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Abstract 12 

Depending on the trait architecture and reproduction system, selection strategies in plant breeding focus 13 
on the accumulation of additive, dominance effects, or both. Innovation in the accumulation of 14 
dominance-effect-based heterosis has been limited since the proposal of GCA-based approaches and very 15 
few strategies to exploit it better have been proposed. We propose the use of a new surrogate of genetic 16 
complementation between genetic pools to increase accumulation of dominance effects and heterosis. We 17 
simulated breeding programs to show how reciprocal recurrent selection by genetic complementation 18 
would build the dominance-based heterosis but cheaper than GCA-based approaches and used real 19 
phenotypic data from hybrid maize to demonstrate the underlying concepts. We found reciprocal 20 
recurrent selection by genetic complementation to be an attractive and viable strategy to exploit 21 
dominance, build de novo heterotic pools and boost the current GCA-based approaches. If demonstrated 22 
in practice, we hypothesized that this approach would lower the cost of breeding drastically and 23 
contribute to food security. 24 

Key message: Heterotic patterns can be developed quickly through genetic complementation surrogates to 25 
produce high-performance hybrids at a low cost in diploid species displaying dominance and boost GCA-26 
based approaches in hybrid breeding. 27 

Introduction 28 

When Shull (1952) referred to the term heterosis as “increased vigor, size, fruitfulness, speed of 29 
development, resistance to disease and to insect pests, or to climatic rigors of any kind, manifested by 30 
crossbred organisms as compared with corresponding inbreds, as the specific results of unlikeness in the 31 
constitutions of the uniting parental gametes” he mostly focused on the positive phenotypic effects but a 32 
clear genetic definition was not provided. The difference between crossbred organisms compared with 33 
corresponding inbreds occurs because inbreds do not leverage from the dominance interactions, whereas 34 
hybrid or non-inbred organisms exploit the immediate advantage of dominance interactions and epistasis. 35 
Single-locus dominance is the phenomena where a heterozygote individual tends to reflect more the 36 
phenotype of one of the homozygote individuals, and in polygenic traits these multiple dominance 37 
interactions can add to a substantial portion of the phenotypic value (Falconer & Mackay, 1996; Crow, 38 
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1999). Throughout this paper, we assume dominance (defined as the phenomenon of one variant (allele) 39 
of a gene on a chromosome tending to mask or override the effect of a different variant of the same gene 40 
on the other copy of the chromosome) as the main contributor to heterosis. When considered at the 41 
individual-level, heterosis is referred as mid-parent or best-parent heterosis (difference between the 42 
hybrid and the average of both parents, or the best parent respectively) (Falconer & Mackay, 1996), 43 
whereas when considered at the population-level heterosis is referred as baseline (difference between the 44 
inbred and non-inbred population) and panmictic heterosis (difference between the interpopulation 45 
hybrids and the non-inbred populations from each subpopulation) (Lamkey & Edwards, 1999). In the 46 
absence of epistasis, the presence of a positive average difference in performance between hybrids and 47 
parents implies the presence of directional dominance which led past breeders to develop approaches to 48 
exploit it for commercial settings (Hallauer et al., 2010; Lamkey and Edwards, 1999; Birchler et al., 49 
2010). There is overwhelming evidence that heterosis is a manifestation of dominance effects, as opposed 50 
to overdominance (see the review by Bingham, 1998). In addition, evidence indicates that heterosis is the 51 
opposite effect of inbreeding in which recessive-lethal alleles are unmasked in the phenotype in the 52 
absence of epistasis (Davenport, 1908; East, 1936; Falconer and Mackay, 1996; Lamkey and Edwards, 53 
1999; Bernardo, 2002; Varona et al., 2009; Charlesworth & Willis, 2009; Joshi et al., 2015). Since 54 
heterosis is the reflect of the accumulation of many genes, dominance x dominance epistatic interactions 55 
can contribute but will not be the focus of this paper (Lippman & Zamir, 2007; Jiang et al., 2017).  56 

The idea that genes can have different modes of action − that is, an additive, a dominance, or an epistatic 57 

effect on the final phenotype − led scientists like Comstock and Robinson, among others, to develop 58 

sophisticated mating designs to understand the gene action of important and complex traits such as grain 59 
yield in maize (Comstock & Robinson 1949, 1952; Jinks & Jones, 1957; Bernardo, 2002). Better 60 
understanding of the inheritance theory, led to the development of recurrent and reciprocal recurrent 61 
selection (RRS) as the predominant method to improve populations, which over the years have been 62 
enhanced by additional mating designs and introgression steps to develop products capable of increasing 63 
the performance in the agricultural fields in the 20th and 21st century (Hallauer et al., 2010). Although the 64 
Green Revolution had an enormous impact in developing countries using major genes (e.g., dwarfing 65 
genes) (Evenson & Gollin, 2003; Hedden, 2003), hybrid breeding based on the quantitative genetics 66 
theory of dominance was one of the main drivers together with improved agronomic management of the 67 
massive yield increases in developed countries in North America and Europe in crops like maize (Hill, 68 
2010). The reciprocal recurrent selection based on recycling parents using GCA as a surrogate of value 69 
and SCA as the additional value to identify products, have become the foundation of hybrid breeding until 70 
the present (Hallauer et al., 2010). Unfortunately, RRS compared to single-pool inbred breeding (i.e., line 71 
breeding) and single-pool non-inbred breeding (e.g., clonally propagated crops) tends to be more 72 
expensive in terms of time and money due to the need of additional crossing among subpopulations and 73 
evaluation of the resulting hybrids depending on the mating strategy (e.g., testcrossing). In summary, 74 
since the proposal of GCA-based approaches, few strategies to harness dominance and epistasis 75 
addressing time and resources constraints of GCA-based approaches have been proposed (de Boer & 76 
Hoeschele, 1993; Mrode, 2014; Hallauer et al., 2010; Werner et al., 2020).  77 

Here, we want to highlight that the availability of genomic information in the form of genetic markers and 78 
our knowledge of the modes of inheritance (especially directional dominance) provides us with a unique 79 
opportunity to breed for the accumulation of dominance effects to exploit heterosis in a fast and cheap 80 
way to boost RRS approaches that improve populations based on GCA.  We have developed a method, a 81 
new variant of reciprocal recurrent selection, which we call breeding dominance by genetic 82 
complementation which leverages from the idea that dominance alleles mask deleterious alleles to create 83 
pools that highly complement each other and display high levels of dominance-based heterosis in a 84 
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controlled manner. This can be thought as a controlled genetic distance method. We show with 85 
simulations and some real datasets the implementation of the method and the implications. This could 86 
drastically reduce the cost of a breeding program depending on the levels of dominance found in the 87 
species of interest and serve to create de novo heterotic pools fast and cheap. 88 

