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Abstract

How are we able to learn new behaviors without disrupting previously learned ones?1

To understand how the brain achieves this, we used a brain-computer interface (BCI)2

learning paradigm, which enables us to detect the presence of a memory of one behav-3

ior while performing another. We found that learning to use a new BCI map altered4

the neural activity that monkeys produced when they returned to using a familiar5

BCI map, in a way that was specific to the learning experience. That is, learning left6

a “memory trace.” This memory trace co-existed with proficient performance under7

the familiar map, primarily by altering dimensions of neural activity that did not8

impact behavior. Such a memory trace could provide the neural underpinning for9

the joint learning of multiple motor behaviors without interference.10
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Introduction11

Suppose an experienced skier learns to snowboard. Skiing and snowboarding require12

different sets of muscle activations, driven by different neural population activity13

patterns, to achieve the same goal of getting down the mountain without falling. How14

does the brain incorporate the knowledge about how to snowboard along with the15

knowledge about how to ski? The first possibility is that after learning to snowboard16

the neural activity used for skiing remains unchanged. In this scenario, the new17

neural activity for snowboarding would only be recalled when snowboarding again.18

Such context-dependent recall has been observed in certain learning settings, such19

as the remapping of hippocampal place-fields between environments (Alme et al.,20

2014), and has been proposed as a potential mechanism for motor memory storage21

(Herzfeld et al., 2014).22

The second possibility is that the neural activity used for skiing is altered by23

the recently acquired ability to snowboard. Several studies have suggested that this24

might be the case, as neural tuning has been observed to change as a result of motor25

adaptation (Li et al., 2001, Arce et al., 2010, Cherian et al., 2013, Perich and Miller,26

2017, Sun et al., 2022). There are two possible reasons for these neural activity27

changes. First, these changes might constitute a memory of the learning experience.28

That is, learning could lead to a “memory trace”, which we define as an alteration29

of the population activity patterns used to perform familiar tasks in a manner that30

renders them also appropriate for a newly learned task. Second, these changes could31

be attributed to the many task-agnostic factors, such as changes in arousal (Cowley32

et al., 2020, Hennig et al., 2021a), motivation (Roesch and Olson, 2004), posture33

(Graziano, 2006), or altered arm dynamics (Cherian et al., 2013, Perich and Miller,34

2017). Without a known causal link between neural activity and behavior, it is35

difficult to determine if and how changes in neural activity after learning might36

constitute a memory trace.37

Here we overcome this difficulty by leveraging a brain-computer interface (BCI)38

paradigm (Jarosiewicz et al., 2008, Ganguly and Carmena, 2009, Koralek et al., 2012,39

Hwang et al., 2013, Sadtler et al., 2014, Gulati et al., 2017, Jeon et al., 2022, Oby40

et al., 2019). A key advantage of a BCI for the study of motor memory is that the41

relationship between neural activity and behavior (termed the BCI map) is specified42

by the experimenter (Golub et al., 2016, Orsborn and Pesaran, 2017). This feature43

of a BCI is crucial in enabling us to look for a memory trace because it allows us to44

evaluate how changes in neural activity relate to a task that is not being performed.45

We trained three monkeys to perform a BCI task. We used two different BCI maps46

in each experimental session. Much like the example of an experienced skier learning47

to snowboard, a monkey first controlled a computer cursor using a familiar Map A,48

and then learned how to use a new Map B. Following learning, we reinstated Map49

A. This allowed us to evaluate whether monkeys used different population activity50

patterns to control Map A before and after learning Map B. Furthermore, to see if51

neural activity showed a memory trace of having learned Map B, we evaluated how52

well the neural activity produced by the monkey during the use of Map A would have53
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controlled the cursor through the offline Map B, comparing pre- versus post-learning.54

We observed that, after learning Map B, the monkeys were subsequently able to55

control the cursor using Map A, and yet the neural activity remained consistent56

with improved performance using Map B. That is, learning left a memory trace by57

altering the neural activity used to perform the familiar task, such that the neural58

activity became more appropriate for the learned task. The memory trace coexisted59

alongside proficient Map A performance by altering neural activity primarily along60

dimensions that did not affect cursor movements under Map A. Overall, our results61

reveal that learning can leave a memory trace in neural population activity that62

need not interfere with the subsequent behavior. The formation of a memory trace63

may thus provide a mechanism to facilitate the learning of multiple motor skills64

without interference (Krakauer et al., 2005), instantaneous switching between tasks,65

and rapid relearning of motor behaviors (“savings”).66

Results67

Here we study how learning to perform a new task affects the neural activity used68

while performing a familiar task (Fig. 1a). We trained three monkeys to perform69

an eight-target center-out task using a brain-computer interface (BCI). The mon-70

key’s goal on each trial was to guide a computer cursor to an instructed target by71

modulating his neural activity (Fig. 1b; see Methods). At each moment in time,72

a BCI map determined the relationship between the neural activity, recorded from73

∼90 neural units in primary motor cortex (M1), and the cursor’s 2D velocity. Each74

experiment utilized two different BCI maps, Map A and Map B, presented across75

three blocks of trials (Fig. 1c). During the first block (“Task A1”), we provided the76

monkeys with Map A, which was an “intuitive” map calibrated that day to allow77

for proficient cursor control without any learning. For the second block (“Task B”),78

we changed the BCI map to Map B, which the monkey had never used before (see79

Methods). This resulted in an initial decrement in the monkey’s performance, which80

improved over the course of several hundred trials as he learned to control the cursor.81

In the third block (“Task A2”), we reinstated Map A. This typically resulted in the82

well-known aftereffect that typically follows a bout of motor learning after which83

performance returns to level comparable to that of Task A1 (Shadmehr and Mussa-84

Ivaldi, 1994). Data from the Task A1 and Task B periods have been examined in85

prior work (Sadtler et al., 2014, Golub et al., 2018, Hennig et al., 2018, 2021a). In86

this study, we now focus on the neural activity recorded during Task A2, which is the87

appropriate epoch to address our central question and which we have not reported88

on previously.89

Our central question is: how does learning Map B affect the neural activity pro-90

duced while using Map A? To illustrate the possibilities, we depict two dimensions91

of neural population activity controlling 1D cursor movements (Fig. 1d). During92

