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Optogenetic Maxwell Demon to Exploit Intrinsic
Noise and Control Cell Differentiation Despite
Time Delays and Extrinsic Variability
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Abstract—The field of synthetic biology focuses on creating
modular components which can be used to generate complex
and controllable synthetic biological systems. Unfortunately, the
intrinsic noise of gene regulation can be large enough to break
these systems. Noise is largely treated as a nuisance and much
past effort has been spent to create robust components that
are less influenced by noise. However, extensive analysis of
noise combined with ‘smart’ microscopy tools and optognenetic
actuators can create control opportunities that would be dif-
ficult or impossible to achieve in the deterministic setting. In
previous work, we proposed an Optogenetic Maxwell’s Demons
(OMD) control problem and found that deep understanding
and manipulation of noise could create controllers that break
symmetry between cells, even when those cells share the same
optogenetic input and identical gene regulation circuitry. In this
paper, we extend those results to analyze (in silico) the robustness
of the OMD control under changes in system volume, with time
observation/actuation delays, and subject to parametric model
uncertainties.

Index Terms—Stochastic control, optogenetic, synthetic biology

I. INTRODUCTION

Synthetic biology seeks to create modular [2] and or-
thogonal [3] components to sense and actuate [4] complex
logical systems [5], and which are capable of performing
a variety of advanced biological behaviors [6]. Additionally,
new optogenetic tools have increased our ability to actuate
embedded systems within cells reliably and with strong control
performance [4], [7]-[9].

Advances in so-called ‘programmed cyborg control’ have
allowed for computer programmable control of cellular protein
production through the use of external optogenetic inputs and
smart microscopy techniques [10]-[12]. This new paradigm
of digital-synthetic actuators allows for computer-modulated
control of cellular systems that were previously impossible
[13]. These highly adjustable systems are capable of fine tuned
control without the typical drawbacks and slow timescales of
chemical inputs [7]. Classical and modern control methods
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Fig. 1. (A) Schematic of the T7 optogenetic control system (adapted from
[1]). A microscope observer is partially (PAC) or fully (FAC) aware of cells;
the resulting controller modulates a single spatially homogeneous light signal
that perturbs all cells equally seeks to drive each genetically identical cells to
a different, specified states. (B) Schematic of the optogenetically controllable
T7 polymerase model, which is identical in all cells: Light activates the T7
polymerase-based production of protein, and the protein self-actuates its own
production. (C) The FAC (top) and PAC (bottom) control laws for two cells
(uX Ac(ml, x2) shown on left) break the symmetry between Cell 1 and Cell
2 and result in distinct marginal distributions for the cells’ responses (right).

like PID control and model predictive control have been
implemented in such systems [14], but these approaches
are based on deterministic formulations that cannot allow
for symmetry breaking and are therefore limited to single-
input-single-output (SISO) or multiple-input-multiple-output
(MIMO) control frameworks.

Because most previous control effort focus on deterministic
ODE formulations of the control problem, much effort has
been spent to minimize the effects of intrinsic variations
(or ‘noise’) in these systems. Despite substantial work to
understand and mitigate noise effects in synthetic biological
systems (e.g., see the review in [15]), only a few studies seek
instead to exploit noise to improve the control of synthetic
biology processes [1], [16].

Our recent work shows that a deep understanding of noise
can provide rich new control opportunities. Specifically, in [1],
we find that noise, auto-regulation, and optogenetic feedback
control could synergize to create a system (Fig. 1A) that
systematically directs two different observed cells to two ar-
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bitrarily chosen points simultaneously, but using only a single
input controller (e.g., a single-input-multiple-output or SIMO
controller). Specifically, we showed that the symmetry of the
OMD control problem could be effectively broken using a
Fully Aware Feedback Controller (FAC) that observed all cells,
a Partially Aware Feedback Controller (PAC) that observed
only the primary cell, and a probabilistic Model Predictive
Feedback Controller (pMPC) that observed only the primary
cell and integrated a probabilistic model to represent the non-
stationary probability distribution of the secondary cells in
the same environment. The specification of all controllers
was based on solving the chemical master equation (i.e., the
forward Komogorov equation) to estimate the probability of
all possible cellular states. For a simple population of one
primary cell and one secondary cell, the FAC performed the
best (Fig. 1C(top)), but for larger populations the FAC was
computationally infeasible, and the PAC (Fig. 1C(bottom))
and pMPC controllers yielded superior results. In all cases,
the controller’s knowledge and explicit treatment of intrinsic
noise was critical to improve the control performance, break
symmetry, and enable the SIMO control of all cells.