Materials and Methods 89 

The complementation approach and computation of surrogates 90 

Under the complete dominance-based heterosis hypothesis, the best individuals are those which 91 
accumulate A) all heterozygote interactions or B) all homozygote interaction for the positive allele, 92 
genome-wide for the QTLs underlying a trait (e.g., yield). In a diploid species, that implies accumulating 93 
numerous genotypes of the form AiAj for multiple QTLs (i ≠ j) or AiAi (considering Ai the positive 94 
allele). Selection of individuals for having the maximum performance under complete dominance for a 95 
trait under the control of “n” QTLs is given by the probability of 3n/4n (Figure 1). Under complete 96 
dominance, that is a probability of finding one individual per million individuals for 50 QTLs. It is 97 
accepted that for complex traits there are hundreds if not thousands of underling QTLs with varying levels 98 
of dominance, from no dominance (fully additive) to full dominance. Assuming -only for demonstration 99 
purposes- complete dominance, the only practical way to achieve a fully heterozygote individual for 100 
hundreds and thousands of QTLs is to create two selection streams, one that selects for fixation the allele 101 
Ai in population 1 and another that selects for allele Aj in population 2 (where i ≠ j). Although it will 102 
require multiple cycles (recurrent selection) to achieve, this remains more affordable than cultivating 103 
billions of individuals and attempting to phenotype them accurately to identify the best individual.  104 

Following the complete dominance assumption for now (we know that complete dominance does not hold 105 
for all loci and different level of dominance exist across the genome), to ensure the creation of that 106 
idealized hybrid, we need to ensure the definition of the idealized or desired genotype and haplotype for 107 
each of the two subpopulation/pools (in case of diploids). The foundational step of a reciprocal recurrent 108 
selection approach by genetic complementation is that two populations will be created with the specific 109 
purpose to complement each other (Figure 1). 110 

We then need to define first a desired/idealized genotype under the idea of genomic complementation and 111 
complete-dominance assumptions (to be a haplotype in its final state) as the accumulation of homozygous 112 
allelic states for all the QTLs behind a trait of interest in a population, and to be opposite/complementary 113 
to another population. Notice the statement, under the complete dominance assumption. There are two 114 
challenges to implement this: 1) unknown location of the QTLs behind the trait of interest (ideally, we 115 
would only focus on the actual QTLs), and 2) unknown coupling-repulsion phases present in the 116 
populations (this could potentially slow down the recurrent selection using complementation). To face 117 
these challenges, we propose that under the infinitesimal model of complex traits, the use of a genetic-118 
marker chip with thousands of genetic markers is enough to target most QTLs of interest by linkage 119 
disequilibrium, and by identifying the highest-frequency alleles in a population (using genetic markers) 120 
we can identify what are the alleles in coupling phase or genome-wide population haplotype in order to 121 
come up with the desired genotypes for each pool (instead of picking desired alleles at random, which 122 
may lead to repulsion-phase linkages in both populations that are difficult to break). Assuming a 123 
population of individuals genotyped with biallelic markers coded as 0, 1, and 2 (corresponding to AiAj, 124 
AjAj) with frequencies (f1, f2, f3), the desired/idealized genotype for the ith marker in the pool 1 is: 125 

𝑑1𝑖
= max(𝑓1𝑖

, 𝑓3𝑖
) − 1  126 
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Over the entire genome, the vector d1 of desired alleles for pool 1 is all d1,i’s for all markers. The vector d2 127 

of desired alleles for pool 2 and complementary to pool 1 is just 𝑑2𝑖
= (|max(𝑓1𝑖

, 𝑓3𝑖
) − 2|) − 1. These 128 

vectors represent the ideal genotype for all individuals in their respective pool. 129 

Once the desired/idealized genotypes in the vectors d1 and d2 have been defined, the next step is to define 130 
the surrogate of complementation. This will reflect how close a genotype is to the desired/idealized 131 
genotype to complement the opposite pool, and is calculated as follows: 132 

𝜒 = |
𝑀𝑜 + 𝑀𝑑

2
| 𝑤 133 

Where Mo is the matrix of observed genotypes coded as -1, 0 and 1 for the presence of a reference allele, 134 
Md is the matrix of desired genotypes composed by the d vector copied and row-bound as many times as 135 
individuals (rows) in the Mo matrix. The vector w refers to the weights to be applied to each marker in 136 
case we would like to weight by allele frequencies and | is the entry-wise absolute value operator. The 137 
vector denoting the complementation value for each individual to the opposite pool is named χ. The 138 
higher the value of χ the better parent the individual will be for the next generation to complement the 139 
opposite pool moving forward. 140 

Although the complete dominance assumption is unrealistic, for any genome-wide average value of 141 
dominance degree between 0 and 1, this approach can help harness that level of heterosis. Additional 142 
theoretical details of the complementation approach can be found in Annex 1. 143 

Validating the complementation model in a generic simulation and real datasets 144 

Under the proposed genetic model, a collateral effect on hybrid performance based on levels of 145 
dominance is that dominance effects can be predicted with reasonable accuracy by the complementation 146 
surrogate (χ) in different forms (Bernardo, 1992, 2002). We selected parental lines using two variations of 147 
the χ metric to predict the hybrid performance in the current generations and keeping track of the 148 
correlation between the modified χ metric and the hybrid performance: 149 

1. The complementation of individual i from population A to the desired haplotype of population B 150 
(implying only one side contributes to the prediction, the other side is constant for all 151 
individuals). 152 

2. The complementation between individuals i and j from pools A and B respectively (implying that 153 
both sides contribute to the prediction). 154 

We kept track of the correlation of hybrid performance and the complementation surrogate at different 155 
levels of dominance and levels of genetic variance across 10 cycles. The appropriate correlation is 156 
expected to be calculated between the dominance effect and the complementation surrogate, but the 157 
known difficulties to separate dominance from additive effects motivated us to use the total hybrid 158 
performance instead of trying to calculate/separate only the dominance effects which is expected to lower 159 
the expected correlation. 160 