Task A1, the monkey produces neural activity appropriate for Map A, in that the93

projection of neural activity onto Map A results in high cursor velocities toward the94
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Figure 1. How learning a new task might change the neural activity used for a familiar
task
(a) Schematic of how neural activity (colored dots) may change when performing different tasks.
Performing Task A for the first time (light red; Task A1), then Task B (blue, Task B), then Task
A again (dark red; Task A2) may all yield distinct neural activity patterns. (b) The activity of
∼90 neural units, recorded using a Blackrock array implanted in the primary motor cortex (M1),
were translated into the movement of the cursor through a brain-computer interface (BCI). A BCI
directly relates neural activity to behavior (the horizontal and vertical velocities of a cursor on a
computer screen) using a map specified by the experimenters. The online BCI map is the BCI map
that dictates cursor movements. The same neural activity can also be interpreted with respect to
an offline BCI map that did not determine cursor control movement. (c) Target acquisition times
for an example session (N20160714). The initial period where the monkey used Map A to control
the cursor is defined to be Task A1 (acquisition times shown in light red). For Task B, the map was
switched to Map B. The monkey had to learn how to control the cursor with this new map through
trial and error (dark blue). Acquisition times improved, showing that learning occurred. For Task
A2, Map A was reinstated (dark red). For visualization, acquisition times were smoothed with a
causal 25-trial moving window and are not shown for the first 8 trials of each task. Success rates
were near 100% for all three tasks. (d-e) Schematics of how neural activity might look during the
three tasks. For illustrative purposes, we show a 2D neural space, which was mapped to a 1D cursor
velocity. In the actual experiments, the neural space was ∼90D (one dimension per recorded unit),
which was mapped to a 2D cursor velocity. (d) During Task A1, neural activity is appropriate for
Map A. (e) During Task B, neural activity becomes appropriate for Map B. (f-h) We explore three
possibilities for what neural activity might look like during Task A2. (f) Reversion hypothesis: Task
A2 neural activity is similar to that used during Task A1. (g) Representational Drift Hypothesis:
Task A2 neural activity is different from that used Task A1, but not in a manner that consistently
retains high performance through Map B. (h) Memory Trace Hypothesis: Task A2 neural activity
contains a memory trace, whereby neural activity is appropriate for both Map A and Map B.
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target. During Task B, the monkey learns to produce neural activity that is appro-95

priate for Map B (Fig. 1e). Finally, Map A is reinstated during Task A2, and the96

monkey’s neural activity needs to once again become appropriate for Map A.97

We consider three possibilities for what neural activity might look like after behav-98

ior stabilizes during Task A2. One possibility is that, after learning, the population99

activity patterns produced during Task A2 are similar to those produced during Task100

A1. We call this the reversion hypothesis (Fig. 1f). Reversion has been observed in101

various different contexts, such as reaching tasks (Perich and Miller, 2017, Cherian102

et al., 2013), BCI tasks in visual cortex (Jeon et al., 2022), and in the remapping103

of hippocampal place fields (Alme et al., 2014). This would indicate that the neural104

activity we observed in M1 during performance of a task can be unaffected by an105

intervening learning experience.106

A second possibility is that neural activity changes in a manner agnostic to the107

learning experience. We call this the representational drift hypothesis (Fig. 1g; see108

Druckmann and Chklovskii (2012), Rule et al. (2019), Mau et al. (2020), Deitch109

et al. (2021), Schoonover et al. (2021)). Representational drift could occur alongside110

proficient task performance due to many activity patterns corresponding to the same111

behavioral output (Kaufman et al., 2014, Hennig et al., 2018). This drift could be112

attributed to any number of uncontrolled factors, such as arousal (Cowley et al.,113

2020, Hennig et al., 2021a).114

A third possibility is that changes in neural activity are directly related to the115

learned task. We consider the possibility that neural activity changes to maintain116

the memory of the learned task (Task B), while simultaneously supporting accurate117

cursor movement (i.e., action) during Task A2. We call this the memory trace hy-118

pothesis (Fig. 1h). Neural activity changing in this manner could help facilitate119

the formation of new memories without leading to interference with subsequent be-120

havior. While prior work has observed changes in neural activity as a result of an121

intervening learning experience and speculated that these changes reflect a memory122

trace (Li et al., 2001, Arce et al., 2010), with a BCI we know the causal relationship123

between neural activity and behavior and thus are now able to disambiguate between124

the representational drift and memory trace hypotheses.125

We commence our analyses by considering the reversion hypothesis. If the rever-126

sion hypothesis were true, we would expect the tuning of individual neural units to127

remain the same between Tasks A1 and A2. To test this, we fit cosine tuning curves128

in each of these task periods and measured the change in preferred direction between129

them. We found many neurons exhibited substantial tuning changes (Fig. 2a). Over-130

all, these tuning curve changes confirm that neural activity produced during Task A2131

is distinct from that of Task A1 at the single unit level (Fig. 2b). A lack of support of132

the reversion hypothesis is also evident when we consider the population of neurons133

together (Fig. 2c). We observed that, for many targets, neural activity during Tasks134

A1 and A2 occupied different regions within the neural population space (Fig. 2d),135

in contradiction to the schematic in Fig. 1f. Thus, our data are not consistent with136

the reversion hypothesis.137

Although we can rule out the reversion hypothesis, our analyses to this point138
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Figure 2. Learning a new task changes the neural representation of a familiar task.
(a) Tuning curves relating cursor-to-target direction to the firing rate for an example neural unit.
A cosine tuning curve was fit separately for each of the three task periods. This unit (unit 37
from session L20131205) changes its tuning (measured by a change in preferred direction, ∆ PD)
between Tasks A1 and Tasks A2. Shading indicates a 95% confidence interval. (b) Many units
show a change in tuning between Tasks A1 and A2 (P < 10−10, two-sided paired Wilcoxon signed-
rank test, n=3461 neural units). Black shows the absolute change in preferred direction for units
across all sessions. Grey indicates the prediction of the reversion hypothesis (that is, no change in
PD other than that due to sampling error). This was estimated using a shuffle control in which
labels for Task A1 and A2 were randomly permuted across trials (see Methods). (c) A view of the
population neural activity for one example target (J20120601; target 270◦) across all three task
periods. We applied linear discriminant analysis (LDA) to find the plane which best separates
the neural activity from the three task periods. Activity is projected onto that plane, with mean
and covariances across timesteps shown. (d) Population activity is different between Task A1 and
Task A2 (P < 10−10, two-sided paired Wilcoxon signed-rank test, n=172 targets). Black shows
the distance between the Task A1 and Task A2 means in the 10D population activity space. Grey
indicates the prediction of the reversion hypothesis, obtained using a shuffle control (see Methods).
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Figure 3. Learning leaves a memory trace. (a) During Task A1 and Task A2, neural activity
drives the cursor through Map A (red trajectories, with dots denoting cursor positions at each
timestep). The same neural activity can also be projected through Map B in an offline analysis
(blue arrows). During Task A2, the Map B velocities more directed toward the target than during
Task A1. Both trials come from the 225◦ target from session N20160329. For visualization purposes,
the data are rotated and the velocities are scaled. (b) Task performance is similar between Task A1
and Task A2 (see Extended Data Fig. 1). For this target, there is no significant difference in progress
(i.e., the component of velocity that points toward the target), through Map A (P = 0.80, two-sided
unpaired Wilcoxon rank-sum test). Dots on the horizontal axis denote the average progress for the
trials shown in (a). Triangles above the histograms denote the mean of each distribution. (c)
Velocities through the offline Map B. The difference in average progress defines the memory trace
for that target. For this target, there is significantly higher progress through Map B during Task A2,
relative to Task A1 (P = 0.0077, two-sided unpaired Wilcoxon rank-sum test) yielding a memory
trace of 14.49 mm/s. Same conventions as in (b). (d) All three monkeys showed a memory trace
for well-learned targets (Monkey J, P < 10 × 10−10, two-sided paired Wilcoxon signed-rank test,
n=88 targets; Monkey N, P = 1.14 × 10−7, n=48 targets; Monkey L P = 0.0020, n=36 targets).
For a small fraction of targets, the measured memory trace is negative. This arises when progress
through Map B is worse during Task A2 than Task A1. When also including unlearned targets, a
memory trace is still evident for Monkey’s J and N, but not Monkey L (Monkey J, P = 1.57×10−4,
two-sided paired Wilcoxon signed-rank test, n=176; Monkey N, P = 1.99 × 10−6, n=96; Monkey
L P = 0.61, n=72; see Extended Data Fig. 3). Monkey L showed a smaller memory trace than
Monkeys J and N, likely due to less learning occurring (Extended Data Fig. 4). Triangles denote
the average memory trace for each monkey. The white tick mark on the horizontal axis of the
middle histogram denotes the example target illustrated in (b) and (c).
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does not distinguish the memory trace hypothesis from the representational drift139