In this paper, we extend the OMD control problem above
to examine how the FAC and PAC controllers are affected
by the cellular volume; how the control is affected by time
delays in the observer or actuators; and how robust the control
performance is to variations in the system parameters in
individual cells. In the ‘Methods’ section, we briefly set up
a stochastic chemical master equation model for multiple in-
dividual cells in the same spatially homogeneous environment,
and we formulate the effects of FAC and PAC controllers on
the dynamics of cells within that environment. Next, in the
‘Results’ section, we examine the effects of volume changes,
time delays, and parametric uncertainties on the FAC and PAC
control performance. Finally, in ‘Conclusions’ we summarize
our findings and discuss potential implications that these
controllers may have on future systems and synthetic biology
investigations.

II. METHODS
A. Model

We seek to analyze the dynamics of a single protein with
auto-regulation and under the control of an optgentically
activatable T7 polymerase (Fig. 1B). A complete model of
the system is provided in [1] and consists of dimerization
of production and degradation of T7 monomer components;
reversible dimerization of these T7 components to form an
activated T7 in the presence of UV light; reversible association
of the T7 with a gene to form an active complex; T7-mediated
production of the protein; auto-regulated production of the
protein from a secondary self-activated promoter described by
a Hill function; and degradation of the protein. This model
was then simplified to a single ODE describing the protein
accumulation as:

p”l

dp
— K———— +
P+ pn

i u(xy, x2) +

ko —vp, (D

TABLE I
MODEL PARAMETERS
Parameter Value units

K 0.406 Molecules Per Minute
B 20.0 Molecules

n 8.00 unit less

ko 0.0001 Molecules per Minute
o 0.0203 per Minute

u dynamic | Molecules per Minute

where p is the protein count; s is the maximum auto-
regulation promoter strength; [ is the concentration at which
auto-regulation reaches half strength; 7 is the auto-regulation
promoter cooperativity; « is the degradation rate; kg is the
promoter leakage rate; and u is the T7 promoter strength. The
activity of the T7 promoter can be modulated in response to
to the observed state, such that u = u(z1, x2) introduces the
possibility of state-dependent optogenetic feedback to control
the system. We note that w(zq,z2) refers to the effect of
light on the optogenetic system rate equation, which can be
converted to light intensity using the calibration curve shown
in Fig. 2B in [1]. A schematic of the model is shown in
Fig. 1B, and parameters were chosen to reproduce dynamics
measured in [7] and are shown in are defined in Table 1 [1].
Two optimized controls laws u = u(FA®) and u = u(PAC) are
depicted in Fig. 1C (top left and top right, respectively).

B. SSA and Finite State Projection Analysis Methods

To recast the above ODE formulation into the discrete
stochastic representation, we define the enumerated i =
1,2,... states of the system as the tuple of the numbers
of proteins in each cell as X; = [zi1,%42,...,2:N,], and
we define the stoichiometry vectors as the change in state
following one reaction event (e.g., X; — X; +s,), where the
2N, possible reactions are:

S; = €1, S = —€y,
S3 = €2, 54 = —€y,
82N.—~1 = eN,; S2N, = —€N., 2

where each e;, corresponds to the Euclidean basis vector for
the it" cell. The corresponding propensity functions are:

wy = u(X,t) + 5587 + ko, wo = yx1,

wsg = u(X,t) + Kxi + ko, wg = yxa,

n
TN

1 =u(X,t —
wQNC 1 U( 9 )+Hm7\/’+ﬂn

+ kOa wQNC = YTN, (3)
With these stoichiometry and propensities, we can formulate
and run the Gillespie stochastic simulation algorithm [17], [18]
to generate representative trajectories of the stochastic process.


https://doi.org/10.1101/2022.07.05.498841
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.05.498841; this version posted July 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