Then, we took the hybrid-maize dataset from Kadam et al. (2016) which includes marker data and yield 161 
performance for 312 hybrids coming from two heterotic pools (46 lines in the female pool and 172 lines 162 
in the male pool) tested in five environments and calculated the one-to-one complementation metrics χii 163 
and χip (individual-to-individual and individual-to-population respectively), calculating the correlation 164 
between these metrics with the hybrid yield performance in each of the 5 environments. In addition, we 165 
took the maize dataset made available by Technow et al. (2014) that includes genetic marker data and 166 
adjusted means across environments data for 1254 hybrids coming from crosses between the flint (86 167 
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lines) and dent (123 lines) maize pools and 35,478 SNP markers, calculating the one-to-one 168 
complementation metrics χii and χip and the correlation between these metrics with the hybrid yield 169 
performance across environments.  170 

Simulating the influence of different levels of dominance and number of QTLs in building heterosis 171 

Baseline: As a baseline, we simulated a generic hybrid breeding program with a three-stage evaluation 172 
strategy, in addition to the crossing block stage and four steps of single seed descent where planting 173 
material is multiplied, and inbred lines are developed. These evaluation stages include stage 1 (per se 174 
evaluation), stage 2 (first testcross with 3 testers) and stage 3 (topcross). The pipeline began with 100 175 
parental lines in each of the two simulated pools. From the 100 parents, 50 crosses were made, each with 176 
20 progeny, thus resulting in 1000 individuals. All 1000 went through single seed descent (SSD) for 4 177 
generations and then evaluated at stage 1 in one environment and one replication per environment. At the 178 
same time as per se evaluation occurs (only used for advancement, not recycling), the testcrosses of the 179 
1000 lines are performed against 3 testers of the opposite pool. In Stage 2, the testcrosses are evaluated in 180 
two environments and two replications per environment. From stage 2 evaluation, the best 20 families and 181 
best 5 lines per family in each pool were selected and advanced to stage 3 where 100 hybrids are made 182 
and tested in two environments and three replications per environment. Recycling of parents occurred 183 
after the evaluation of Stage 2 when the best 100 lines in each pool are selected to become parents of the 184 
next generation (6th year). We were interested in understanding if the complementation approach is 185 
effective to build heterosis compared to classical recurrent and reciprocal recurrent selection approaches. 186 
The availability of a SNP chip with 500 markers was assumed at any stage that required genotyping. The 187 
baseline treatment was named TWO_POOL_GCA_PHENO. 188 

Alternative treatments: To keep the treatments comparable we used the same number of individuals, the 189 
only difference between treatments is the time when recycling of parental lines occurs and the surrogate 190 
of merit used. The scheme that only uses complementation surrogate to recycle (TWO_POOL_COMP) is 191 
expected to recycle after 1 year. A positive control treatment recycling based on the true GCA in the 6th 192 
year (TWO_POOL_GCA_TRUE) follows the same formula according to Schnell (1965) and Rembe et al. 193 
(2019):  194 

𝐺𝐶𝐴𝑡𝑟𝑢𝑒𝑖
= 𝑄𝑖𝛼𝑖    with    𝛼𝑖 = 0.5(𝑎 + 𝑑(𝑞𝑗 − 𝑝𝑗)) 195 

Where i and j refer to the pools i and j, α is the vector of average effects of an allelic substitution, a and d 196 
are the vectors of additive and dominance effects of the QTLs respectively, p and q are the vectors of 197 
allele frequencies, and Q is the matrix of QTL calls coded as 0, 1 and 2 for the ith pool. 198 

The negative controls included selecting parents at random in Stage 2 in the 6th year 199 
(NEGATIVE_CONTROL), and selecting parents based on breeding value in two independent pools to 200 
make hybrids as final product (TWO_POOL_BV; we did use the genetic value but in an inbred line this is 201 
expected to be equal to the breeding value in the absence of epistasis), which is not expected to build 202 
dominance-based heterosis (panmictic) since it is focused on the additive portion of the total genetic value 203 
(only builds some panmictic heterosis initially due to the initial drift but does not keep building it long 204 
term). In addition, a treatment where a program runs the complementation approach for 5 years prior to 205 
switches to formal RRS was included (TWO_POOL_COMP_TO_GCA). As such, a total of 6 simulation 206 
treatments were defined (Figure 2). To identify the best strategy to build heterosis, the stochastic genetic 207 
simulation was conducted in the R package AlphaSimR (Gaynor et al., 2021).  208 

Burn-in genome sequence: For each replicate, a genome consisting of 1 chromosome was simulated for 209 
the hypothetical plant species. These chromosomes were assigned a genetic length of 1.43 Morgans and a 210 
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physical length of 8 x 108 base pairs. Sequences for each chromosome were generated using the 211 
Markovian coalescent simulator (MaCS; Chen et al., 2009) implemented in AlphaSimR (Gaynor et al., 212 
2021). Recombination rate was inferred from genome size (i.e., 1.43 Morgans/ 8 x 108 base pairs = 1.8 x 213 
10-9 per base pair), and mutation rate was set to 2 x 10-9 per base pair. Effective population size was set to 214 
30 to mimic an evolution history of natural and artificial selection. 215 

Burn-in founder genotypes: Simulated genome sequences were used to produce 100 founder inbred 216 
individuals. These founder individuals served as the initial parents in the burn-in phase. Sites segregating 217 
(2000) in the founders’ sequences were randomly selected to serve at different number of quantitative 218 
trait nucleotides (QTN) per chromosome for each of the defined treatments: 1, 10, 50, 100, 1000. 219 

Burn-in phenotypes: A single highly complex trait for the different number of QTNs specified above was 220 
simulated for all founders. The genetic value of this trait was determined by summing its QTN allelic 221 
effects. The dominance effect (d) at a locus is then its dominance degree (𝛿) times the absolute value of 222 

its additive effect, with scaling to achieve user-specified additive or total genetic variance. Dominance 223 
effects must be scaled even if use of additive variance is specified (useVarA = TRUE) because 224 
dominance effects contribute to additive variance. 225 