hypothesis. To do so, we must evaluate how the observed changes in neural activity140

relate to the previously-learned behavior. Our BCI approach makes this possible141

because we can quantify whether the neural activity is suitable for a BCI map that142

is not currently being used by the monkey. To illustrate this process, we compare143

neural activity from a single trial during each of Task A1 and Task A2 corresponding144

to the same target (Fig. 3a top). For each population activity pattern, we can145

evaluate its “progress” through Map A as the extent to which it moves the cursor146

toward the target (see Methods). During both Tasks A1 and A2, Map A determines147

cursor velocity, and the monkeys showed proficient control of the cursor during both148

tasks (Fig. 3b; Extended Data Fig. 1).149

Since we are using a BCI, progress can also be calculated for Map B, even when150

the animal is using Map A to control the cursor. Progress under Map B measures the151

extent to which a given neural activity pattern would have moved the cursor toward152

the target, had Map B been instantiated. During Task A1, the monkeys exhibited low153

progress through Map B, as the velocities through Map B are small and haphazardly154

oriented relative to the target (Fig. 3a, bottom, Task A1). This is expected because155

the monkey had not yet experienced Map B, and Map B was selected to be difficult to156

control using Map A’s neural activity (Sadtler et al., 2014). In contrast, during Task157

A2 the velocities through Map B are larger and more directed toward the target158

than they were during Task A1 (Fig. 3a, bottom, Task A2), that is, they show159

higher progress (Fig. 3c). This occurs despite the fact that Map B has no influence160

on behavior during Task A2 and thus the monkeys have no external incentive while161

performing Task A2 to maintain high progress through Map B. We define the memory162

trace as the average increase in the progress toward a given target when projecting163

the neural activity patterns through Map B during Task A2, relative to Task A1.164

Across all three monkeys, we found that average progress through Map B was larger165

during Task A2 than Task A1 (Fig. 3d). This finding supports the memory trace166

hypothesis (Fig. 1h), but not the representational drift hypothesis, which does not167

predict this organization.168

We next assessed the robustness of the memory trace with two tests. First, we169

showed the memory trace was still present when using a different performance metric,170

namely, angular error (Extended Data Fig. 2). Second, we quantified the consistency171

of the effect by showing that the majority of targets from each session exhibited a172

memory trace, and that the average of the memory traces per session is positive173

(Extended Data Fig. 3).174

We next considered whether the memory trace possesses three desirable properties175

of useful memories. The first property is that a memory should persist, meaning that176

it is present in neural activity without dissipating as time passes. To test this, we177

examined the later trials of the sessions with the longest Task A2 blocks (Fig. 4a).178

Specifically, we split sessions into two groups. The first group contained the sessions179

with at least 300 Task A2 trials, while the second group contained sessions with180

fewer than 300 Task A2 trials (see Methods). For the group with the longer Task181

A2 period, we excluded the first 200 trials from analysis in order to quantify the182
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Figure 4. The memory trace persists over time and coexists alongside proficient task
performance.
(a) To examine the influence of longer Task A2 exposure on the memory trace, we split sessions into
two groups. The first group contains sessions with fewer Task A2 trials (behavioral performance for
an example session shown in black), while the second group contains sessions with more Task A2
trials (example session in gold). For the group of shorter sessions, we excluded the first 50 Task A2
trials (black bar). For the longer group, we excluded the first 200 trials (gold bar). Acquisition times
are plotted relative to the Task A1 period, where zero represents the an acquisition time equal to
the average acquisition time for that target during Task A1. (b) The size of the memory trace was
not different for shorter versus longer Task A2 exposure (P = 0.11, two-sided unpaired Wilcoxon
rank-sum test). The memory trace was still evident for both the longer sessions (gold; P < 10−10,
two-sided paired Wilcoxon sign-rank test), and the shorter sessions (black; P = 2.02 × 10−8). (c)
Behavioral performance during Task A2 from two example sessions, one session with better behavior
(faster acquisition time; green) and the other with worse behavior (slower acquisition times; black).
Note that the session with worse behavior is the same session as that shown in (a) for the longer
Task A2 exposure. (d) To evaluate the influence that behavioral performance during Task A2
has on the size of the memory trace, we split targets into two groups. The first group contained
targets where the mean target acquisition time during Task A2 was less than the mean target
acquisition time during Task A1 (“better behavior”; green; see Extended Data Fig. 1), The second
group contained targets where the mean target acquisition time during Task A2 was greater than
during Task A1 (“worse behavior”; black). The size of the memory trace was not different between
the worse behavior and better behavior groups (P = 0.12, two-sided unpaired Wilcoxon sign-rank
test). Moreover, the memory trace was still evident in the group of targets with better behavior
(P = 5.96× 10−8, two-sided paired Wilcoxon rank-sum test) and worse behavior (P < 10−10).
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memory trace after extended usage of Map A. We found that the memory trace at183

the end of these longer sessions was not detectably different from the memory trace184

of the sessions with fewer Task A2 trials (Fig. 4b).185

The second desirable property of a memory is that it should coexist alongside186

proficient performance of other tasks. To address this, we examined whether the187

size of the memory trace was contingent on how proficient the behavior was during188

