stages,
so protocols also need to be able to be presented in a succinct and human-friendly form.

• Maintaining execution records and associated metadata markup:When a protocol is actually executed, it
is important to be able to record the specific time of execution, the laboratory and personnel that executed the
protocol, equipment used, etc. A protocol representation thus needs to include support for creating persistent
data structures that record a specific protocol execution and linking such execution records back to protocol
specifications. It is also important to be able to support automation in metadata tagging of the data collected in
the course of protocol execution. For example, given a protocol that collects flow cytometry data on samples
of different strains under varying growth conditions, the protocol specification should support automatic
association/markup linking each FCS file with information about the strain, growth conditions, time of data
collection, calibration, etc. of the sample from which the FCS file was produced.

• Mapping protocols from one laboratory environment to another: Protocol replication and reuse requires
the ability to map a protocol from one laboratory to another, despite their differences in the specific equipment,
inventory, and information systems. A protocol representation cannot guarantee that a protocol can be trans-
ferred, particularly one that is poorly understood or delicate in execution. Rather, a specification should allow
a protocol to say, to the best of the authors’ knowledge, how to predict if a mapping will product a correct
execution and how to check if an execution should be considered correct, i.e., what a protocol specification truly
requires, which aspects can safely be varied, which must be honored, and what are the anticipated tolerances
for inputs and outputs.

• Recording modifications of protocols and the relationship between different versions: Protocols are
likely to be the subject of ongoing improvement and maintenance. For example, a protocol may be modified in
order to enable the protocol to be simpler to execute or more reliable, to be executed at a lab with different
equipment from the lab at which the protocol originated, to enable the protocol to be scaled up or scaled down,
etc. A likely use pattern is to have a protocol initially be “too strict" (too specific) to be instantiated in a new
lab that wishes to run the protocol, and thus need modification. Rather than creating a new protocol, ideally,
the original should be generalized to allow it to run both where it could before and also in the new lab. This
improved version could then be contributed back and released as an updated version of the existing protocol.
Alternatively, if for some reason generalization is impossible or impractical, users should be able to create a
variant and record the source of that variant.

• Verification and validation of protocol completeness and coherence: Authoring a protocol requires
substantial care and effort, and the usefulness of the protocol can be compromised if its specification is ill-
formed, erroneous, or incomplete (e.g., the classic “inadequate methods section” issue in scientific publications).

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Bartley, et al.

Supporting protocol authors in achieving correctness is thus an important goal for a protocol representation,
and while the implementation will depend on specific tooling, the representation specification must provide
guidance as to what it means for a protocol to be complete, consistent, etc. This is especially important for
automatically-executed protocols since the control system cannot be counted on to repair flaws in protocols on
the fly, and in the worst case, an incorrect specification could even cause damage to equipment or endanger lab
personnel.

• Planning, scheduling, and allocation of laboratory resources: Laboratory resources are valuable, and
some organizations will want to be able to optimize their use. To do so, a protocol representation should support
(at least) extraction of resource requirements and estimated durations from activities in the protocol. Note that
the specifics of resource requirements and duration estimates will likely be a function of both the protocol and
the available equipment in the laboratory in which it is to be executed. Which resources are limited, and must
be considered in a planner or scheduler, versus those that can be effectively treated as unlimited, will also vary
by laboratory, as will management styles and applicable policies.

2.2 Foundations: UML, Autoprotocol, and SBOL RDF

In developing the PAML protocol representation, we adopted a principle of building upon existing standards wherever
possible, in order to increase compatibility and interoperability, take advantage of existing tooling, and make the
implementation as lightweight as possible. We introduce these foundations here at a conceptual level, while the specifics
of their usage are provided in Section 3.

2.2.1 UML Behavior Models. As the core of a protocol is a workflow of activities to be carried out, we began by
identifying an established standard for workflow modeling that could provide both a well-defined and general formal
semantics, yet also be sufficiently abstract as to allow succinct expression and adaptation. We found such a model in
Unified Modeling Language (UML) behavior representations (specifically the current version 2.5.1 [19]). UML behaviors
provide a general, domain-independent workflow model. This model encodes a formal execution model based on
token-passing, which can support serial, parallel, non-deterministic, and distributed execution. Furthermore, as UML
use often focuses on diagram-based communication, it also provides a set of flow control and abstraction constructs for
succinct and human-friendly communication about complex workflows. At the same time, the formal execution model
provides an unambiguous semantics for verification, validation, and other forms of machine reasoning.

2.2.2 Autoprotocol Laboratory Primitives. As UML is domain-independent, it does not provide any guidance on what
primitive behaviors are suitable for expressing laboratory-independent behaviors. For this, we turn to Autoprotocol [17].
Autoprotocol describes biological protocols in terms of a sequence of instructions, and while this linear workflow is not
expressive enough for our requirements, the instructions themselves are primitives that can be readily mapped from
one laboratory environment to another. These instructions, such as liquid_handle, incubate, provision, and spin

have been specifically designed and refined by the authors of Autoprotocol as a basis set for expressing the activities of
common biological protocols in a manner readily transported between different pieces of laboratory automation. The
Autoprotocol instructions thus provide a reasonable starting point for our library of laboratory-independent primitive
behaviors.

Some activities expressed using these primitives are at a lower level than desirable for a human experimenter,
however, such as specifying pipette mixing as a sequence of repetitive liquid handling operations. In cases such as
Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Building an Open Representation for Biological Protocols 5

these, we will choose to not use Autoprotocol instructions as defined, but replace them with more complex or abstract
alternatives that instead capture an Autoprotocol use pattern.

2.2.3 SBOL 3 Materials, Records, and RDF. While UML models processes, it does not actually provide a representation
to capture executions and associate traces with data. For this, we turn to the Synthetic Biology Open Language (SBOL),
version 3 [3, 16], which uses Semantic Web practices and resources, such as Uniform Resource Identifiers (URIs) and
ontologies, to unambiguously identify and define biological system elements and to provide serialization formats for
encoding this information in electronic data files.

While the early versions of SBOL focused only on genetic designs, it has since been expanded to represent and link
information throughout the design-build-test-learn workflow [16]. SBOL provides succinct representations for all of
the materials that would be used by a typical biological protocol—strains, reagents, media, experimental sample designs,
etc.—along with the ability to track and distinguish between specific physical aliquots and replicates. On the input
side of a protocol, SBOL’s combinatorial design specifications [23] offer the ability to compactly specify combinations
of experimental conditions. SBOL also incorporates the Ontology of Units of Measure (OM) [22] for specifying and
recording measurements, as well as the W3C Provenance Ontology (PROV-O) [18] for linking specifications, samples,
and data via traces of activity records.

This last is precisely complementary to our selection of UML behaviors for representing workflows, as PROV-O leaves
the actual definition of activities to users. Recall that a key objective of PAML is to aid in tracing the connections between
data sets and the protocols that produced them—the issue of data set provenance. The provenance ontology (PROV-O)
is a well-accepted tool for encoding this kind of information, so we propose to use it to anchor the data-producing
relationship between protocols, executions of protocols, and the resulting data sets. PROV-O also specifies several
annotation properties that we adopt to mark up protocol executions. Thus, we can use PROV-O as the basis for capturing
execution traces, with the activities in the trace defined using the UML data model, built from laboratory primitives
based on Autoprotocol, and the inputs, outputs, and data relations encoded using SBOL 3.

SBOL’s semantic web basis has also been used to allow representational extensions with custom classes without
requiring changes to the underlying specification, unlike UML or Autoprotocol. For this reason, we select SBOL RDF
as the underlying data model for PAML and convert the relevant portions of UML and Autoprotocol into SBOL RDF
extensions. This approach also allows PAML to be extended with additional custom information for particular uses and
deployments.