For the same specifications of the stoichiometry and propen-
sity functions, the chemical master equation can also be
formulated in matrix/vector form as:

d

dt
where P = [P(X;), P(X3),...]T is the enumerated prob-
ability mass vector for all possible states of the system;
Ay is the infinitesimal generator of the stochastic process
due to the autoregulation promoter and degradation events;
u’ = [wé(Xy),u¢(Xy),...]T is the collection of state-
dependent control inputs associated with each state; and Bu®
is the infinitesimal generator for the T7 promoter expression
by which the effects of controller C are introduced into the

P = (Ag +Bu)P, )

process.
The generator A can be constructed according to:
- Ziii wy(X;), fori=j,
[AO]ij = wl,(Xj), for X; = Xj + s, 5

0, otherwise,

and the infinitesimal generator Bu® of the controller is given
by

—N.uf(X;), fori=j,
X, =X +e;
c . C ) 7 7 Ted
[Bu ]ij = us(Xy),  for and i, =1,..., N,
0, otherwise,

(6)
where u¢(X}) is the specification of the C controller in terms
of the (partially observed) state.

For a given controller, the steady state of the system (P*)
found by solving Eq. 4 is given by

P* = null(A + Bu®). (7)

C. Controller Performance Ranking and Optimization

A performance metric is specified in order to compare the
outcomes of different controllers and to define an optimization
for the control law. Specifically, we define the performance
score (J), as the expected steady state Euclidean distance
of the process from a specified target state according to
E{(X — T)?}. This score can be rewritten in terms of a
precomputed set of linear weights (C) and the steady state
probability distribution (P* from Eq. (7)) given by

J = lim E{|X(t) - T[3}
=Y Pz =dm=j,..)((I-T1)*+ (G -T2’ +...)

... =CP" ®)

Two controller designs, a fully aware controller u?4¢ =

uf4¢ (1, 25) and a partially aware controller u”4¢ =
uAC¢(z1), were specified in previous work [1]. The FAC
observes both x; and x2 when making its control decision,
while the PAC only uses information from xz; to derive
its control input. Each was optimized to drive the OMD
control problem with high probability to a target state of

T = [30,10]7. We note that despite the fact that the PAC

only uses information from x, the control input is capable to
control both z; and x> almost as well as the FAC controller
(Fig. 1C, compare top and bottom right). As defined in Eq.
6, the control matrix Bu|’ changes depending on the control
type used (uf"4¢ or u”4). For the purposes of this work,
we adopt the precomputed values for the u’4¢ and u”4¢
controllers (shown in Fig. 1C, top and bottom left), and we
leave these unchanged as we perturb the system to test how
the performance of the controller depends on the volume of
the system, time delays in the observation or actuation of the
control signal, and perturbation to the system parameters.

D. Rescaling for Different System Volumes

To examine how the system size (or volume) affects the
ability of the controller to force the state to the target value,
we introduce a volume scaling parameter o« = (new vol-
ume)/(original volume) that scales the state (X = [z1,22])
whose dimensions depend on molecule numbers (or concentra-
tions). As a result of this scaling, parameters remain the same,
but the rate equation as a function of state becomes w,, (X /«).
In order to use the same control law or performance metric as
for the original system size, the state must also be scaled by
1/a before computing the appropriate functions of that state,
e.g., u¢ = u¢(X/a) and

J =3P =im = j)((i/a~ T + (j/a —T2)%),
= C”P* ©)

Finally, as the original controllers u”"4¢ and u”4¢ were only

defined for integer numbers of molecules, fractional values are
determined using bi-linear interpolation.

After rescaling, the SSA analysis is conducted using Eq. 2
and the modified version of Eqgs. 3, and the truncated CME
analysis of the model is found by substituting the scalable
rate equation into Egs. (5) and (6). We note that the original
system volume was proportional to N = 50, such that the
truncation size of the CME in Eq. 4 for a two cell system led
to infinitesimal generators A and BuC of the size R?0°*50°.

E. Introduction of Observation/Actuation Time Delays

To test the effects of time delay, a time-delay SSA was
developed by recording the piecewise constant recent history
of the system and calculating the current light at time ¢ in the
following delayed manner

wn () = 0, fort<rm,
T wl(xi (- 7),22(t — 7)), fort>T,

where 7 is the time delay of the observation or actuation,
and «€ is the previously optimized control law for u”4¢ or
u”4¢ We note that the time delay stochastic process was
only simulated using the SSA because an appropriate direct
FSP/CME integration procedure is not known.