Task A2 (Fig. 4c). If the instances with worse behavioral performance during Task189

A2 had the largest memory trace, it could suggest that the memory trace arises due190

to a trade-off between performance through the two BCI maps. Alternatively, if191

the memory trace were present even when behavioral performance during Task A2192

returned to the levels seen during Task A1, it would suggest that the memory trace193

can coexist without hindering the monkey’s ability to perform the familiar task. We194

found that the memory trace for the targets with the best behavioral performance195

during Task A2 showed an average memory trace whose strength was not significantly196

different from the average memory trace of targets with worse behavioral performance197

during Task A2 (Fig. 4d). These results indicate the memory trace coexists alongside198

proficient behavioral performance of the familiar task, and does not represent a199

compromise between the two learned behaviors.200

The final property is that more learning should lead to more memory. We found201

that to be the case, as the size of the memory trace was positively correlated with202

the amount of learning during Task B (Extended Data Fig. 4). As Monkey L showed203

less learning than the other two monkeys, this could explain why its memory trace204

tended to be smaller (Fig. 3d, Monkey L).205

How can a memory trace coexist without degrading behavioral performance dur-206

ing Task A2? To understand this, we considered how the changes in neural activity207

induced by learning Map B relate to Map A. Because we map the activity of ∼90 neu-208

ral units to two-dimensional BCI cursor movements (see Methods), not all changes209

in neural activity affect cursor movement. We refer to changes in neural activity that210

affect cursor movement as “output-potent” with respect to that map, and changes211

that do not as “output-null”(Kaufman et al., 2014). Because Map A and Map B212

do not share the same output-potent space, it is possible to have neural changes213

that affect cursor movement through one map without impacting cursor movements214

through the other.215

We examined whether the memory trace of Map B (Fig. 5a) resides in the output-216

potent or output-null space of Map A (Fig. 5b), by decomposing it into its output-217

potent and output-null components (Fig. 5c). We found that the memory trace218

resides predominantly in the output-null space of Map A (Fig. 5d), rather than219

in the output-potent space of Map A (Fig. 5e). This means the memory trace is220

primarily “stored” in dimensions that do not influence task performance (Extended221

Data Fig. 5). Since neural activity in dimensions output-null to Map A do not222

influence cursor velocities during Task A2, this explains how the memory trace can223

co-exist with proficient behavioral performance.224

Last, we considered, how does the monkey arrive at the Task A2 solution? There225

are two possibilities. The first possibility is that there is a partial “unwinding”226
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Figure 5. The memory trace is predominantly in the null space of Map A.
(a) Memory trace depicted in same space as Fig. 1d-h. Between Task A1 (light red dot) and Task
A2 (dark red dot), neural activity changes. During these time periods, the cursor is controlled
using Map A (grey arrow). Task A2 activity is further along Map B (blue arrow) than Task A1
activity, indicating higher progress. The memory trace is defined as difference in the projection
onto Map B. (b) The change in neural activity from (a) can be decomposed into a component
that is output-potent to Map A (∆ potent) and a component that is output-null to Map A (∆
null). (c) Having decomposed the change in neural activity into output-potent and output-null
components, we can correspondingly decompose the memory trace into output-potent and output-
null components. (d) Of the targets with a positive memory trace (142 out of 172 targets), the
memory trace consistently resides in dimensions null to Map A (P < 10−10, two-sided paired
Wilcoxon signed-rank test, n=142 targets across all monkeys). (e) The contributions from the
potent space are not significantly different from zero (P = 0.31, two-sided paired Wilcoxon signed-
rank test, n=142 targets across all monkeys), meaning there is no memory trace on average in the
output-potent component of neural activity.
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Figure 6. The path of washout does not retrace the path of learning.
We consider two possibilities for how the memory trace arises during Task A2. (a) The first
possibility is that the path of washout (i.e., the path neural activity takes from the end of Task B
to Task A2) retraces the path of learning (i.e., the path neural activity takes from Task A1 to the
end of Task B). This would mean that washout is simply an “unwinding” of the learning experience.
(b) The second possibility is that these two paths are distinct, implying that the washout is not
simply “unlearning”. (c) To distinguish between these two possibilities, we measured the angle
between these two paths. The angle between these paths (black histogram) was smaller than the
angles that would be obtained under possibility 1 (grey histogram; see Methods; P < 10−10, two-
sided paired Wilcoxon signed-rank test, n=172 targets across monkeys). This implies the paths of
learning and washout are distinct (possibility 2).

of the learning that occurred during Task B. This would suggest that the solution227

used during Task A2 is not novel, and was employed sometime during the learning228

experience. If this were true, we would expect that the path neural activity takes229

from the end of Task B to the end of Task A2 (i.e., “the path of washout”, dark red230

arrow in Fig. 6a) would retrace the path that neural activity takes from the end of231

Task A1 to the end of Task B (i.e., “the path of learning”, blue arrow in Fig. 6a).232

The other possibility is that the path of washout is distinct from the path of learning233

(Fig. 6b). This would imply that the solution the monkey uses during Task A2 is234

novel, suggesting that the relearning of Map A is distinct from simply “forgetting235

Map B”. To differentiate between these possibilities, we calculated the angle formed236

between the path of learning and the path of washout (see Methods). We found that237

the path of washout is distinct from the path of learning (Fig. 6c).238

Discussion239

We studied how the brain can retain a memory of a newly learned task without240

compromising the performance of familiar tasks. A BCI enables us to make new241

progress on this longstanding question. This is because using a BCI allows us assess242

the extent to which the same neural population activity patterns were suitable for243

multiple different maps (that is, relationships between neural activity and cursor244

movements), including a map not actively being used. We found that, after a learning245

experience, neural activity remained appropriate for the learned map even when the246

animal was using a different (familiar) map. The memory of the learned map was247

primarily in dimensions in neural space which were output-null to the familiar map.248
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In this way, neural activity simultaneously supported action through the familiar249

map and still maintained a memory of the recently learned map.250

It could have been that motor memories were stored in a manner that is not de-251

tectable when another action is being performed (Herzfeld et al., 2014, Jeon et al.,252

2022), nor be present in the same neural activity when it is driving behavior. For253

example, in our experiments, the motor memory could have been stored (perhaps254

outside of M1) such that the memory is only detectable in M1 the appropriate behav-255

ior is being performed. Instead, we found that memories can be stored in a manner256

that makes them evident in M1 even during the execution of other actions.257

Motor memory consolidation is the process by which memories become more ro-258

bust to interference (Krakauer et al., 2005). This process takes at least several hours259