Critically, SBOL RDF provides a partial closure reasoning model (see Section 5.5 of [3]) that allows much stronger
and more “object-oriented” reasoning than plain RDF or OWL, while still allowing documents to reference external
material. This allows for an intuitive chunking and linking of information, for example, being able to store and reason
about a complete record of a protocol execution that has links to the protocol without being required to store a copy of
the protocol in the same document.

Finally, SBOL RDF also offers a natural approach to management of protocol modifications and versioning, since
SBOL RDF can be serialized into the sorted N-triples RDF format. This format is a stable serialization that can be
readily differenced and inspected with standard, text-based version control tooling. Thus, implementing PAML using
SBOL RDF allows protocols to be maintained by distributed communities of contributors using standard software
development version control such as git, as well as the larger ecosystem of associated tooling for project management
and community-driven development.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Bartley, et al.

3 PAML DATA MODEL

Following the architecture presented in Section 2, the PAML data model is formulated as an extension of SBOL 3,
implemented by encoding an ontology for the UML behavior model and its supporting classes, plus additional classes
for linking this information into PROV-O records, libraries of primitive UML activities based on Autoprotocol, and
additional classes for tracking laboratory samples and data. In this section, we present all of the major concepts and
classes of PAML; additional supporting classes and the complete current specification can be found in the PAML draft
specification at http://bioprotocols.org.

Following the pattern of SBOL, PAML’s data model is defined in terms of classes, instantiated as objects. Classes
support inheritance based on subclass and superclass relationships. Under the SBOL RDF partial closure model, all
objects inherit from the sbol:Identified type, which supports generic identity and annotation information. Objects
that describe a complete subsystem for reasoning additionally inherit from the sbol:TopLevel type, and are always
bundled with their “child” sbol:Identified objects, allowing strong closed-world reasoning over any collection of
sbol:TopLevel objects. Examples of sbol:TopLevel classes in PAML are paml:Protocol and paml:BehaviorExecution,
while examples of child classes are uml:ActivityNode and uml:Parameter, which are only useful in the context of
the paml:Protocol they are used to describe.

Classes contain data in the form of properties, which may have primitive XML types (string, integer, long, float,
boolean, URI, etc.) or may refer to another object via its URI; the former are data properties, and the latter object
properties. Diagrams for the data model use UML conventions, in which classes are shown as rectangles labelled at
the top with their class name (or containing nothing but the class name for classes defined elsewhere), and an arrow
with a hollow triangle at its head represents the inheritance relationship between subclass (tail) and superclass (head).
Data properties are shown in text within the rectangle, object properties shown via an arrow with a diamond at the
end, and class inheritance by arrows with empty heads. For object properties, filled diamonds indicate association
properties, in which an object “owns” a child object: this is important because it means the child object is bundled with
its parent under SBOL RDF’s partial closure model and always moves with its parent in an RDF document to enable
strong (closed-world) reasoning about its contents. Empty diamonds, on the other hand, indicate references to objects
defined elsewhere, which may or may not be available to reason about without retrieving additional documents. Finally,
the number of values a property can have is indicated by upper and lower points on its cardinality: [1] (shorthand for
1 . . . 1]) indicates a required property, [0 . . . 1] indicates an optional property, [0 · · · ∗] (the empty constraint) indicates
a property that can have any number of values, and [1 . . . ∗] a property that must have at least one value.

For clarity, since there are several ontologies involved in the implementation of the PAML data model and at least
pair of important terms from different ontologies with the same shortened name (uml:Activity vs. prov:Activity),
we include ontology prefixes for all terms in the text. Likewise, in the figures presenting the data we color model classes
by ontology and include their ontology prefix; properties are not, however, as they always belong to the ontology of
their defining class (e.g., uml:ownedParameter is a property for uml:Behavior).

To illustrate the data model, we will use the iGEM LUDOX protocol for calibration of plate reader optical density
(OD) measurements [24], first introduced in the 2016 iGEM interlaboratory study [6] and refined thereafter [5]. This is
an extremely simple protocol consisting of three steps: water is added to four wells in a 96-well plate, LUDOX silica
suspension is added to another four wells, and then all eight samples are measured at some specified absorbance (600nm
in its original usage), in order to obtain a baseline measurement of OD, validate machine behavior, and allow path-length
correction.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

http://bioprotocols.org
https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Building an Open Representation for Biological Protocols 7

sbol:TopLevel

uml:Behavior

uml:OrderedPropertyValue

index [1]: integer

ownedParameter [0..*]

uml:Activity

paml:Primitive

uml:Constraint

 postcondition [0..*] precondition [0..*]

uml:Parameter

 propertyValue [1]

paml:Protocol

uml:ActivityEdge

edge [0..*]

uml:ActivityNode

node [0..*]

Fig. 1. The uml:Activity and uml:Behavior classes. A paml:Protocol is defined as a uml:Activity, while a paml:Primitive
laboratory action is defined as a uml:Behavior.

3.1 Protocols

In UML 2.5.1 [19]), the basic building block of process modeling is a uml:Behavior, which is an abstract specification
for how the state of a system changes over time. A uml:Activity is a type of uml:Behavior that defines a process in
terms of a network of steps linked together by flows of information and control. For PAML, we import a strict subset of
UML 2.5.1 into SBOL RDF, omitting those classes and properties that we do not need. Note that this does not require
any modification of the SBOL standard, as these are implemented as extension classes outside of the restricted SBOL
namespace and conform with the SBOL specification guidance on extension via custom classes.

3.1.1 Laboratory Primitives are UML Behaviors. Figure 1 shows the class structure for the adaptation of uml:Behavior
and uml:Activity into SBOL RDF. A UML uml:Behavior provides the definition an interface for a process. The
uml:ownedParameter property links to an ordered list of uml:Parameter objects (each marked internally with a

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Bartley, et al.

direction), which describe the order and type of the input arguments that can be givenwhen the uml:Behavior is invoked
and of the output values that will be returned when the uml:Behavior completes its execution. Additional optional
uml:precondition and uml:postcondition properties provide uml:Constraint objects that specify requirements
on uml:Parameter values before and after execution, respectively.

In PAML, the simplest protocol building block is a paml:Primitive, defined as a subclass of UML uml:Behavior.
Primitives are basic laboratory operations such as pipetting, measuring absorbance in a plate reader, or centrifuging. For
example, the iGEM LUDOX calibration protocol uses a paml:Primitive named paml:Provision to dispense water
and LUDOX into a plate and another named paml:MeasureAbsorbance to measure the OD values of these samples
(both of these are adapted from Autoprotocol as descibed below in Section 3.1.3).

Primitives do not provide any information about how to carry out the corresponding real world action (such as
pipetting). Instead, they serve as the handoff point between PAML and an execution environment that knows how to
actually carry out such primitives in a laboratory, as described further in Section 4.3. However, the constraints on these
primitives can be used specify what is expected to happen (how the system changes) when the corresponding actions
are performed.

In order to build useful protocols in PAML, we also need libraries of primitives that are simple enough to be readily
reused, yet abstract enough to be easily transferred from laboratory to laboratory. As noted above, Autoprotocol [17]
already provides a good beginning set of primitive operations, which have already been validated as both reusable and
transferrable between different pieces of laboratory equipment. In adapting Autoprotocol, however, PAML adds two
key extensions to make protocols more adaptable and reusable: classes for describing collections of samples and classes
for organizing primitive operations into libraries.

3.1.2 Sample Collections. In Autoprotocol it is only possible to address one location at a time, i.e., a single container or
a single compartment within a container, such as a well on a plate. This means that any operation on multiple locations
must name every location as a fixed value in the definition of the protocol, which in turn means that protocols are often
both extremely large (e.g., individually operating on every well of a 96-well plate) and rigid, since locations cannot be
supplied as a parameter value or determined dynamically at runtime.