(10)

F. Extrinsic Parameter Perturbations

To estimate the effects of inaccurate models or variations
of parameters in different cells, a parameter perturbation
analysis was performed by taking each individual parameter
A € {k,B,ko,m,v} and multiplying that parameter by a
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positive scalar value ranging from 1/2 to 2. We examine
two cases for such perturbations: First, to analyze the effect
of different parameter perturbations in different cells (e.g.,
extrinsic variability), parameters of one cell would be held
constant while the parameters of the other cell is modified.
Second, to examine the effects of a global error in the model
that affected both cells, we would perturb the same parameter
for both cells simultaneously.

III. RESULTS
A. Effects of Changes to Volume Size

It is well known that systems are intrinsically more noisy
when the numbers of important molecules are small, and
systems are less noisy when the number of molecules are
large. Moreover, we know from [1] that the existence of
intrinsic noise is essential for the realization of the OMD
control strategy and its control performance. To better un-
derstand the effect of intrinsic noise due to molecule count
on control performance, we re-scaled the system to have to
same dynamics over a larger (or smaller) system sizes, and
we assess the control performance at these different volumes.

To explore how the size of the system volume changes the
intrinsic noise level and the control performance, we solved the
FSP steady state for the volume-adjustable system described
above. Specifically, we changed the volume (originally N =50
in [1]) from N =10 to NV =100 in steps of five, and at each
point the score of the system is calculated using the FSP at
steady state. Figs. 2 (Ai - Fi) show the joint (left plots) and
marginal (right plots) distributions of the two cells relative to
the specified target position (circles in joint distributions and
vertical dashed lines in marginal distributions) for the FAC
controller and for volumes of N = 10 (A,B), 50 (C,D) and
100 (E,F) cells. As the volume changes from N=10 (Fig. 2,
Ai and Bi), to N=50 (Fig. 2, Ci and Di), to N=100 (Fig 2, Ei
and Fi), the distributions become much better centered around
the intended target values, and the performance score improves
from J =333 to 85 to 27, respectively. The PAC controller per-
formance also improves considerably with volume as shown
in Figs. 2 (Aii - Fii).

Fig. 2G shows the trend of the performance score versus
the volume size for both the FAC (solid cyan line) and the
PAC (solid magenta line) controller. This improvement in
performance appears to approach a small value as the volume
size goes to infinity, but since the size of the FSP increases
with the square of the system volume, systems much larger
than N =100 (where A € R'"*10") are difficult to calculate.
To bypass this limit in the FSP, we used a series of Gillespie
SSA to simulate a system with a much larger volume of
N =5,000 molecules. The performance score estimates of this
large volume SSA using the FAC and PAC were 2.9 and 33
respectively, which are plotted as dashed lines in Fig2G. We
note however, that systems with larger volumes take longer to
reach a steady state distribution, and it is unclear if perfor-
mance improvements can be obtained with further increases
to the system volume. However, for all volumes considered,
we found that both controllers monotonically improved with

increased volume and that uf4¢

u”4¢ at any system volume.

These data have a couple important implications for the
design of controllable synthetic systems as well as for the
determination of a usable control algorithm. First, they suggest
that increasing system volume increases steady state control
performance even if the controller itself depends on noise for
its successful implementation. Second, we showed that design-
ing a controller to work for a system of one volume size can
result in a controller that works even for another much larger
volume. This second result has crucial practical significance,
because it is relatively easy to search over a control law defined
on an N x N grid of states when the size is relatively small
(e.g., when N=50 as in [1]), but to design the controller for
a larger system (e.g., for when N=5000 as simulated with
SSA above) may be computationally prohibitive. This result
implies that it may be possible to optimize controller using
coarse-grained FSP analyses for small volume problems and
adapt these via interpolation for use with larger, more realistic
systems, that exceed the computational limit of standard FSP
computations.

always outperforms the

B. Effects of Time Delays on Controller Performance

Time delay is a common occurrence in practical control
applications that usually degrades performance and may even
produce oscillations or destabilize a physical system. We
hypothesized that time delays in the observation or control
signal actuation would adversely affect the ability to control
the individual cells due to their respective target states. To
test the effect of time delay, we analyzed the performance of
the original FAC and PAC controllers using the time delay
Gillespie SSA, each considering time delays ranging from
from 0.01/+ to 10/~ (where the residence time 1/ sets the
dominant time scale of the protein concentration).