(Shadmehr and Holcomb, 1997), and may require M1 (Muellbacher et al., 2002,260

Kawai et al., 2015, Rubin et al., 2022). How might the brain bridge from the short-261

timescale retention of a memory trace that we studied here to the longer-timescale262

consolidation of a motor memory (Shadmehr and Holcomb, 1997, Gulati et al., 2017)?263

Our results focused on the short-term inception of a motor memory, within an hour264

or so of the learned experience. Three possibilities would be consistent with our265

results. First, a long-term consolidated memory might resemble the memory trace266

we observed here. Second, it might be that the memory trace we observed is only267

a short-term phenomenon in M1, dissipating after consolidation. Thus, the memory268

trace evident in M1 could constitute a short-term storage for the memory before269

it is offloaded to another brain area during consolidation. Finally, it could be that270

with further practice with both maps over many days, the neural activity changes to271

provide even better performance through both BCI maps. In this way, the monkey272

could effortlessly switch between the two tasks without a drop in performance using273

the same population activity patterns. That is, with further practice the memory274

trace could evolve (Nader and Hardt, 2009, Gershman et al., 2017) to lead to even275

greater coexistence between the two behaviors (Ajemian et al., 2013, Gallego et al.,276

2018).277

What is the utility of maintaining a memory trace in neural population activity?278

A memory trace could enable proficient performance to be reached more quickly279

upon re-exposure to the learned task. This phenomenon, known as savings, has280

been frequently observed in motor learning behavior and is often taken as evidence281

of memory formation (Krakauer et al., 2005, Herzfeld et al., 2014). Our results282

propose a neural population mechanism for savings. Namely, if Map B were to be283

re-introduced following performance of Task A2, neural activity would already be284

situated in population activity space in a manner that would yield better initial285

performance while using Map B than before learning. While this mechanism can286

lead to savings due to starting from a better position, our results do not speak to287

whether there would also be an increased rate of relearning, i.e., a greater reduction288

in error per trial after the first trial.289

The memory trace we found in M1 represents one scheme whereby the brain can290

store multiple memories without interference. We found that the firing of many291

neurons contribute to the memory trace. This coding scheme marks an interesting292
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contrast to how some memories are formed in the hippocampus, where a sparse subset293

of neurons encode the memory (Josselyn and Tonegawa, 2020). We observed that the294

memory trace was primarily due to changes in neural activity orthogonal (i.e., output-295

null) to the familiar task. Notably, the utilization of different subsets of neurons to296

encode memories is a special case of orthogonal representations in population activity297

space (Alme et al., 2014). These lines of evidence together indicate that the brain298

needs to incorporate new memories into subspaces orthogonal to existing memories299

in order to avoid interference (Ajemian et al., 2013, Tang et al., 2020, Gava et al.,300

2021, Libby and Buschman, 2021, Nieh et al., 2021, Xie et al., 2022). Avoiding301

interference may be harder in the spinal cord, where there are fewer neurons than302

in cortex or the hippocampus. As fewer neurons likely leads to a more constrained303

encoding space, a “negotiated equilibrium” between multiple learned behaviors may304

be required (Wolpaw, 2018).305

By demonstrating the presence of a memory trace, we ruled out the possibility306

that changes in neural activity between Task A1 and Task A2 were due solely to307

representational drift, a change in neural activity manner agnostic to the learning308

experience. However, representational drift has been observed throughout the brain309

(Druckmann and Chklovskii, 2012, Rule et al., 2019, Mau et al., 2020, Deitch et al.,310

2021, Schoonover et al., 2021), and could be occurring alongside the memory trace311

that we observe. Representational drift differs from the formation of a memory trace312

in that the changes in neural activity due to representational drift do not directly313

serve the purpose of memory, but instead are driven by other factors, not under314

experiment control.315

Sun et al. (2022) also observed systematic changes in neural activity related to316

the learning experience. In their study, learning an arm-reaching task in a curl force317

field induced a uniform shift in preparatory neural activity, which persisted after318

the force field was removed. The authors conjecture that this shift indexes motor319

memories (Sheahan et al., 2016). It remains to be seen whether uniform shifts during320

preparatory activity lead to the reorganization of activity in M1 that constitutes a321

memory trace, or if these findings support two separate processes.322

Human and animal learners distinguish themselves from current artificial learning323

systems in that they can learn to perform a large number of different behaviors. It324

is a notoriously challenging problem for artificial agents to learn new tasks without325

overwriting the ability to perform previously learned tasks, an effect termed “catas-326

trophic forgetting” (Masse et al., 2018, Parisi et al., 2019, Yang et al., 2019). Our327

findings suggest that artificial learning systems could overcome catastrophic forget-328

ting by implementing some of the same learning principles employed by biological329

learning systems (Duncker et al., 2020, Hennig et al., 2021b). A sufficiently high330

dimensional activity space may be important not only in the brain, but also for331

artificial agents, for learning multiple tasks without interference.332
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Methods347

Experimental procedures. Experimental methods are detailed in our previous348

work (Sadtler et al., 2014, Golub et al., 2018). Briefly, we recorded neural activity349

from three male Rhesus macaques (Maccaca mulatta, ages 7, 7 and 8 for monkeys350

J, N and L, respectively) using 96 electrode arrays (Blackrock Microsystems) im-351

planted in the proximal arm region of the primary motor cortex. All animal care352

and handling procedures conformed to the NIH Guidelines for the Care And Use of353

Laboratory Animals and were approved by the University of Pittsburgh’s Institu-354

tional Animal Care and Use Committee.355

356

The monkeys performed an eight-target center-out BCI task. In the BCI, a mon-357

key guided a computer cursor by modulating its neural activity. The recorded neural358

activity was translated into movements of the computer cursor according to a BCI359

map (see Translating neural activity to cursor movement). Each session was split360

into three task periods, “Task A1”, “Task B”, and “Task A2”. The three task peri-361

ods followed the same experimental paradigm, differing only in the BCI map. During362

Task A1 the monkey used Map A, which was selected to be intuitive for the monkey363

to use from the outset. The monkey controlled the cursor during Task A1 for 318.8364

± 95.4 (mean ± s.d.) trials. Uncued to the monkey, we then switched to Map B for365

the second period of the experiment (Task B). The monkey had never seen before366

Map B and was selected in order to initially be difficult for the monkey to use to367

control the cursor. The monkey was given 696.7 ± 219.4 (mean ± s.d.) trials to368

learn to control the cursor with Map B. Finally, again uncued, Map A was reinstated369

