Abstract
Optogenetics is a powerful technology to control synthetic gene circuits using external and computer-programmable light inputs. Like all biological processes, these systems are subject to intrinsic noise that arises from the stochastic process of gene regulation at the single-cell level. Many engineers have sought to mitigate this noise by developing more complex embedded bio-circuits, but recent work has shown that noise-exploiting stochastic controllers could enable new control strategies that take advantage of noise, rather than working against it. These noise-exploiting controllers were initially proposed to solve a single-input-multi-output stationary control problem, where symmetry was broken in a means reminiscent to the concept of Maxwell’s Demon. In this paper, we extend those results and show through computation that transient, asymmetric, and asynchronous stochastic control of the single-input-multi-output (SIMO) control problem is posible to achieve by cycling through different controllers in time. We show that such a method is able control two cells to two different periodic fates with different frequencies and different phases despite the use of only one control input.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
* Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM124747.
michael.may{at}rams.colostate.edu
munsky{at}colostate.edu