𝑑𝑖 =  𝛿𝑖|𝑎𝑖| 226 

At the same time, the allele effects followed this formula: 227 

𝑎𝑖(𝑤𝑗) = 𝑏𝑖 + 𝑚𝑖𝑤𝑗, 228 

where ai is the allele effect for QTN i, wj is the environmental effect for year j, bi is the QTN intercept and 229 
mi is the QTN slope on the environmental effect. The slope, intercept, and environmental effects were 230 
sampled from the following Gaussian normal distributions. Details on the full formulation of genotype by 231 
environment interaction simulation features enabled in AlphaSimR can be found in Gaynor (2021), and is 232 
implemented in the addTraitAD() function through the mean dominance degree (meanDD) argument. The 233 
values set for the mean dominance degree were 0 (purely additive), 0.5 (partial dominance), and 0.95 234 
(almost complete dominance). The varDD argument was set to 0.2. 235 

The genetic values of each inbred individual were used to produce phenotypic values by adding random 236 
noise sampled from a Gaussian normal distribution with mean 0. The variance of the random error was 237 
varied according to the three stages of evaluation defined in the breeding program to achieve the 238 
following heritabilities: STG1 H2=0.2, STG2 H2=0.5, STG3 H2=0.5. All this was achieved with the 239 
setPheno() and setPhenoGCA() functions and the varE argument. A summary of simulation features for 240 
the genome and phenotypes can be found in Table 1. 241 

Population means and standard errors for additive, dominance and total value at Stage 2 of yield 242 
evaluation across 20 cycles of selection for the treatments described previously were computed using the 243 
dplyr library in R (Wickham et al., 2021), and plotted using the ggplot2 library in R (Wickham, 2011). 244 
Twenty replicates were run for each simulation treatment. 245 

Simulating the effect of updating testers to build the dominance 246 

Using the previous simulation and the baseline treatment of reciprocal recurrent selection based on GCA 247 
(TWO_POOL_GCA_PHENO), we tested different strategies to update the testers. We simulated the 248 
following treatments: RRS without updating the testers (TWO_POOL_GCA_UPDATE0), and  RRS 249 
updating all the testers every 1, 4, and 8 cycles (TWO_POOL_GCA_UPDATE_x, with x={1, 4, 8}), and  250 
as control treatments: RRS using true GCA updating all the testers every cycle 251 
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(TWO_POOL_GCA_TRUE (positive control), and RRS selecting parents at random (NEGATIVE 252 
CONTROL). Four levels of dominance were considered (meanDD equal to 0, 0.2, 0.5, and 0.9). Additive, 253 
dominance and total genetic value were recorded as in the previous simulation. 254 

Simulating the implementation of the complementation approach in a running inbred program 255 

To understand how a program that currently improves inbred lines would transition into a hybrid program 256 
under either the conventional strategy recycling based on GCA or the proposed complementation strategy 257 
to build initial pools and then move to recycle based on GCA, we simulated the same treatments as before 258 
but for the genome structure of a crop similar to maize, and a strategy that reflects how a program 259 
working on recycling and delivering inbreds would transition to the complementation approach. 260 

Baseline: As a baseline scheme, we simulated a generic inbred breeding program with a four-stage 261 
evaluation strategy in addition to the crossing block stage and a double haploid step where planting 262 
material is multiplied and inbred lines are developed. The evaluation stages include Stage 1 (per se 263 
evaluation of short rows in one location in a single rep), Stage 2 (big plots single rep at 4 locations), Stage 264 
3 (big plots single rep at 8 locations), Stage 4 (big plots single rep at 15 locations). The pipeline began 265 
with 24 parental lines in each of the two simulated pools. From the 24 parents, 60 crosses were made, 266 
each generating 130 double haploid (DH) lines, thus resulting in 16,900 DHs. From the 16,900 lines 267 
evaluated in Stage 1, the best 25 families and the best 40 DHs per family were selected (1000 lines). In 268 
Stage 2 the best 100 lines across all families are selected. In Stage 3, the best 15 lines are selected for on-269 
farm trials. Recycling of parents occurred after the evaluation of Stage 3 where the best 8 out of the best 270 
15 parental lines replace 8 lines of the 24 elite parents. Since we were interested in understanding if the 271 
complementation approach can be implemented effectively to build heterosis compared to adopting 272 
immediately reciprocal recurrent selection that uses GCA to recycle parents, we used this program as the 273 
baseline (burn-in) for the first 20 years for all the next treatments. This scenario was named two pool 274 
selection based on breeding value (TWO_POOL_BV) since we assumed two programs running in parallel 275 
to simulate interpopulation hybrids that serve as control since selection based on BV (instead of GCA) in 276 
opposite pools is not expected to build dominance (Hallauer et al., 2010). A SNP chip with 5000 markers 277 
was assumed available at any stage of the program that required genotyping. 278 

Alternative treatments: To transition the inbred program into a hybrid program, we simulated a treatment 279 
in which, following 20 years of burn in, classical reciprocal recurrent selection took place through the use 280 
of testcrosses to generate hybrids that can be evaluated to calculate GCA that can be used for recycling 281 
parents. Following the evaluation of 16,900 DHs in short rows the best 20 DHs from the best 25 families 282 
(500 lines) were testcrossed against the best elite (tester) from the opposite pool (Stage 2), then the best 283 
100 lines against the 3 best lines (testers) of the opposite pool (Stage 3), and finally the best 15 lines 284 
against the best 5 lines (testers) of the opposite pool (Stage 4). Recycling of parents occurred after the 285 
evaluation of Stage 3 where the best 8 out of the best 15 parental lines replace 8 lines of the 24 elite 286 
parents but since this is based on GCA it took one season later compared to the convention line approach. 287 
This scenario was named reciprocal recurrent selection based on GCA (TWO_POOL_GCA_PHENO). 288 
After Stage 3, 4 of out the 5 testers are replaced with the top selected lines from Stage 3 (Figure 2). A 289 
similar reciprocal recurrent selection treatment based on GCA but using genomic selection (a training 290 
population based on hybrid phenotypes) to predict the GCA of DH lines early in each pool and recycle 291 
much faster was also tested (TWO_POOL_GCA_GS). 292 

For the complementation approach, we used a similar hybrid program to conventional RRS as described 293 
above, but recycling was based on the complementation surrogate against the opposite pool using the χ 294 
metric in a portion of the DHs available [a random sample of 3000 was assumed to be genotyped, the χ 295 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


metric was calculated, and we selected the best individual within each family)], directly reducing the 296 
cycle time since there is no need for extensive phenotypic evaluation of individuals for complex traits. 297 
Still, this scenario assumes only 2 cycles per year. This scenario is named reciprocal recurrent selection 298 
based on genetic complementation (TWO_POOL_COMP). A variation of this approach is the one that 299 
combines complementation and GCA where complementation is applied for twelve years and then GCA 300 
takes off, named reciprocal recurrent selection based on genetic complementation and GCA 301 
(TWO_POOL_COMP_TO_GCA). All RRS approaches (GCA and complementation) formed the initial 302 
heterotic pools by splitting a sample of DH lines randomly into two de novo subpopulations (Figure 2).  303 