In common practice, however, protocols are often naturally described in terms of operations on physical or logical
collections of samples, such as “Wells A1 to D2 in a standard 96-well plate,” “A 6 by 3 group of 10ml tubes: three replicates
each for six conditions,” or “All wells showing green fluorescence >500 MEFL.” Being able to represent such descriptions
directly allows representations to be more compact, more intelligible to humans for both authoring and execution, and
also more reusable, since they can be communicated as parameters or determined dynamically. PAML thus includes a
paml:SampleCollection class, as shown in Figure 2(a), that represents organized collections of samples, either as an
n-dimensional paml:SampleArray (e.g., the wells of a 96-well plate, a sequence of 10 flasks) or as a paml:SampleMask
that selects a subset of such an array using a mask of Boolean values.

In particular, A paml:SampleArray specifies an n-dimensional rectangular array of samples, all stored in the same
type of container. For example, in the iGEM LUDOX calibration protocol, a paml:SampleArray is generated by the
paml:EmptyContainer primitive to allocate a new 96-well plate for use in the protocol. A paml:SampleArray might
also be used to describe a set of 10 cell cultures growing in 96-well plate wells, or a set of 6 streaked agar plates,
or a single 500 mL flask filled with media. For any non-empty location, the contents are in turn described by an
SBOL 3 sbol:Implementation object that represents a physical sample and which, in turn, can link to an SBOL 3
sbol:Component object that describes the mixture of materials in that location. Note that this is a logical array, and
Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Building an Open Representation for Biological Protocols 9

sbol:Identified

paml:SampleCollection

paml:SampleArray

contents [1]: array
 containerType [1]: URI

paml:SampleMask

mask [1]: array

 source [1]

(a) PAML SampleCollection

sbol:Identified

paml:SampleData

sampleDataValues [1] : array

paml:SampleCollection

 fromSamples [1]

(b) PAML SampleData

Fig. 2. PAML represents collections of samples as either N-dimensional arrays or using Boolean masks to select subsets from such an
array (a). PAML represents sample data by associating an array of data values with a collection of samples (b).

does not necessarily indicate the actual layout of the samples in space, which may be determined by context in the
execution environment. For example, a 2x4 array of samples in 96-well plate wells might end up being laid out as a
2x4 array in wells A1 to B4 or as a 2x4 array in wells G5 to H8 or as an 8x1 column in wells A1 to H1, or even as
eight wells scattered arbitrarily around the plate according to an anti-bias quality control schema. This also allows for
higher-dimensional arrays where each dimension represents an experimental factor. For example, an experiment testing
four factors with 3, 3, 4, and 5 values per factor, for a total of 180 combinations, could be represented as a 4-dimensional
sbol:sample array of 96-well plate wells, and then end up laid out over two plates.

As an alternative to a sample array, a paml:SampleMask describes a subset of samples in some paml:SampleCollection
(array or mask) by an array of Boolean values, where true values indicate that a sample is included and false values
indicate that it is excluded. To allow masks to be readily composed and interchanged, their dimension is kept identical
to that of the source paml:SampleCollection. In this way, references to the physical laboratory elements on which
a paml:SampleArray is laid out can be easily maintained and combined even across different subsetting operations.
For example, in the iGEM LUDOX calibration protocol, a paml:SampleMask is used to select wells A1 to D1 on the
plate to fill with water and another paml:SampleMask used to select wells A2 to D2 to fill with LUDOX, then a third
paml:SampleMask covers both with the range A1 to D2 for measuring absorbance.

Finally, PAML defines another class, paml:SampleData, as shown in Figure 2(b), in order to capture the relationship
between physical samples and information about those samples. The paml:SampleData class simply associates a
paml:SampleCollection with an array that has values defined for all of the included samples of the collection, thereby
representing measurements, such as an array of plate reader absorbance measurements. The joining of samples and data

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Bartley, et al.

PAML Library/Primitive Autoprotocol Equivalent
Library: sample_arrays
EmptyContainer Undocumented “SUPPLY NEW CONTAINER” operation
PlateCoordinates n/a - Autoprotocol references only single locations
Rows n/a - Autoprotocol references only single locations
Columns n/a - Autoprotocol references only single locations
DuplicateCollection n/a: operation makes an array with the same shape as an input
ReplicateCollection n/a: like DuplicateCollection, but also adds a new replicate dimension
Library: plate_handling
Cover cover
Incubate incubate
Seal seal, flexible mode
AdhesiveSeal seal, mode=thermal
ThermalSeal seal, mode=adhesive
Spin spin
Uncover uncover
Unseal unseal

Library: liquid_handling
Provision provision
Dispense liquid_handle, mode=dispense
Transfer liquid_handle up in one location, down elsewhere
TransferInto liquid_handle with a non-empty destination
PipetteMix liquid_handle up and down repeatedly in same location
Library: spectrophotometry
MeasureAbsorbance spectrophotometry, mode=absorbance
MeasureFluorescence spectrophotometry, mode=fluorescence
Currently unimplemented acoustic_transfer, flow_cytometry, measure_mass, measure_volume,

spectrophotometry mode=luminescence/shake

Fig. 3. PAML’s primitive laboratory operations are organized into libraries based on required equipment types. The initial collection
of “built-in” primitives are based on Autoprotocol, currently implementing most functionality from that language, plus primitives for
defining and manipulating collections of samples.

with the paml:SampleData class also allows information to be fed back into the computation of paml:SampleMask
objects at runtime, such as the example above of “all wells showing green fluorescence >500 MEFL.”

In sum, with the addition of the paml:SampleCollection and paml:SampleData classes, PAML allows primitives
to be defined in terms of operations on collections of samples, rather than on specific locations, e.g., dispensing media
into a collection of wells or measuring the absorbance in those wells. While there are some cases, such as our simple
example of the iGEM LUDOX calibration protocol, where specific locations are appropriate, a great many protocols are
intended to be able to run over a set of samples or conditions that are provided as input. PAML primitives are thus in
general defined for the more general case of collections, with references to specific locations being just one of the ways
in which such a collection may be defined.

3.1.3 Primitive Libraries. PAML also adds libraries for organizing collections of primitives. In Autoprotocol there is
a fixed set of primitives defined by the specification, which limits extensibility. For PAML, we take an approach like
that used in most modern programming languages, in which the specified language is kept as small as possible, while
Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Building an Open Representation for Biological Protocols 11

many of the capabilities of the language are provided by collections of functions grouped into libraries, each library
associated with a well-defined cluster of functionality.

Figure 3 shows how the current implementation of PAML organizes operations taken from Autoprotocol into
four libraries of paml:Primitive objects. Three of the libraries are classes of laboratory activities that operate on
paml:SampleCollection objects. The paml:plate_handling library contains operations performed on containers
(e.g., plates, flasks), such as sealing and incubation, which are mostly direct mapping of equivalent Autoprotocol
activities. The paml:liquid_handling library contains operations moving liquids within or between containers, such
as pipetting from one location to another or using a pipette to mix fluids in a location. This includes a division of the
omnibus Autoprotocol liquid_handle operation into several different patterns of usage, which we have chosen to
do in order to make higher-level abstractions that are both more readily human-interpretable and also more readily
accessible for machine reasoning and verification. The third library, paml:spectrophotometry, does the same for plate
reader measurements. Finally, we have implemented one library that contains mostly new operations (i.e., with no
Autoprotocol equivalents) for creating and subsetting paml:SampleCollection objects. A few Autoprotocol operations
are not included in the current implementation, but are expected to be adapted to add into existing or new libraries as
implementation continues.