(Task A2). The Task A2 period lasted the remainder of the experiment for 318.2 ±370

153.9 (mean ± s.d.) trials.371

372

Trial flow. At the start of each trial, the cursor appeared at the center of the mon-373

key’s workspace. Target locations were selected pseudo-randomly from a set of eight374

uniformly spaced locations around a circle (radius, Monkey J: 150 mm; Monkeys L375

and N: 125 mm). The target appeared on the screen at the beginning of the trial.376

For the first 300 ms, the cursor’s velocity was fixed at zero. After this, the velocity of377

the cursor was controlled by the monkey through the BCI map corresponding to the378

task period of the experiment. If the monkey was able to acquire the target within379

7.5s after the start of the trial, a water reward was dispersed. If the monkey failed380

to acquire the target within the allotted time, there was a 1.5s timeout prior to the381

start of the next trial.382

383

Identifying latent dimensions of neural activity. Experiments began with a cal-384

ibration period in order to define Map A. Monkey J’s calibration employed either385

passive cursor observation or closed-loop BCI control using the previous day’s BCI386

map. For monkeys L and N, we used a calibration procedure that gradually stepped387

from passive observation to closed-loop control. We then applied factor analysis (see388

below) to identify the 10D linear subspace (the “intrinsic manifold”) that captured389
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the dimensions of greatest shared variance in the neural population. Ten dimensions390

was selected using cross-validation, as described in prior work (Sadtler et al., 2014).391

Spike counts (i.e. threshold crossings) were taken in nonoverlapping 45 ms time392

windows. We denote the spike counts at timestep t as ut ∈ Rq×1, where q is the393

number of neural units. Factor analysis describes this high-dimensional population394

activity, ut, in terms of a low-dimensional set of factors, zt ∈ R10×1. Latent factors,395

zt, are distributed as:396

zt ∼ N(0, I) (1)

where I is the identity matrix. Spike counts, ut, are related to the factors by:397

ut|zt ∼ N(Lzt + µ,Ψ) (2)

where parameters L ∈ Rq×10 (termed the loading matrix), µ ∈ Rq×1, and Ψ ∈ Rq×q
398

(a diagonal matrix of variances independent to each neuron) are estimated using the399

expectation-maximization algorithm. The latent factor activity, zt, at timestep t is400

estimated as the posterior expectation given the spike counts as:401

zt = LT (LLT + Ψ)−1(ut − µ) (3)

For all analyses, we orthonormalized zt so that it had units of spike counts per402

timestep to facilitate the interpretability of the factor activity. As the majority of403

the shared variance of the neural population is captured in these latent dimensions,404

and neural activity cannot be readily produced outside this low-dimensional subspace405

during short-term learning (Sadtler et al., 2014, Oby et al., 2019), we focus our anal-406

yses on this factor activity, referred to as “population activity patterns” throughout.407

408

Translating neural activity to cursor movement. At each 45 ms timestep t, neural409

activity drove the computer cursor according to the BCI map for that task period.410

Specifically, the cursor velocity was determined using a Kalman filter:411

vt = M1vt−1 + M2zt + m0 (4)

The parameters M1 ∈ R2×2, M2 ∈ R2×10 and m0 ∈ R2×1 are determined during the412

calibration period (see Sadtler et al. (2014) for details), and vt ∈ R2×1 comprises413

the horizontal and vertical cursor velocities. The two BCI maps differ only in the414

M2 term. For Map A, M2 = M
(A)
2 , which is found during the calibration session.415

For Map B, M2 = M
(B)
2 was a permutation applied to the columns of M

(A)
2 , equiv-416

alent to permuting the elements of zt before applying equation 4. This means that417

Map B remained within the intrinsic manifold (a “within-manifold perturbation”).418

Thus Map B changed the relationship between the factor activity and cursor velocity.419

420

Data Analysis The data analyzed in this study was part of a larger study that421

included both within-manifold perturbations (WMPs) and outside-manifold pertur-422

bations (OMPs) (Sadtler et al., 2014). As we have previously found that WMPs423

show stronger learning than OMPs, we only considered sessions that used WMPs.424
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Data from the Task A1 and Task B periods of these WMP sessions were analyzed in425

prior work (Golub et al., 2018, Hennig et al., 2018, 2021a). Here we focused on neural426

activity recorded during Task A2, which has not been previously studied. To ensure427

an adequate amount of Task A2 data to analyze per session, we only considered428

sessions that included at least 100 Task A2 trials. This yielded a total of 43 sessions429

(Monkey J, 22 sessions, 362.6 ± 170.2 Task A2 trials; Monkey N, 12 sessions, 333.3430

± 107.3 Task A2 trials; Monkey L, 9 sessions, 171.0 ± 49.7 Task A2 trials; all values431

mean +/- s.d.).432

433

Selecting experiments and trials for analysis. Some targets showed more learning434

than others. As the focus of this work is on the memory of a learned task, we analyzed435

targets that showed the most learning. We defined learning as how well the monkey436

performed with Map B after learning, relative to how well it would have performed437

with Map B if it continued producing the same neural activity as it did during Task438

A1 (i.e., if there was no learning). Thus, we defined learning as the difference in439

the average Map B progress (see Quantifying the memory trace for how progress is440

computed) of the last 10 trials to a given target during Task B compared to average441

Map B progress to that same target during Task A1. For each monkey, the 50%442

of targets with the most learning were designated as “well-learned.” Well-learned443

targets had an average amount of learning of 26.61 ± 13.07 mm/s, compared to 0.69444

± 8.79 mm/s for the other targets. Fig. 2a, Fig. 2b, Fig. 4a, Fig. 4c, Extended445

Data Fig. 3 and Extended Data Fig. 4 include all targets. All other analyses focus446

on the well-learned targets.447

As our central question focuses on neural activity during proficient Task A2 per-448

formance, we restricted analyses of Task A2 to after behavior had stabilized. To do449

this, we excluded the first 50 trials of Task A2 from each session (see Fig. 4). Unless450

stated otherwise, the remaining Task A2 trials are referred to as Task A2 throughout451

the manuscript. Additionally, we only analyzed successful trials, as it is otherwise452

difficult to determine whether the monkey was engaged in the task.453

On each trial, we discarded the first 90 ms (2 timesteps during the freeze period) as454

the activity in M1 would not yet reflect the target due to sensory processing delays455

(Golub et al., 2015). Additionally, because we report trial-averaged and target-456

averaged quantities, we wanted to ensure neural activity came from instances in457

which the monkey needed to push the cursor in the same direction. Thus, we only458

analyzed timesteps in which the angle between the cursor and the target was no459

greater than 22.5◦ away from the target direction for that trial. Performing our460

analyses without this exclusion criterion did not change our results qualitatively.461