The negative control was based on selecting parents at random in Stage 3 (NEGATIVE_CONTROL). 304 
Positive control were selection based on true GCA (TWO_POOL_GCA_TRUE) and selection based on 305 
true genetic complementation (TWO_POOL_COMP_TRUE) where QTLs are assumed to be known 306 
(only as control, the complementation approach doesn’t require QTLs to be known). As such, a total of 4 307 
simulation treatments and 3 controls were defined. To quantify the effect of implementing these strategies 308 
to build heterosis, a stochastic genetic simulation was conducted in the R package AlphaSimR (Gaynor et 309 
al., 2021). These set of simulations considered differences in cycle time between the different strategies. 310 

Burn-in genome sequence: For each replicate, a genome consisting of 10 chromosome pairs was 311 
simulated for the hypothetical plant species similar to maize using the argument species="MAIZE" in the 312 
runMacs() function available in AlphaSimR that simulates the species evolutionary history of maize. 313 
These chromosomes were assigned a genetic length of 1.43 Morgans and a physical length of 8 x 108 base 314 
pairs. Sequences for each chromosome were generated using the Markovian coalescent simulator (MaCS; 315 
Chen et al., 2009) implemented in AlphaSimR (Gaynor et al., 2021). 316 

Burn-in founder genotypes: Simulated genome sequences were used to produce 24 founder inbred 317 
individuals. These founder individuals served as the initial parents in the burn-in phase. Sites segregating 318 
(800) in the founders’ sequences were randomly selected to assign 300 quantitative trait nucleotides 319 
(QTN). 320 

Burn-in phenotypes: A single highly complex trait for the 3000 QTNs specified above was simulated for 321 
all founders. The genetic value of this trait was determined by summing its QTN allelic effects having an 322 
additive and a dominance value as mentioned in the section for the generic simulation. 323 

Statistical analysis 324 

Stochastic simulations executed with AlphaSimR included twenty Monte-Carlo replications. For the 325 
exploration of the practical implementation of genetic complementation in inbred and hybrid programs, 326 
standard errors (SE) were computed for treatments across years as: 327 

𝑆𝐸 =
𝜎

√𝑛
 328 

Where σ is the standard deviation from the twenty Monte-Carlo replicates and n is the number of 329 
replicates (20). Standard errors were plotted as shadowed lines for the genetic trends in all figures to 330 
declare differences between treatments. 331 

Results 332 

Validating the complementation model in a generic simulation and real datasets 333 

Given the unavailability of data from programs that have executed the complementation approach for 334 
several cycles as proposed, we had to incorporate a set of the side results from the complementation 335 
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approach. Under the proposed genetic model, a collateral effect is that the hybrid performance can also be 336 
predicted with more or less accuracy by the complementation surrogate (χ) depending on the levels of 337 
dominance (Table 2). In theory, the complementation surrogate (χ) is highly correlated with the 338 
dominance effect observed in hybrids, but we had to focus hybrid performance given the difficulty to 339 
estimate properly or orthogonally the dominance effects (Nishio and Satoh, 2014). 340 

We kept track of the correlation of hybrid performance and the complementation surrogates at different 341 
levels of dominance and levels of genetic variance across 10 cycles in the simulation of a generic 342 
breeding program (Table 2). The χ metric is a value for the line merit instead of hybrid performance, so to 343 
produce a χ metric for the hybrids themselves we developed the individual-to-population χip and 344 
individual-to-individual χii metrics for a cross. We found that at intermediate and high levels of 345 
dominance (meanDD of 0.5 and 0.95 respectively) the correlation between the complementation surrogate 346 
and the total-genetic value of the hybrids were intermediate to high (Table 2). At no dominance 347 
(meanDD=0 or purely additive trait) the correlations were around zero at any cycle of selection (Table 2). 348 
At intermediate levels of dominance (meanDD=0.5) the levels of correlation between hybrid performance 349 
and χip ranged from 0.4 to 0.6 in the first 7 cycles of selection, decreasing at a constant rate as dominance 350 
variance gets depleted (Table 2). For almost complete dominance (meanDD=0.95) the levels of 351 
correlation between hybrid performance and χip ranged from 0.4 to 0.8 in the first 7 cycles of selection, 352 
decreasing at a constant rate as dominance variance is depleted (Table 2). The higher correlation observed 353 
is between the complementation surrogate and the dominance effects. 354 

Using the hybrid-maize dataset from Kadam et al. (2016), which includes marker data and yield 355 
performance for 312 hybrids coming from two heterotic pools (46 lines in the female pool and 172 lines 356 
in the male pool tested in five environments) and calculated the one-to-one complementation metrics χip 357 
and χii, and calculated the correlation between these metrics with the hybrid yield performance in each of 358 
the 5 environments (Figure 3). We found the correlations between hybrid performance and χii (individual-359 
to-individual complementation) to range between -0.2 and 0.1 (Figure 3a), whereas the correlations 360 
between hybrid performance and χip (individual-to-population complementation) ranged between -0.3 and 361 
0.45, being more consistent and oscillating between positive and negative depending on the average 362 
performance for the environment (Figure 3b). Interestingly, the direction of the correlation changed 363 
depending on the environment yield. Positive correlations were found in high-performing environments 364 
and negative correlations were found in stressful environments. In addition, using the maize dataset made 365 
available by Technow et al. (2014), the correlation between hybrid performance and χii to be 0.003, 366 
whereas the correlation between hybrid performance and χip was 0.41 (Supplemental Figure 1).  367 