Organizing primitives into libraries and aligning libraries with equipment provides a basis for comparing protocol
requirements and laboratory capabilities. A protocol’s capability requirements may be coarsely determined by the set
of libraries that it uses. Any given protocol execution environment can then be defined in terms of which libraries are
supported. Moreover, different libraries may be supported with different means of execution. For example, a laboratory
with a liquid handling robot and a plate reader may support automated execution of paml:Primitive operations from
the paml:liquid_handling library, while those in paml:plate_handling and paml:spectrophotometry are carried
out by a human operator.

3.1.4 Protocols are UML Activities. We now move from individual laboratory operations to complete protocols. In UML,
a uml:Activity is used to define composite behaviors in terms of a network of steps. Its uml:node property stores a col-
lection of uml:ActivityNode objects (Figure 4(a)). In the current implementation of PAML, these uml:ActivityNodes
can only be of three sub-types:

(1) A uml:CallBehaviorAction object defines an actual step of the protocol, in which a specific paml:Primitive
or sub-paml:Protocol is carried out (note that this class is several layers deep in a hierarchy of other sibling
UML uml:ExecutableNode classes not currently used in PAML).

(2) A uml:ObjectNode defines a point where data enters and exits the uml:Activity (by means of a
uml:ActivityParameterNode) or one of its uml:CallBehaviorAction nodes (by means of a uml:Pin).

(3) A uml:ControlNode is used to define where the steps of the uml:Acitivity start (uml:InitialNode), stop
(uml:FinalNode), branch (splitting at a uml:DecisionNode and rejoining at a uml:MergeNode), or run in
parallel (splitting at a uml:ForkNode and rejoining at a uml:JoinNode).

The uml:ActivityEdge objects that connect pairs of uml:ActivityNode objects, on the other hand, are much simpler,
merely indicating a path by which either a control or object token flows from a source to a target.

The execution semantics for a uml:Activity are based on a notion of token flow similar to Petri nets [21]. A Petri
net is a graph in which nodes have input edges and output edges. Roughly speaking, a Petri net node is enabled to
“fire,” sending a token out all of its output edges, when all of its input edges are filled with tokens; at the same time,
those input tokens are removed. When a uml:Activity (in this case, the node corresponding to the paml:Protocol)

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Bartley, et al.

sbol:Identified

uml:ActivityNode

uml:ControlNode

uml:ObjectNode

type [0..1]: URI

uml:ExecutableNode

uml:InitialNode

uml:FinalNode

uml:ForkNode

uml:JoinNode

uml:MergeNode

uml:DecisionNode

uml:ActivityParameterNode

uml:Pin

uml:Action

uml:FlowFinalNode

uml:Behavior

 decisionInput [0..1]

uml:ObjectFlow

 decisionInputFlow [0..1]

uml:OrderedPropertyValue

index [1]: integer

 parameter [1]

uml:Parameter

 propertyValue [1]

uml:ValueSpecification

 upperValue [0..1] lowerValue [0..1]

uml:InputPin

uml:OutputPin

uml:ValuePin

value [1]

 input [0..*] output [0..*]

uml:InvocationAction

uml:CallAction

uml:CallBehaviorAction

behavior [1]

(a) UML ActivityNode

sbol:Identified

uml:ActivityEdge

uml:ControlFlow

uml:ObjectFlow

uml:ActivityNode

source [1] target [1]

(b) UML ActivityEdge

Fig. 4. A UML uml:Activity is defined as a network of uml:ActivityNode objects that define steps, decisions, or values in the
activity and uml:ActivityEdge objects that connect between them.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Building an Open Representation for Biological Protocols 13

begins execution, tokens start in any uml:InitialNode or input uml:ActivityParameterNode. From there, they flow
along the connected uml:ActivityEdge for each such source node to the connected target node. As tokens arrive
at a uml:ActivityNode, it waits until a token has arrived along every edge for which it is a target; once all edges
have delivered a token, the uml:ActivityNode takes action if needed (i.e., it is a uml:CallBehaviorAction), then
sends a token along every edge for which it is a source. The exceptions are uml:DecisionNode, whose purpose is
to choose one of several edges on which to send a token, and uml:MergeNode, its complement whose purpose is to
accept a token arriving from one of several edges. A uml:CallBehaviorAction node, on the other hand, also waits
for incoming tokens to the uml:InputPin objects that define values for the input parameters of the uml:Behavior it
will call and sends tokens from its associated uml:OutputPin objects. This process continues, with tokens proceeding
along nodes and edges until execution comes to an end as tokens are absorbed by uml:FinalNode and/or output
uml:ActivityParameterNode objects (or, if the execution fails, when no further execution is possible because no node
has all of its input edges filled).

Token flow implements a universally expressive model of behavior execution. The control flow semantics can
support ordered steps, via uml:ObjectFlow edges linking pins and uml:ControlFlow edges linking steps, as well as
steps in parallel or in arbitrary order, via uml:ForkNode and a lack of constraining edges. Execution patterns can
include loops, by means of uml:DecisionNode and circular edge patterns, and recursions, by a uml:Activity with
a uml:CallBehaviorAction that calls itself. Furthermore, since tokens can potentially be communicated between
different agents and different types of agent, this model also allows for execution to be distributed, e.g., between
several pieces of automation equipment, as a mixture of human and automated execution, or even across a group of
collaborating laboratories.

For example, the complete iGEM LUDOX calibration protocol is shown in Figure 5. This paml:Protcol consists
of 11 uml:ActivityNodes (not counting uml:Pins) with 15 uml:ActivityEdges connecting the nodes into a net-
work. Together, they implement a uml:Behavior (in this case, a paml:Protocol) with an interface of one input
uml:Parameter—the wavelength to be measured—and one output uml:Parameter, the absorbance measured at the
plates.

In this implementation, two nodes initiate the execution of the protocol: the uml:InitialNode and the
uml:ActivityParameterNode for the wavelength input parameter. To manage the ordering of the steps,
uml:ControlFlow edges are added, the first of which runs from the uml:InitialNode to a uml:CallBehaviorAction
invoking EmptyContainer from the sample_arrays library. This paml:Primitive requests allocation of a
paml:SampleArray for a 96-well clear flat-bottom plate (specified by the plateRequirement input not expanded
in the visualization). Performing paml:EmptyContainer in turn enables three uml:CallBehaviorAction nodes for
PlateCoordinates operations from the same library, with a uml:ForkNode implicitly inserted to support the same
plate being accessed multiple times.

Note that the Provision operations do not produce outputs, instead acting by modifying state of the
paml:SampleCollection provided by their destination input. As such, it is necessary to add control edges that
ensure that the water is added before the LUDOX, and that both have been put in the plate before absorbance is
measured. Finally, once the lab work has been carried out, the final output uml:ActivityParameterNode collects and
reports the paml:SampleData that is output from the call to MeasureAbsorbance.