Even after learning to use Map B, the monkeys generally exhibited lower perfor-462

mance with Map B than Map A (see Fig. 1c). Thus, Task B trials tended to be463

longer than the Task A1 and A2 trials. To compare the Task B trials to the Task A1464

and A2 trials, we only utilized the first 25 timesteps from each trial. This number465

was selected because it is approximately equal to the average Task A1 acquisition466

time across all monkeys.467

468
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Testing the reversion hypothesis. To measure tuning changes between task periods469

(Fig. 2), we fit cosine tuning curves for each neural unit using ordinary least squares470

regression:471

λ(θ) = r0 + (rmax − r0) cos (θ − θpd)

where λ(θ) is the estimated firing rate for a given cursor-target direction θ. The472

parameters θpd, r0 and rmax can be interpreted as the preferred direction, the average473

firing rate, and the tuning amplitude of the unit, respectively. For each neural unit,474

we fit a separate tuning curve for each task period of the experiment.475

We compared the preferred direction θpd for each neural unit between Tasks A1476

and A2 by computing the average absolute change in preferred direction (Fig. 2b).477

To calculate the control distribution, for each neural unit, we randomly permuted478

the task labels for each timestep during Task A1 and Task A2. The difference in479

preferred direction between Task A1 and A2 was then recalculated using these new480

task labels.481

To visualize how neural activity changes in the 10D population space, we applied482

linear discriminant analysis to zt, taken in 45ms timesteps, in to order to find the483

2D plane that best separates the activity from the three task periods (Fig. 2c). We484

applied a QR decomposition in order to orthonormalize the basis vectors found by485

LDA, then projected the neural activity onto this orthonormal basis.486

To quantify the changes in population activity between Task A1 and Task A2, we487

calculated the Mahalanobis distance on a per-target basis between the population488

activity means across zt, taken in 45ms timesteps, for each task period (Fig. 2d).489

This distance was computed in the 10D space, using the covariance of the Task A1490

neural activity for that target. To calculate the control distribution, for each target,491

we randomly permuted the task labels for each timestep during Task A1 and Task492

A2. The Mahalanobis distance between the mean activity for each target was recal-493

culated using the new task labels.494

495

Defining the memory trace. Progress quantifies the appropriateness of a particular496

population activity pattern for a particular BCI map, i.e., the extent to which that497

population activity pattern drives the cursor towards the target, and is computed498

as follows. First, we determine the neural push of this activity pattern, zt, through499

a particular map, M2, as M2zt. In equation 4, m0 and M1 do not rely on the500

instantaneous neural activity, and so we do not consider the contributions from these501

terms. Next, we compute the component of this neural push in the direction of the502

target. More specifically, for each timestep t, we define a unit vector, ct ∈ R2×1,503

pointing from the current location of the cursor to the target. Thus, the progress at504

timestep t is evaluated as:505

pt = cTt M2zt (5)

We sought to determine how much more appropriate neural activity is for Map B506

during Task A2 than it is during Task A1. We call this change in appropriateness507

a “memory trace” because it measures the lasting alteration of neural activity used508
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during a familiar task (Map A) after a learning experience (Map B). Specifically, we509

define the memory trace as the difference in progress when neural activity is passed510

through Map B during Task A2 minus that during Task A1.511

512

Testing how Task A2 duration affects the memory trace. We sought to determine513

whether the memory trace persisted over time (Fig. 4a and Fig. 4b). For each mon-514

key, we divided the sessions into two groups based on whether the Task A2 period515

was longer or shorter than the median length across all sessions (300 trials). This516

resulted in 22 sessions in the long Task A2 group (14/22 sessions from Monkey J,517

average length of 464.36 ± 119.76 Task A2 trials; 8/12 sessions from Monkey N,518

400.00 ± 53.45, 0/9 sessions from Monkey L; all values are mean +/- s.d.) and 21519

sessions in the short Task A2 group. In order to focus on trials where the monkey520

had longer exposure to Task A2, we excluded the first 200 trials when calculating521

the memory trace, leaving at least 100 trials of Task A2 for analysis. For the short522

Task A2 group, we excluded the first 50 trials of Task A2 as usual (see Selecting523

experiments and trials for analysis).524

525

Testing how Task A2 behavior affects the memory trace. We additionally sought to526

determine whether the memory trace differed as a function of performance through527

Map A (Fig. 4cand Fig. 4d). To address this, for each target we compared the528

average progress through Map A during Task A2 to that during Task A1. Targets529

with acquisition times during Task A2 that were at least as good as Task A1 were530

placed in the “better behavior group”. There were 21 targets in this group, with an531

average of 75.0 ± 57.7 ms (mean ± s.d.) faster target acquisition in Task A2 relative532

to Task A1. Targets which had acquisition times during Task A2 that were worse533

than Task A1 were placed in the “worse behavior group”. There were 145 targets534

in this group, with an average of 241.3 ms ± 210.2 ms (mean ± s.d.) slower target535

acquisition in Task A2 relative to Task A1.536

537

Decomposing the memory trace into output-potent and output-null components. In538

order to determine how the memory trace can coexist without degrading behavioral539

performance during Task A2, we wanted to determine how changes in neural activ-540

ity between Task A1 and Task A2 relate to Map A. To address this question, we541

decomposed neural activity into a component that is output-potent to Map A and a542

component that is output-null to Map A (Fig. 5). This decomposition was done by543

applying the singular value decomposition (SVD) to Map A:544

545

M
(A)
2 = UDV T (6)

where U ∈ R2×10,D ∈ R10×10, and V ∈ R10×10. D is a diagonal matrix, whose546

diagonal elements are the singular values of M
(A)
2 . As M

(A)
2 is a matrix of rank two,547

only the first two diagonal entries of D are non-zero. This means that the first two548

columns of V form an orthonormal basis for the output-potent space of M
(A)
2 . We549

denote this basis as R ∈ R10×2. The last 8 columns of V form an orthonormal basis550
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of the output-null space of M
(A)
2 . We denote this basis as N ∈ R10×8.551

We can find the component of neural activity potent to Map A as zpott = RRTzt.552

Similarly, the null component is found as znullt = NNTzt. Both zpott and znullt are553

10× 1 vectors, and have the property that zt = zpott + znullt . We calculate the potent554

and null component of the memory trace as before, except utilizing zpott and znullt for555

zt respectively in equation (4). This decomposition is utilized in Fig. 5 and Extended556