The influence of dominance degree and number of QTLs in total genetic value 368 

To increase our understanding of how the complementation χ metric can increase genetic gain for 369 
dominance, we expanded the simulation not only to different levels of dominance (no dominance to 370 
complete dominance), but also to different trait complexities (i.e., varying levels of quantitative trait 371 
nucleotides [QTLs] behind the trait) and compared it to the classical GCA approach. When looking 372 
exclusively at dominance gain we found that, independently of the number of QTLs behind the trait, the 373 
complementation (TWO_POOL_COMP & TWO_POOL_COMP_TO_GCA) and the RRS strategies 374 
(TWO_POOL_GCA_PHENO & TWO_POOL_GCA_TRUE) strategies were able to build dominance 375 
effects efficiently, whereas the negative control (TWO_POOL_BV) did not increase it (Figure 4, 376 
Supplemental Figure 2). At all levels of dominance, the complementation approaches were shown to be as 377 
effective to increase the dominance values as selecting based on GCA. On the other hand, when looking 378 
at the additive gain, we found the GCA-based and BV-based approaches to be the only strategies able to 379 
increase this value (Figure 4, Supplemental Figure 2). The total genetic gain was positive for all strategies 380 
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ranking first the RRS methods followed by complementation and last single pool RS based in BV when 381 
the mean dominance degree was ≥ 0.5. At lower levels of mean dominance degree single pool RS based 382 
in BV ranked first followed by RRS and complementation last. In addition, we found that trying to 383 
increase the dominance value in the breeding populations is not possible when testers are not updated 384 
(Figure 5). 385 

How to implement RRS by genetic complementation in an active inbred program 386 

To understand the best way to implement the genetic complementation approach in an ongoing program 387 
that selects inbred materials (i.e., close-to homozygote lines such as rice or wheat), we simulated a 388 
breeding program that follows the structure of a line crop. The simulation was initiated with a single 389 
population/pool that follows a conventional recurrent selection strategy comprised of a crossing block, a 390 
segregation step, a multiplication phase (four generations of single seed descent) and multiple stages of 391 
phenotypic evaluation in the target population of environments (TPE) (Figure 6). 392 

In the case of the positive control or conventional line program (TWO_POOL_BV) the same rate of 393 
response to selection with respect to the burn-in strategy across the 40 years was observed as expected, 394 
being that this is the continuation of the same burn-in strategy (Figure 6). The negative control showed no 395 
increase in additive, dominance and total genetic value as would be foreseen under random selection. In 396 
the case of the program converted to traditional GCA-based RRS (TWO_POOL_GCA_PHENO) we 397 
found a lower rate of additive gain but a higher rate of dominance gain resulting in an overall increased 398 
rate of total genetic value in the hybrid populations.  399 

The RRS strategy using only the complementation surrogate for selection without phenotyping 400 
(TWO_POOL_COMP) was able to produce hybrids with similar performance to the conventional GCA-401 
based RRS approach during the first 15 years after the split due to a substantial increase in dominance and 402 
consequently total genetic value (Figure 6, Supplemental Figure 3), but the additive value in the hybrids 403 
and lines decreased in performance due to inbreeding (Figure 6, Supplemental Figure 3) causing a 404 
stagnation in hybrid performance increase after year 15. Although not shown, using better the genetic 405 
variance (e.g., using maximum avoidance or optimal contribution methods) can increase the window of 406 
dominance gain.  The reciprocal recurrent genomic selection strategy (TWO_POOL_GCA_GS) showed 407 
greater gain than its phenotype-based counterpart (TWO_POOL_GCA_PHENO) but did not increase 408 
dominance much faster than the complementation approaches. Both, phenotype-based and GS-based RRS 409 
strategies can be potentially boosted by the complementation strategy proposed. 410 

Discussion 411 

Validating the complementation model in a generic simulation and real datasets 412 

Under complete dominance, the expected correlation between the hybrid performance and the metrics χip 413 
and χii is high since the genetic value is mainly driven by the dominance effects (Table 2), which at the 414 
same time are linked to heterozygosity. But as the mean dominance degree decreases the predictive ability 415 
of the complementation surrogate decreases (Table 2). The generic simulation model shows that as 416 
dominance degree increase the complementation surrogate can be useful for breeding programs to predict 417 
the dominance component of the hybrid performance. 418 

The correlation values between the χip metric and the hybrid performance found using the dataset from 419 
Kadam et al. (2016) and Technow et al. (2014), are closer to the correlation values found in the 420 
simulation for intermediate levels of dominance (meanDD~0.5) which are very similar to the degrees of 421 
dominance observed in maize at equilibrium in Nebraska’s and North Carolina’s experiments in the 422 
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1980’s and 1990’s (Bingham, 1998; Doebley, 2004; Duvick et al., 2004). Since simulations for the 423 
adoption of the complementation approach showed an advantage at intermediate and high levels of 424 
dominance, programs currently working as line programs are suitable candidates for the adoption of 425 
genetic complementation to increase dominance value and build heterosis (and de novo heterotic pools) 426 
more efficiently. The methodology does not focus on the initial split of germplasm in pools as the 427 
methodology proposed by Zhao et al. (2015), but in the formation of pools through the accumulation of 428 
dominance complementations through recurrent selection.  429 

Regarding the low correlation values of χii complementation (i.e., individual-to-individual 430 
complementation) with the hybrid performance, compared to the χip complementation (i.e., the population 431 
level complementation), our hypothesis is that since the complementation is defined with respect to a 432 
desired haplotype of the opposite population pool, and the complementation at the individual level loses 433 
accuracy and relevance. 434 

The influence of dominance degree and number of QTLs in total genetic value 435 

The fact that RRS strategies (TWO_POOL_GCA_PHENO & TWO_POOL_GCA_TRUE) strategies 436 
were able to build dominance effects efficiently, whereas the negative control (TWO_POOL_BV) did not 437 
increase it is because the separation of pools at random without a complementation surrogate or a GCA 438 
becomes a random process where complementary alleles are not guaranteed to go to the opposite pools 439 
and both pools may end up fixing the same allele. Building genetic distance alone is not expected to 440 
increase the dominance efficiently. This lack of correlation between genetic distance and heterosis has 441 
been observed in several studies in the past (Lamkey et al., 1987; Charcosset, 1991; Bernardo, 1992). 442 
Although the genetic complementation is based on the same principle, this can be thought as a controlled 443 
genetic distance that guarantees to maximize the heterotic response. 444 