Since a paml:Protocol is itself also a uml:Behavior, it can be embedded in other, more complex protocols, including
ones with complex hierarchical structures. For example, a paml:Protocol might specify a cell culturing protocol that
invokes media adjustment and data collection sub-protocols at various time points, or a multi-stage DNA assembly

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Bartley, et al.

iGEM 2018 LUDOX OD calibration protocol

specification: plateRequirement

EmptyContainer

samples

source coordinates: A1:D1

PlateCoordinates

samples

source coordinates: A2:D2

PlateCoordinates

samples

source coordinates: A1:D2

PlateCoordinates

samples

resource: Water destination amount: 100.0 microliter

Provision

resource: LUDOX destination amount: 100.0 microliter

Provision

samples wavelength

MeasureAbsorbance

measurements

absorbance

wavelength

Fig. 5. PAML prototocol for the iGEM 2018 LUDOX calibration protocol, automatically rendered by PAML visualizer. The graph
includes protocol activities that follow a control flow denoted by blue edges and data flow denoted by black edges. Per UML diagram
conventions, the uml:InitialNode is shown as a black circle and uml:ForkNode is shown as a black bar. The graph also illustrates
protocol input (e.g., wavelength) and output (e.g., abosorbance) parameters with double boxes.

protocol involving multiple rounds of digestion, ligation, transformation, and selection. Furthermore, requesting
the execution of a paml:Protocol on a particular set of samples or conditions can itself be represented as a simple
“wrapper” paml:Protocol in which the desired sample and condition values are supplied as uml:ValuePin inputs (a
uml:ValuePin is a uml:Pin with a constant value) on a uml:CallBehaviorAction invoking the paml:Protocol and
its results are collected to output via a uml:ActivityParameterNode for each expected result. In principle, even an
entire experimental campaign could be encoded in such a manner, if desired.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Building an Open Representation for Biological Protocols 15

prov:Activity

paml:BehaviorExecution

completedNormally [1]: boolean

paml:ProtocolExecution

paml:ParameterValue

 parameterValuePair [0..*]

paml:Material

consumedMaterial [0..*]

paml:ActivityNodeExecution

execution [0..*]

paml:ActivityEdgeFlow

 flow [0..*]

uml:OrderedPropertyValue

index [1]: integer

 parameter [1]

uml:LiteralSpecification

 parameterValue [1]

sbol:TopLevel

 specification [1]

om:Measure

amount [1]

uml:Parameter

 propertyValue [1]

Fig. 6. The paml:ProtocolExecution and paml:BehaviorExecution classes are used for recording the execution of paml:Protocols
and paml:Primitives.

3.2 Execution Records

PAML’s representation for recording the trace of an execution is built on the W3C provenance ontology (PROV-O) [18],
which provides a mechanism for recording traces. Using this representation will allow PAML to record how data sets
are produced as a result of a behavior execution.

PROV-O has its own distinct notion of a prov:Activity, in this case a record of an instance of an execution. The basic
notion is thus that an execution trace consists of a structure of prov:Activity objects, each linked by its prov:type
property to a corresponding uml:Behavior object specifying the nature of the activity. The prov:Activity is only a stub
class intended for extension, however. Accordingly, in order to provide additional information needed for recording infor-
mation about protocol executions, PAML extends prov:Activitywith a paml:BehaviorExecution class for recording
execution of a UML uml:Behavior (either paml:Primitive or paml:Protocol) and a child paml:ProtocolExecution
class for recording further information about the execution of a uml:Activity (i.e., paml:Protocol), as shown in
Figure 6.

A paml:BehaviorExecution is a record of how a paml:Protocol, paml:Primitive, or other uml:Behavior was
carried out. Such an execution might be either real or simulated, for example as part of “unrolling” a protocol for certain
execution environments as described below in Section 4.3. Properties inherited from PROV-O provide the basic structure

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Bartley, et al.

sbol:Identified

paml:ActivityNodeExecution

paml:CallBehaviorExecution

uml:ActivityNode

 node [1]

paml:ActivityEdgeFlow

 incomingFlow [0..*]

paml:BehaviorExecution

 call [1]

(a) Activity Node Execution

sbol:Identified

paml:ActivityEdgeFlow

 edgeValue [0..1]

paml:ActivityNodeExecution

tokenSource [1]

uml:ActivityEdge

 edge [1]

(b) Activity Edge Flow

Fig. 7. A UML uml:Activity is defined as a network of uml:ActivityNode objects that define steps, decisions, or values in the
activity and uml:ActivityEdge objects that connect between them.

of the trace: the prov:type property links to the uml:Behavior, its prov:startedAtTime and prov:endedAtTime

properties record timing information, and the entity carrying out the execution (e.g., a particular person in the lab,
a liquid handling robot, a plate reader) is recorded with a prov:Association to a prov:Agent. For details on usage
of PROV-O within an SBOL RDF context, see Appendix A.1 of [3]. Additional PAML-specific properties record the
input and output paml:Parameter values for the paml:Behavior, the laboratory materials consumed (as pairs of an
sbol:Component specifying material type with an om:Measure), and whether the execution completed normally or if
there was some exception condition.

A paml:ProtocolExecution extends this with the addition of records for the nodes and edges defining the
paml:Protocol’s behavior as a uml:Activity. Specifically, the paml:execution property is used to record each
firing of a uml:ActivityNode and the paml:flow property is used to record each time a token moves along a
uml:ActivityEdge, using the paml:ActivityNodeExecution and paml:ActivityEdgeFlow classes shown in Fig-
ure 7. In the case of invocation of a paml:Primitive or paml:Protocol via a uml:CallBehaviorAction, a corre-
sponding paml:CallBehaviorExecution subclass of paml:ActivityNodeExecution also provides a link down to the
paml:BehaviorExecution sub-trace that records the execution of the paml:Primitive or paml:Protocol.

For a simple protocol without any branches or sub-protocols, such as the iGEM LUDOX protocol described above,
there will be precisely one execution for each node or edge. For more complex protocols there may be no executions
on branches not taken or multiple executions in the case of looping constructs. In either case, however, this parallel
construction provides the necessary representation for recording information about the execution of protocols in the
lab.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Building an Open Representation for Biological Protocols 17

4 PROTOTYPE

Following the data model presented above, we have constructed a prototype implementation of PAML in terms of
an ontology, derived specification document and Python code library, and prototype software tools for visualization,
editing, and execution of PAML protocols.

4.1 Ontology-Based Specification

The PAML data representation is implemented first and foremost as an ontology encoded in the Web Ontology Language
(OWL). We leverage this machine-readable specification to make the standards development process more efficient
through automation. First, we automatically generate graphical visualizations of the data model which illustrate the
classes, properties, and links between classes. Second, we automatically generate the data model portions of the PAML
specification document as LaTeX. This human-readable document incorporates the class diagrams as well as explanatory
descriptions which are sourced from annotations contained in the original ontology file, plus manually generated
preamble material introducing the motivation and context of the specification. We also automatically generate an
object-oriented Python API which supports authoring and exchange of PAML protocols as any of a number of standard
RDF formats. For this purpose, we use a tool called SBOLFactory [4] to dynamically generate Python classes directly
from the ontology file.

We use ontology-based specification for several reasons. First, because the standard is still in an early stage of
development and is expected to evolve, revisions to the proposed data model can be rapidly generated, released, and
tested in practice. Moreover, since the human-readable specification document and the software library are generated
from a single source, we avoid introducing errors and discrepancies between the different artifacts. Overall, these
factors enable rapid development and responsiveness of PAML developers to emerging needs and use cases from the
open protocols community.

The Python API also performs validation on protocols to ensure that representations are complete and consistent.
For example, one such validation rule requires that every ProtocolExecution must link to a Protocol. We use the Shapes
Constraint Language (SHACL), an RDF-based language that describes graph patterns to which valid data instances
must conform [13], to encode these validation rules in a declarative syntax. The pySHACL validator tool [26] can then
by used to check conformance of PAML objects in an RDF document according to the encoded rules. By using this
combination of OWL and SHACL, we can fully specify the PAML data model using non-ambiguous, machine-readable
languages. The specification is thus decoupled from its implementation in any one programming language as well as its
formulation in natural language.

4.2 Visualization and Editing of Protocols

Graphs are a natural model for visualization and editing of PAML protocols because of their basis in the UML Activity
model, in which each protocol involves a set of activities and controls (nodes) that are linked by data and control
flows (edges). Figure 5 illustrates the rendering of the iGEM 2018 LUDOX calibration protocol via GraphViz [10]. It
includes an initial control node (filled black circle) that is followed by (denoted by a blue control edge) an activity
node EmptyContainer. The activity nodes include input pins (e.g., specification) and output pins (e.g., samples).
Data flow edges (denoted by black edges) link the activity pins (e.g., EmptyContainer output samples pin links to the
source input pin for PlateCoordinates) either directly or through control nodes such as a fork node (denoted by a
black bar). Data flow edges also link protocol input (e.g., wavelength) and output (e.g., absorbance) parameters.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Bartley, et al.