Fig. 3 shows the effects of time delay using the two
controllers, with panels Ai - Fi showing results for the FAC
controller and panels Aii-Fii showing results for the PAC
controller, and panel G showing the score of the controllers
versus the time delay. From the figures, it is clear that
performance is rapidly degraded as the delay approaches and
then exceeds the characteristic time scale of the process. At
low time delays (below 7 = 0.07/7), the FAC outperforms
the PAC (J =87 versus 146 at 7 = 0.01/) but at moderate
time delays (above 7 = 0.07/+) the PAC outperforms the FAC
(J =170 versus 219 at 7 = 0.1/~)). This data taken together
show that time delays much larger that 0.07/~ is detrimental
to the FAC controller; delays beyond 0.2/ are detrimental
for the PAC controller; and the best choice in controller is
dependent the level of time delay in the system. For extreme
levels of time delay, both systems lose their asymmetry, and
their scores become much worse (J =1041 and 931).

C. Effects of Parameter Errors or Extrinsic Uncertainties

It is rare that any parameters are perfectly known (es-
pecially for biological processes), and real systems often
exhibit slightly different parameters due to extrinsic variations.
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and PAC and FAC controllers are unchanged from [1].

We hypothesized that perturbations of cell parameters would
influence the control performance of the OMD controller. To
test this, we perturbed individual parameters of Cell 1 while
holding the parameters of Cell 2 constant. The data for such
perturbations are shown in Fig 4(Ai-Ei). The analysis was then
repeated, this time holding the parameters of Cell 1 constant
and perturbing the parameters of Cell 2 (shown in Fig. 4(Aii-
Eii)). Finally, both Cell 1 and Cell 2 had their parameters
jointly perturbed by the same amount (Fig 4(Aiii-Eiii)).
Considering perturbations to one cell at a time (Fig. 4 top
two rows), we found that perturbations to different parame-
ters had different effects. For example, Fig4(Bi) shows that
increasing 5 in Cell 1 worsens performance while increasing
B in Cell 2 improves performance, showing that fortuitous
asymmetry in the cells may lead to better control performance.
In some cases, these effects were not monotonic; for example
increasing « in Cell 1 is highly advantageous up to a limit after
which the control performance degrades rapidly. In other cases
(such as for kg), the effect of perturbations on performance
is insignificant even for relatively large (50%) perturbations.
When parameters of both Cell 1 and Cell 2 are jointly changed
(Fig. 4 bottom row), some parameters (e.g., k, 7y) reached
minima that performed better than the original, which suggests
that the physical system itself has room for optimization
beyond the original design that could lead to better control

performance, even without changing the control law.

When examining the effects of changing parameters when
using the uf"4C (solid lines) or the u’4¢ (dashed lines),
general trends typically remained the same in that changes to a
parameter which caused a decrease in the control performance
of the FAC also tended to decrease the performance of the
PAC. However, these effects were not always equal (e.g.,
for large ~ values or small  values) and the simpler PAC
occasionally outperforms the FAC controller.

IV. CONCLUSION

The modeling of noise is known to be critical to the success
of synthetic biological systems. Our findings show that noise
can provide beneficial aspects to process controllability by
breaking symmetry and enabling a single controller to simul-
taneously module the behavior of multiple different cells to
reach distinct phenotypes. We show that such an Optogenetic
Maxwell’s Demon control strategy can drive cells to different
stable points despite moderate external influences, such as
volume changes to the system, time delays in the controller
and variations in the system parameters. These analyses also
show that approximate models can be used to design effective
controllers, and that systems and controllers can be jointly op-
timized to improve performance. Given the relative robustness
to time delays exhibited by the PAC controller, we believe that
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more sophisticated probabilistic model predictive controllers,
such as that introduced in [1], could be implemented in future
work to predict effects of time delays and create controllers
that are even more robust to time delays. Additionally, we
believe that the performance score in the control design could
be extended to account for a parameter uncertainties and a
parameter-robust controller could be developed to sacrifice
some performance at baseline parameter combinations but be
better able handle a range of parameter combinations.
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