Data Fig. 5. Note that this decomposition is performed with respect to Map A and557

not with respect to Map B. This is because, by definition, the memory trace must558

be in output-potent dimensions of Map B, as those are the only dimensions that559

determine the cursor velocity through Map B.560

561

Path of learning and washout. To distinguish whether the path of washout retraces562

the path of learning (Fig. 6), we first define the path of learning as the vector in 10D563

neural activity space from the mean activity during Task A1 to the mean activity564

during the late Task B period (see Selecting experiments and trials for analysis).565

We similarly define the path of washout as the 10D vector between the mean neural566

activity during late Task B and the mean activity during Task A2. We then com-567

pared the paths of learning and washout by finding the the angle between these two568

vectors. To obtain a control distribution, for each target, we randomly permuted the569

task labels for each timestep during Task A1 and Task A2. This mimics a situation570

in which Task A1 and Task A2 activity patterns come from the same distribution.571

As task labels for Task B were not shuffled, the paths of learning and washout would572

thus be equal and opposite on average under this construction. The angle between573

the paths for each target was recalculated using the new task labels.574

575

Statistics. Unless otherwise noted, to test for statistical significance, we used576

nonparametric tests (for example, Wilcoxon signed-rank test or ranked-sum test),577

which do not assume normality. All P-values less than 10−10 were reported as578

P < 10−10, regardless of how small the P-value was.579

580

Data availability The data that support the findings of this study are available581

from the authors upon reasonable request.582

583

Code availability Python code that supports the data analyses will be made584

publicly available upon publication.585
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Extended Data Fig. 1. Comparison of behavioral performance in Tasks A1 and A2
Here we plot the average acquisition time for a given target during Task A1 against its average
acquisition time during Task A2. Performance in Task A2 tended to be lower than performance in
Task A1, likely due to satiation or fatigue. In Fig. 4 and Extended Data Fig. 3 we demonstrate
that this difference in behavior is not the cause of the memory trace. The targets that fall below
the diagonal are those in which performance during Task A2 is better than during Task A1, and
are the same targets that are included in the “better behavior group” in Fig. 4d.
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Extended Data Fig. 2. A memory trace is also evident when measured using angular
error
In Fig. 3d, we measured the memory trace using “progress”, which is defined as the velocity by
which a neural activity pattern would have moved the cursor toward the target (see Methods). We
could have alternatively measured the memory trace in terms of angular error instead of progress.
In contrast to progress which depends on velocity magnitude and direction, angular error depends
only on the velocity direction. Angular error is defined at each timestep as the angular difference
between the velocity vector of the neural push and the cursor-to-target direction. As with progress,
the velocity of the neural push is defined using the Task A1 (or Task A2) neural activity projected
through Map B. We then compute the angular error for Task A1 minus the angular error for Task
A2. We use unsigned angular error so clockwise and counterclockwise errors do not cancel each
other out when averaging. Smaller angular errors are better. Thus, when angular error is smaller
for Task A2 relative to Task A1, a memory trace is present (P < 10−10, two-sided paired Wilcoxon
sign-rank test, n=88 targets; Monkey N, P = 1.02 × 10−7, n=48; P = 0.0027, n=36 targets).
The white tick mark on the horizontal axis of the middle histogram denotes the example target
illustrated in Fig. 3a, Fig. 3b and Fig. 3c.
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Extended Data Fig. 3. Most targets per session exhibit a memory trace
We considered whether the memory trace could be due to a global shift in neural activity (e.g., due
to a neural recording instability) that leads to an increase in Map B progress for some targets at the
expense of progress for targets on the opposite side of the monkey’s workspace. If this were the case,
we would expect that only half of the targets in each session, including targets that show little or
no learning, would show a memory trace. (a) Instead, we found that more than half of the targets
per session showed a memory trace (P = 7.21× 10−5, two-sided paired Wilcoxon signed-rank test,
n=43 sessions across monkeys). (b) Similarly, we found that the average memory trace across all
eight targets per session is positive (P = 4.25× 10−5, two-sided paired Wilcoxon signed-rank test,
n=43 sessions across monkeys).
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Extended Data Fig. 4. The amount of learning is correlated with the size of the mem-
ory trace
If the memory trace arose spuriously and not as the result of the learning experience, we would
expect the size of the memory trace (measured using neural activity during Task A2) to be un-
correlated with the amount of learning (measured using neural activity during Task B). The
amount of learning during the Task B period positively correlates with the magnitude of the
memory trace (Monkey J R2 = 0.25, P < 10−10, one-sided F test, n=176 targets; Monkey N,
R2 = 0.29, P = 1.23 × 10−8, n = 96; Monkey L, R2 = 0.13, P = 0.0017, n = 72). All targets
were included in this analysis, though similar results hold when only examining well-learned tar-
gets. We considered the possibility that these results could have arisen trivially due to the memory
trace and amount of learning both being calculated relative to Map B progress during Task A1.
We thus reran this analysis without subtracting this quantity (that is, regressing Map B progress
during Task B with Map B progress during Task A2) and arrived at similar results (Monkey J
R2 = 0.48, P < 10−10; Monkey N, R2 = 0.45, P < 10−10; Monkey L, R2 = 0.37, P = 1.14× 10−8).
This supports the notion that the memory trace is the result of the preceding learning experience.
Furthermore, in Fig. 3d, Monkey L showed a smaller memory trace than Monkeys J and N. While
the scatter of values for Monkey L lies within the scatter of Monkeys N and J, Monkey L showed less
learning on average than Monkeys J and N. This is a possible explanation for Monkey L’s smaller
memory trace.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.05.498856doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498856


Targets

−20

0

20

40

60

M
em

or
y 

T
ra

ce
 (

m
m

/s
)

Total Memory Trace
Component Null to Map A (>0)
Component Potent to Map A (>0)
Component Null to Map A (<0)
Component Potent to Map A (<0)

Extended Data Fig. 5. The majority of the memory trace resides in dimensions output-
null to Map A
To understand which dimensions of neural activity contribute to the memory trace, we decomposed
neural activity into components that are output-potent and output-null to Map A and evaluated
their contribution to the memory trace (Fig. 5). Here, we breakdown Fig. 5 by target. Targets
across all sessions and monkeys are ordered by the total memory trace expressed for that target
(black line). The contributions by the potent and null spaces of Map A are shown in purple and
magenta, respectively. As the total memory trace is the sum of the contributions from the output-
potent and output-null components, it is possible for one of these components to have a negative
contribution and the total memory trace to still be positive. A negative value indicates progress
through Map B is smaller during Task A2 relative to Task A1 for that component. For visual
clarity, we use dark shading for positive values and light shading for negative values. For a given
target, there is one purple bar (light or dark) and one magenta bar (light or dark). We find the
majority of the memory trace lies in resides in dimensions output-null to Map A (magenta bars
tend to be larger than purple bars), as quantified in Fig. 5.
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