While Figure 5 illustrates the protocol as a graph, PAML can be illustrated in a number of formats. The protocol
illustrated by Figure 5 may also be described as a list of activities because the activities are totally ordered. PAML
protocols that are partially ordered or include decision nodes can be represented by other paradigms such as block-based
programs [15] or visual scripts [1, 9]. More broadly, protocols can be viewed as programs that can be expressed in a
programming language or pseudocode.

In addition to visualizing protocols, the same paradigms support editing, such as adding, deleting, or configuring
activities. The PAML Python API supports protocol editing operations by providing functions that build a protocol.
Protocol generation scripts (e.g., as listed in Figure 8) execute a sequence of API functions that construct the PAML
for the iGEM LUDOX calibration protocol. For example, in that script lines 5 to 7 define the protocol and add it to an
SBOL3 document (representing the protocol as RDF). Line 10 defines an input parameter called wavelength. Line 13
defines the SBOL3 object for double-distilled water, grounding it in a link to a PubChem identifier. Line 18 defines a
microplate object that will hold the samples. Lines 21 to 24 identify the wells that will hold water and provision the
water into those wells. Lines 29 to 32 identify which wells to measure and then measure the absorbance. Finally, lines
35 to 38 define the protocol output parameter for absorbance and link it to the output of the absorbance measurement
activity. Visual editors can use these functions to implement the same functionality as the Python script.

Visualizing protocols, like visualizing source code, helps to specify and understand the protocol. However, like
programs, executing a protocol requires interpreting the steps. As the number of objects and control flow nodes increases,
it becomes increasingly difficult to interpret the protocol. Furthermore, PAML protocol serialization to different target
languages may require compiling away some of the control structure: for example, in Autoprotocol control flow is
a strict linear step order with no branching, so a PAML protocol must be linearized with all loops “unrolled” and all
sub-protocol invocations expanded inline in order to produce a linearized version of the protocol suitable for mapping
into Autoprotocol. Accordingly, in order to support execution either directly or though serialization, we have developed
an execution engine for PAML.

4.3 Execution in Markdown and Autoprotocol

PAML execution requires interpreting a protocol to determine which activity can be executed next, and then recording
the data generated on the output pins. The PAML execution engine uses a token based execution semantics that
implements the UML activity model based upon Petri-nets [21]. The execution involves tracking a set of tokens
generated by each activity or control node in the protocol. Each activity generates tokens on their output pins and
consumes tokens on the input pins. The tokens can either hold data representing objects created by activities, or can
denote control. The execution engine non-deterministically selects an enabled protocol node each iteration. It records
the execution for each node in an execution trace and notifies any listeners. Executing a protocol offline (e.g., for
export to Autoprotocol) involves generating identifiers for activity outputs that will be specified later, during an actual
execution of the protocol. Online execution of the protocol provides an opportunity to specify actual outputs as the
activities execute. Figure 9 shows an example visualizing an execution trace for the LUDOX protocol.

In order to generate serializations of protocols to alternative target formats, the execution engine uses listeners that
output either Autoprotocol or Markdown. Both Autoprotocol (a machine language) and Markdown (a list of steps in
semi-structured natural language) require a sequence of steps that totally order the protocol activities and omit control
flow that is otherwise implicit in the format (e.g., omitting the object fork node for the plate, as illustrated by the black
bar in Figure 5). The execution listener pattern is particularly helpful for serializing protocols that include multiple

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Building an Open Representation for Biological Protocols 19

1 import sbol3
2 import paml
3
4 # declare a protocol and add it to an SBOL3 document doc (doc initialization omitted).
5 protocol = paml.Protocol('iGEM_LUDOX_OD_calibration_2018')
6 protocol.name = "iGEM 2018 LUDOX OD calibration protocol"
7 doc.add(protocol)
8
9 # add an optional parameter for specifying the wavelength
10 wavelength_param = protocol.input_value('wavelength', sbol3.OM_MEASURE, optional=True, default_value=sbol3.Measure(600,

tyto.OM.nanometer))
11
12 # create the materials to be provisioned (Ludox omitted for brevity)
13 ddh2o = sbol3.Component('ddH2O', 'https://identifiers.org/pubchem.substance:24901740')
14 ddh2o.name = 'Water'
15 doc.add(ddh2o)
16
17 # get a plate (spec omitted for brevity)
18 plate = protocol.primitive_step('EmptyContainer', specification=spec)
19
20 # identify wells to use
21 c_ddh2o = protocol.primitive_step('PlateCoordinates', source=plate.output_pin('samples'), coordinates='A1:D1')
22
23 # put water in selected wells
24 provision_ddh2o = protocol.primitive_step('Provision', resource=ddh2o, destination=c_ddh2o.output_pin('samples'), amount=

sbol3.Measure(100, tyto.OM.microliter))
25
26 # similar Ludox PlateCoordinates and Provision steps omitted
27
28 # identify wells to use
29 c_measure = protocol.primitive_step('PlateCoordinates', source=plate.output_pin('samples'), coordinates='A1:D2')
30
31 # measure the absorbance
32 measure = protocol.primitive_step('MeasureAbsorbance', samples=c_measure.output_pin('samples'))
33
34 # link input parameter to measure primitive input
35 protocol.use_value(wavelength_param, measure.input_pin('wavelength'))
36
37 # link measurement output to protocol output
38 output = protocol.designate_output('absorbance', sbol3.OM_MEASURE, measure.output_pin('measurements'))

Fig. 8. PAML Python script to construct a portion of the iGEM LUDOX calibration protocol. An interactive Jupyter notebook is
available at: https://colab.research.google.com/drive/1WPvQ0REjHMEsginxXMj1ewqfFHZqSyM8?usp=sharing

repetitions of sub-protocols as activities. This requires the protocol executor to “unroll” the protocol into a series of
distinct executions, in which sub-protocols may appear multiple times as they are repeated.

PAML is converted to Autoprotocol and Markdown with different execution listeners. For example, the iGEM LUDOX
calibration protocol is shown converted and rendered into Markdown in Figure 10 and into Autoprotocol in Figure 11.
The listeners not only collect the translated sequence of protocol activities, but also help to resolve the objects appearing
the protocol. For example, the Autoprotocol listener interprets the EmptyContainer activity to identify an available
container (c.f., line 38 in Figure 11) in the Strateos laboratory information management systems (LIMS) that will
satisfy the specification made in the protocol. Similarly, the Markdown listener interprets the protocol to construct
a human-readable strings that describe each step, as well as embedding links to definitions, for example in this case
linking each material to its NCBI PubChem substance definition, which in turn provides supplier information for the
required materials. In addition to interpreting the steps, the listeners also format the syntax needed for each target
language: the Autoprotocol listener formats protocols as a list of instructions in JSON, and the Markdown listener
makes use of Markdown syntax to hyperlink definitions of reagents and containers.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://colab.research.google.com/drive/1WPvQ0REjHMEsginxXMj1ewqfFHZqSyM8?usp=sharing
https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Bartley, et al.

https://bbn.com/scratch/test_execution

iGEM 2018 LUDOX OD calibration protocol

specification: plateRequirement

EmptyContainer

samples

[2021-11-19 22:54:15.614533,
 2021-11-19 22:54:15.614545]

samples-[<sbol_factory.sbol_factory.SampleArray object at 0x105280670>]->

coordinates: A1:D1 source

PlateCoordinates

 samples

coordinates: A1:D2 source

PlateCoordinates

 samples

-[<sbol_factory.sbol_factory.LiteralIdentified object at 0x105280610>]->source

coordinates: A2:D2 source

PlateCoordinates

 samples

-[<sbol_factory.sbol_factory.LiteralIdentified object at 0x105280610>]->source

-[<sbol_factory.sbol_factory.LiteralIdentified object at 0x105280610>]->source

[2021-11-19 22:54:15.908828,
 2021-11-19 22:54:15.908840]

wavelength samples

MeasureAbsorbance

measurements

samples-[<sbol_factory.sbol_factory.SampleMask object at 0x1052e31c0>]->samples

destination resource: LUDOX(R) CL-X colloidal silica, 45 wt. % suspension in H2O amount: 100.0 microliter