Previously, genetic distance has been proposed as a potential predictor of hybrid performance, with 445 
correlation between hybrid performance and genetic distance ranging between 0 and 0.3 (Frei et al., 1986; 446 
Bernardo, 1992; Zhang et al., 1996). Bernardo (1992) for example, found that for different values of allele 447 
frequencies between set A and set B, the correlation between µij (performance) and Dij (distance) was 448 
rµijDij =0.25, whereas with partial dominance the correlation between µij and Dij decreased to ruijDij =0.13. 449 
In other empirical studies, correlations of 0.09, 0.14, 0.32, and 0.46 were obtained by Godshalk et al. 450 
(1990), Dudley et al. (1991), Melchinger et al. (1990), and Lee et al. (1989), respectively. This is 451 
unsurprising under the directional dominance theory where heterosis is the accumulation of the 452 
dominance effects, but not the total performance that includes the additive effects. What builds and 453 
maximizes heterosis (dominance value) is the divergence of two pools (for a diploid species) in a 454 
controlled manner to put complementary/opposite alleles (maybe even indels) or haplotypes in each pool. 455 
Splitting two population/pools without a control builds genetic distance and some heterosis, but permits 456 
the same and different alleles (and small-effect mutations) to be increased or fixed in both populations by 457 
genetic drift (Charlsworth, 2009). In this case, it is most likely that populations which diverged for 458 
opposite alleles are the ones that will display greater heterosis (dominance effects) when crossed back 459 
(e.g., flint and dent population in maize), but there should be many others that have diverged in average 460 
but which have fixed more similar alleles and therefore show less heterosis (Lande, 1976; Allendorf, 461 
1986; Lynch & Walsh, 1998; Lynch et al, 2016). One of the reasons why we found a clear correlation 462 
between the χ metric (a controlled genetic distance method) with the dominance effects could be because 463 
we started from a single pool with clear LD patters as opposed to using genetic distance in natural 464 
populations where other subpopulation structure may affect the performance of genetic distance to predict 465 
dominance interactions. In summary, a big component of the total genetic value is the additive 466 
component, and the creation of controlled genetic distance through complementation should only be able 467 
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to predict the dominance component of the equation but not the total performance as expected by previous 468 
studies in the 1980s and 1990s. Still, there is value in the genetic complementation as a way to create de 469 
novo heterotic pools quickly without phenotyping prior to start the GCA-based approaches.  470 

The observation that at all levels of dominance, the complementation approach was shown to be almost as 471 
effective to increase the dominance values as selecting based on GCA is a promising result given the 472 
reduced complexity and resources (the only cost incurred is in genotyping a sample of the population in a 473 
nursery) involved in enabling the complementation approach for a couple of cycles before a GCA 474 
program is implemented. The observation that the complementation approach did not increase the 475 
additive value was not a surprise since no phenotyping is used in this method and there is no way to select 476 
for the positive allele. In a practical program the complementation approach would only be used to build 477 
dominance-based heterosis and drive the allele frequencies apart and then the GCA approach would need 478 
to come into play. 479 

Implementing genetic complementation in an active inbred program to start hybrid breeding 480 

We recorded the additive, dominance and total genetic value of the parental lines and the advanced 481 
hybrids (in the case of the hybrid strategies) across 40 years of applying the different breeding strategies 482 
(Figure 6). The increase of performance of hybrids compared to lines when the simulated program moves 483 
from one pool to two pools but recycles parents based on BV (TWO_POOL_BV) is only due to the 484 
recovery of baseline heterosis rather than an increase in dominance or panmictic heterosis (based on the 485 
simulated level of dominance, meanDD=0.5) (Lamkey & Edwards, 1999; Labroo et al., 2021; Cowling at 486 
al. 2020). Increase in genetic gain in hybrids following a two pool BV method is based on the increase of 487 
additive gain.  488 

Interestingly, the lower rate of increase in additive gain of RRS based on GCA compared to the 489 
TWO_POOL_BV programs is due to the additional time taken for the additional crossing and evaluation 490 
generation of testcrosses and the way the GCA estimate is constructed (Figure 6) (Hallauer et al., 2010). 491 
The lower rate of additive gain using GCA gets compensated by higher dominance gain if and only if the 492 
testers are updated (Figure 4). The decrease in additive value in lines and hybrids observed in the 493 
complementation approach (TWO_POOL_COMP) (Figure 6) is expected since both populations are 494 
trying to fix specific alleles without purging the negative alleles giving place to the average decrease in 495 
additive value due to inbreeding (Bernardo 1992, 2002). With incomplete dominance, the 496 
complementation approach the harnessing of heterosis comes at a “cost” to additive gain. In hybrids, such 497 
inbreeding is surpassed by the increase of dominance value when the mean dominance degree > 0.5, but 498 
as dominance variance gets depleted (in our simulations around year 15) inbreeding surpasses the effect 499 
of dominance value leading to stagnation of genetic gain in hybrids (Figure 6, Supplemental Figure 3).   500 

Similar performance with lower cost 501 

As mentioned throughout this paper the major potential of the complementation methodology is the 502 
reduction of cost to produce high-performance hybrids in the long term through recurrent selection for 503 
dominance at a low cost when the species displays an intermediate or high level of mean dominance 504 
degree. The lowers cost of the complementation + RRS comes from the fact that the number of 505 
complementation cycles that the breeding program decides to run prior to start formal RRS only incurs in 506 
genotyping costs (~$10 usd per sample) and a growing nursery (~$5000 usd) where the material can be 507 
grown (without replication and experimental design) while the genotyping occurs and recombined once 508 
the complementation surrogate has been calculated. Assuming the same size than the simulated RRS 509 
program with 60 crosses and 50 F2s (3000 F2s) the complementation approach would give a cost of ~ 510 
$35,000 usd per cycle. This cost per cycle is notable lower than a formal RRS cycle where a nursery 511 
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(~5000 usd), DH formation (~$100K assuming ~$2200 usd per cross producing ~100 DHs per cross and 512 
50 crosses), one per se evaluation of 6000 lines ($30K), a crossing block for testcross formation ($5000), 513 
and 3 seasons of testcross evaluation with 500, 200, 45 hybrids, (~$30K per evaluation) without including 514 
other important costs. 515 

A new complementation cycle can be immediately started since phenotyping for traits is not required, 516 
which allows to complete as many cycles in a year as the biological limit and speed breeding methods 517 
allow (Watson et al., 2018). In this paper we assumed a complementation cycle to last ~1 year, but 518 
nothing impedes to use speed breeding to run 3 or more cycles per year and use 2-3 years of 519 
complementation prior to start formal RRS. Is important to highlight that the complementation cycles are 520 
just a preamble to start the formal RRS since the increase of additive gain and production of varieties 521 
requires the phenotyping and multi-environment testing that any breeding programs does, and the 522 
complementation approach can be seen as a boosting methodology to increase initially the dominance-523 
based heterosis. 524 