Provision

[2021-11-19 22:54:15.883197,
 2021-11-19 22:54:15.883210]

samples-[<sbol_factory.sbol_factory.SampleMask object at 0x1052c4640>]->destination

[2021-11-19 22:54:15.818794,
 2021-11-19 22:54:15.818807]

amount: 100.0 microliter resource: Water, sterile-filtered, BioReagent, suitable for cell culture destination

Provision

[2021-11-19 22:54:15.784792,
 2021-11-19 22:54:15.784804]

samples-[<sbol_factory.sbol_factory.SampleMask object at 0x1052a3ac0>]->destination

[2021-11-19 22:54:15.712549,
 2021-11-19 22:54:15.712566]

[2021-11-19 22:54:15.962396,
 2021-11-19 22:54:15.962417]

absorbance

measurements-[measurements]->None

wavelength

-[<sbol3.om_unit.Measure object at 0x104f451c0>]->wavelength

Fig. 9. PAML execution trace for the iGEM 2018 LUDOX calibration protocol, layered on the protocol visualization shown in Figure 5.
Yellow edges denote data flow with placeholder and computed values for an offline execution of the protocol.

5 FUTURE DIRECTIONS

The development efforts on PAML described above have produced a draft representation that appears to be simulta-
neously expressive enough and compact enough to satisfy all of the key goals that we have identified for a broadly
applicable community standard. Our prototype implementation realizes this representation in the form of an ontology,
specification, and Python library, which in turn have been used to implement test protocols and tools for visual editing
and for execution, either by hand via export to a “paper protocol” or with laboratory robotics via export to Autoprotocol.

The next critical stage in developing this into an effective community standard for protocols is to refine the
representation and expand the set of tools through involvement of interested stakeholders from the broader community.
To that end, we organized an open community meeting at the COMBINE 2021 standards meeting in October, 2021,
during the course of which participants validated community interest in this initiative, prioritized next steps for PAML,
and began organization of an open pre-competitive community for its continued development, which may be found at
http://bioprotocols.org/

The key near-term goals for the development of PAML, as currently prioritized by this community, are thus:
Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

http://bioprotocols.org/
https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Building an Open Representation for Biological Protocols 21

1 IGEM 2018 LUDOX OD CALIBRATION PROTOCOL
1.1 Description:
With this protocol you will use LUDOX CL-X (a 45% colloidal silica suspension) as a single point reference to obtain a
conversion factor to transform absorbance (OD600) data from your plate reader into a comparable OD600 measurement
as would be obtained in a spectrophotometer. This conversion is necessary because plate reader measurements of
absorbance are volume dependent; the depth of the fluid in the well defines the path length of the light passing through
the sample, which can vary slightly from well to well. In a standard spectrophotometer, the path length is fixed and is
defined by the width of the cuvette, which is constant. Therefore this conversion calculation can transform OD600
measurements from a plate reader (i.e. absorbance at 600 nm, the basic output of most instruments) into comparable
OD600 measurements. The LUDOX solution is only weakly scattering and so will give a low absorbance value.

1.2 Protocol Materials:
• Water, sterile-filtered, BioReagent, suitable for cell culture
• LUDOX(R) CL-X colloidal silica, 45 wt. % suspension in H2O

1.3 Protocol Inputs:
• wavelength = 600.0

1.4 Protocol Outputs:
• absorbance

1.5 Steps
1. Provision a container named samples meeting specification: cont:ClearPlate and cont:SLAS-4-2004 and

(cont:wellVolume some ((om:hasUnit value om:microlitre) and (om:hasNumericalValue only xsd:decimal[>=
"200"^^xsd:decimal]))).

2. Pipette 100.0 microliter of Water, sterile-filtered, BioReagent, suitable for cell culture into samples(A1:D1).
3. Pipette 100.0 microliter of LUDOX(R) CL-X colloidal silica, 45 wt. % suspension in H2O into samples(A2:D2).
4. Make absorbance measurements (named measurements) of samples(A1:D2) at 600.0 nanometer.
5. Report values for absorbance from measurements.

Fig. 10. Markdown “paper protocol” generated from PAML for iGEM 2018 LUDOX calibration protocol.

• putting PAML to use in ongoing interlaboratory collaborations within the stakeholder community,
• implementation of additional key execution environments, such as the OpenTrons API [20] and protocols.io [27],
• determining representational details for sample arrays and sample data,
• implementing reasoning about the contents of samples, and
• improved user interfaces for protocol design, editing, and inspection.

If this nascent community is able to achieve these goals, particularly in using PAML to reduce the protocol-related
challenges faced by existing interlaboratory collaborations, then it will form the basis for further development and
utilization and, ultimately, may be able to establish an effective open standard representation for biological protocols,
accelerating research and development across a broad range of fields and applications.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://identifiers.org/pubchem.substance:24901740
https://identifiers.org/pubchem.substance:24866361
https://identifiers.org/pubchem.substance:24901740
https://identifiers.org/pubchem.substance:24866361
https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Bartley, et al.

1 {"instructions": [
2 { "op": "provision",
3 "resource_id": "rs1c7pg8qs22dt",
4 "measurement_mode": "volume",
5 "to": [
6 {
7 "well": "samples /0",
8 "volume": "100: microliter"
9 },
10 <Others omitted >
11]},
12 { "op": "provision",
13 "resource_id": "rs1b6z2vgatkq7",
14 "measurement_mode": "volume",
15 "to": [
16 {
17 "well": "samples /1",
18 "volume": "100: microliter"
19 },
20 <Others omitted >
21]},
22 { "op": "spectrophotometry",
23 "dataref": "measurements",
24 "object": "samples",
25 "groups": [
26 {
27 "mode": "absorbance",
28 "mode_params": {
29 "wells": [
30 "samples /0",
31 <Others omitted >
32],
33 "wavelength": [
34 "600: nanometer"
35]}}]}] ,
36 "refs": {
37 "samples": {
38 "id": "ct1g9qsg4wx6gcj",
39 "discard": true
40 }}}

Fig. 11. Autoprotocol specification of the iGEMLUDOX calibration protocol generated by the PAML execution engine and Autoprotocol
listener.

ACKNOWLEDGMENTS

This work was supported by Air Force Research Laboratory (AFRL) and DARPA contracts FA8750-17-C-0184, FA8750-17-
C-0231, and HR001117C0095. This document does not contain technology or technical data controlled under either U.S.
International Traffic in Arms Regulation or U.S. Export Administration Regulations. Views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. Approved for Public Release, Distribution Unlimited.

REFERENCES
[1] [n. d.]. Unity Visual Scripting. https://unity.com/products/unity-visual-scripting. (accessed 2020-11-18).
[2] Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager,

Maya Nedeljkovich, and et al. 2016. Common Workflow Language, v1.0. https://doi.org/10.6084/m9.figshare.3115156.v2
[3] Hasan Baig, Pedro Fontanarrosa, Vishwesh Kulkarni, James Alastair McLaughlin, Prashant Vaidyanathan, Chris Myers, Bryan Bartley, Jacob Beal,

Matthew Crowther, Thomas E. Gorochowski, Raik Grunberg, Goksel Misirli, Thomas Mitchell, Ernst Oberortner, James Scott-Brown, , and Anil
Wipat. 2021. Synthetic biology open language (SBOL) version 3.0.1. https://github.com/SynBioDex/SBOL-specification/releases/tag/v3.0.1.

[4] Bryan Bartley. 2021. SBOLFactory: Ontology-driven code generation. In HARMONY 2021.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://unity.com/products/unity-visual-scripting
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Building an Open Representation for Biological Protocols 23

[5] Jacob Beal, Geoff S Baldwin, Natalie G Farny, Markus Gershater, Traci Haddock-Angelli, Russell Buckley-Taylor, Ari Dwijayanti, Daisuke Kiga,
Meagan Lizarazo, John Marken, et al. 2021. Comparative analysis of three studies measuring fluorescence from engineered bacterial genetic
constructs. PloS one 16, 6 (2021), e0252263.

[6] Jacob Beal, Traci Haddock-Angelli, Geoff Baldwin, Markus Gershater, Ari Dwijayanti, Marko Storch, Kim De Mora, Meagan Lizarazo, Randy
Rettberg, and with the iGEM Interlab Study Contributors. 2018. Quantification of bacterial fluorescence using independent calibrants. PloS one 13, 6
(2018), e0199432.

[7] Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach, Wilhelm Ansorge, Catherine A
Ball, Helen C Causton, et al. 2001. Minimum information about a microarray experiment (MIAME)?toward standards for microarray data. Nature
genetics 29, 4 (2001), 365–371.

[8] Broad Institute. 2019. The Workflow Description Language and Cromwell. https://software.broadin-stitute.org/wdl
[9] Zdena Dobesova. 2011. Visual programming language in geographic information systems. In Proceedings of the 2nd international conference on

Applied informatics and computing theory. World Scientific and Engineering Academy and Society (WSEAS), 276–280.
[10] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon Woodhull. 2003. Graphviz and dynagraph: static and dynamic

graph drawing tools. In GRAPH DRAWING SOFTWARE. Springer-Verlag, 127–148.
[11] Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and

transparent computational research in the life sciences. Genome Biology 11, 8 (2010), R86.
[12] Ben Keller, Justin Vrana, Abraham Miller, Garrett Newman, and Eric Klavins. 2019. Aquarium: The laboratory operating system version 2.6.0. (2019).

https://doi.org/10.5281/zenodo.2583232
[13] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/.
[14] Jamie A Lee, Josef Spidlen, Keith Boyce, Jennifer Cai, Nicholas Crosbie, Mark Dalphin, Jeff Furlong, Maura Gasparetto, Michael Goldberg, Elizabeth M

Goralczyk, et al. 2008. MIFlowCyt: the minimum information about a Flow Cytometry Experiment. Cytometry Part A: the journal of the International
Society for Analytical Cytology 73, 10 (2008), 926–930.

[15] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The scratch programming language and environment.
ACM Transactions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[16] James Alastair McLaughlin, Jacob Beal, Göksel Mısırlı, Raik Grünberg, Bryan A Bartley, James Scott-Brown, Prashant Vaidyanathan, Pedro
Fontanarrosa, Ernst Oberortner, Anil Wipat, et al. 2020. The Synthetic Biology Open Language (SBOL) version 3: simplified data exchange for
bioengineering. Frontiers in Bioengineering and Biotechnology 8 (2020), 1009.

[17] Ben Miles and Peter L Lee. 2018. Achieving reproducibility and closed-loop automation in biological experimentation with an IoT-enabled Lab of
the future. SLAS Technology 23, 5 (2018), 432–439.

[18] Paolo Missier, Khalid Belhajjame, and James Cheney. 2013. The W3C PROV family of specifications for modelling provenance metadata. In
Proceedings of the 16th International Conference on Extending Database Technology. ACM, 773–776.

[19] Object Management Group. 2017. OMG Unified Modeling Language (OMG UML) Version 2.5.1. https/www.omg.org/spec/UML/.
[20] Opentrons. 2020. OT-2 Python Protocol API Version 2. https://docs.opentrons.com/v2/
[21] Carl Adam Petri. 1966. Communication with automata. Ph. D. Dissertation. Universitat Hamburg.
[22] Hajo Rijgersberg, Don Willems, Xin-Ying Ren, Mari Wigham, and Jan Top. 2021. Ontology of units of Measure (OM), version 2.0.31. http:

//www.ontology-of-units-of-measure.org/resource/om-2.
[23] Nicholas Roehner, Bryan Bartley, Jacob Beal, James McLaughlin, Matthew Pocock, Michael Zhang, Zach Zundel, and Chris J Myers. 2019. Specifying

combinatorial designs with the synthetic biology open language (sbol). ACS synthetic biology 8, 7 (2019), 1519–1523.
[24] Paul Rutten, Richard Tennant, Jacob Beal, Traci Haddock-Angelli, Natalie Farny, Geoffrey Baldwin, Marko Storch, and Ari Dwijayanti. 2019.

Calibration Protocol - OD600 Inter-equipment Conversion with LUDOX. protocols.io. https://dx.doi.org/10.17504/protocols.io.5gig3ue
[25] Michael I Sadowski, Chris Grant, and Tim S Fell. 2016. Harnessing QbD, programming languages, and automation for reproducible biology. Trends

in Biotechnology 34, 3 (2016), 214–227.
[26] Ashley Sommer and Nicholas Car. 2021. pySHACL. https://doi.org/10.5281/zenodo.4750840
[27] Leonid Teytelman, Alexei Stoliartchouk, Lori Kindler, and Bonnie L Hurwitz. 2016. Protocols.io: virtual communities for protocol development and

discussion. PLoS Biology 14, 8 (2016), e1002538.
[28] Keith F Tipton, Richard N Armstrong, Barbara M Bakker, Amos Bairoch, Athel Cornish-Bowden, Peter J Halling, Jan-Hendrik Hofmeyr, Thomas S

Leyh, Carsten Kettner, Frank M Raushel, et al. 2014. Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why
it should be helpful. Perspectives in Science 1, 1-6 (2014), 131–137.

[29] John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum, Joel Armstrong, Adam Novak, Jacob Pfeil, Jake Narkizian, Alden D
Deran, Audrey Musselman-Brown, et al. 2017. Toil enables reproducible, open source, big biomedical data analyses. Nature Biotechnology 35, 4
(2017), 314.

[30] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra
Nenadic, Paul Fisher, et al. 2013. The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the
cloud. Nucleic Acids Research 41, W1 (2013), W557–W561.

Manuscript submitted to ACM

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.05.498808doi: bioRxiv preprint

https://software.broadin-stitute.org/wdl
https://doi.org/10.5281/zenodo.2583232
https://www.w3.org/TR/shacl/
https/www.omg.org/spec/UML/
https://docs.opentrons.com/v2/
http://www.ontology-of-units-of-measure.org/resource/om-2
http://www.ontology-of-units-of-measure.org/resource/om-2
https://dx.doi.org/10.17504/protocols.io.5gig3ue
https://doi.org/10.5281/zenodo.4750840
https://doi.org/10.1101/2022.07.05.498808
http://creativecommons.org/licenses/by/4.0/

	Abstract
	1 Introduction
	2 Architecture
	2.1 Design Requirements
	2.2 Foundations: UML, Autoprotocol, and SBOL RDF

	3 PAML Data Model
	3.1 Protocols
	3.2 Execution Records

	4 Prototype
	4.1 Ontology-Based Specification
	4.2 Visualization and Editing of Protocols
	4.3 Execution in Markdown and Autoprotocol

	5 Future Directions
	1 iGEM 2018 LUDOX OD calibration protocol
	1.1 Description:
	1.2 Protocol Materials:
	1.3 Protocol Inputs:
	1.4 Protocol Outputs:
	1.5 Steps

	Acknowledgments
	References