Conclusion 525 

The potential for hybrid breeding to fulfil the nutritional needs of a growing world population is based on 526 
the exploitation of heterosis, which is currently best explained by the theory of directional dominance. 527 
Hybrid breeding has conventionally been approached through general combining ability (GCA) using 528 
testcross-based or diallel-based approaches aiming to increase additive and dominance effects through 529 
recurrent selection, requiring substantial investment in phenotypic evaluation and a genomic selection 530 
variant to make gains faster. Here, we proposed that genetic marker data can be used to compute a 531 
surrogate of complementation between pools or subpopulations in order to accumulate dominance 532 
interactions through recurrent selection quickly and create de novo heterotic pools prior to start the GCA-533 
based approaches. We found that the proposed genetic-complementation-based approach outperforms 534 
conventional approaches in terms of dominance gain per unit cost when dominance ranges from 535 
intermediate to high values (meanDD ≥ 0.5). The complementation approach can be thought as a 536 
coordinated genetic distance method or recurrent selection for dominance. The results in real datasets 537 
from dent by flint maize hybrids validate the complementation theory and surrogates of complementation. 538 
The complementation surrogate is an alternative for breeding programs attempting to transition from a 539 
non-hybrid to a hybrid system (in a diploid species) to increase and maximize the dominance-based 540 
heterosis per unit cost. 541 
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 685 

Figure 1. Graphical description of the principles behind reciprocal recurrent selection by genetic 686 
complementation. In A) Pool 1 assigns more merit to the selection of one allele whereas the other pool 687 
selects for the opposite allele. Both pools are bred to fix the desired allele (or haplotype if reasoning 688 
genome-wide). Under the directional dominance model, over time hybrids between these two populations 689 
are expected to better complement each other and produce higher-performing hybrids that display strong 690 
heterosis. At complete dominance, the best individual is the one that combines all loci at heterozygote 691 
state or all the loci at homozygous state for the positive allele. At lower levels of dominance, the 692 
individual that combines all loci at heterozygote state is not as good as the individual comprising all the 693 
loci at homozygous state for the positive allele.  In B) the genetic value (Y) as a function of two QTLs (A 694 
and B) is shown, displaying the relationship to find the best hybrids depending on the number of QTLs 695 
under complete dominance (3n/4n). 696 
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 703 

Figure 2. Summary of treatments (breeding strategies) compared to build dominance-based heterosis. 704 
Each treatment uses a different surrogate of merit to select parents in each pool.  705 

 706 

 707 

 708 

Figure 3. Genetic correlation between the complementation surrogates (individual-to-population and 709 
individual-to-individual genetic complementation) and hybrid performance at five different environments. 710 
Columns represents the five different environments where hybrids were tested. A) represents the 711 
individual-to-population genetic complementation, B) represents the individual-to-individual genetic 712 
complementation. Correlation legend is shown in the upper left corner of each plot. Data comes from 713 
Kadam et al. (2016) and comprises a real dataset of hybrids between the dent and flint heterotic pools. 714 

 715 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


 716 

Figure 4. Total genetic gain for a trait in on-farm hybrids under different mean dominance degrees and 717 
number of QTLs for different simulated breeding strategies. The columns represent the comparison of 718 
strategies where the simulated trait has different number of QTLs behind (1, 10, 50, 100, 1000 QTLs). 719 
The rows represent the comparison of strategies where the simulated trait has different levels of mean 720 
dominance degree (0 implies a completely additive trait, 0.5 partial dominance, and 0.95 represents a trait 721 
with almost complete dominance). A value of varDD=0.2 was used across all scenarios. In the x axis, the 722 
number of selection cycles (20) are indicated whereas in the y axis the gain is shown. The different lines 723 
represent the different selection strategies: 1) reciprocal recurrent selection program that selects and 724 
recycles parents based on GCA (TWO_POOL_GCA_PHENO), 2) reciprocal recurrent selection program 725 
that selects and recycles parents based on genetic complementation (TWO_POOL_COMP), 3) reciprocal 726 
recurrent selection program that selects and recycles parents based on genetic complementation using true 727 
QTLs (TWO_POOL_COMP_TRUE; positive control 1), 4) reciprocal recurrent selection program that 728 
selects and recycles parents based on true GCA (TWO_POOL_GCA_TRUE; positive control 2), 5) 729 
recurrent selection program that selects and recycles parents based on breeding value (TWO_POOL_BV; 730 
negative control 1), 6) recurrent selection program that selects and recycles parents at random in a single 731 
pool (NEGATIVE_CONTROL 2).  732 
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 737 

 738 

 739 

 740 

Figure 5. Effect of the representativeness of testers in the increase of dominance-based heterosis. The 741 
additive, dominance and total-genetic value increment (columns) based on representativeness of the tester 742 
(with respect to its pool) achieved by updating the testers after none, 1, 4, or 8 cycles of selection 743 
(treatment lines) at two different levels of dominance degree (rows) is displayed. If the tester(s) are 744 
updated often (TWO_POOL_GCA_UP1) they better represent the pool they belong to, and dominance 745 
increases at a higher rate compared to programs not updating the testers (TWO_POOL_GCA_UP0) or not 746 
that often (rest of the treatments). 747 
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 757 

Figure 6. Genetic gain for a complex trait (1000 QTLs behind) with intermediate mean dominance degree 758 
(0.5) measured in on-farm hybrids (solid lines) and parental lines (dotted lines) for a simulated line 759 
program transitioning to a hybrid program with different breeding strategies. In the x axis, the number of 760 
years is indicated whereas in the y axis the genetic gain for total-genetic (A) additive (B) dominance (C) 761 
value are shown. The different lines represent the different selection strategies tested: 1) line program 762 
continuing the recurrent selection based on breeding value in two independent pools and making hybrids 763 
among the pools (TWO_POOL_BV; positive control; pink lines), 2) line program transitioning to RRS to 764 
select and recycle parents based on GCA (TWO_POOL_GCA_PHENO; blue lines), 3) line program 765 
transitioning to RRS to select purely on complementation (χ) (TWO_POOL_COMP; brown lines, and 4) 766 
negative control selecting lines at random (NEGATIVE_CONTROL; red lines). Every year 4 out of the 767 
top 5 testers is updated. The value of varDD was 0.2 across all scenarios. Shadow lines represent standard 768 
errors for treatments across 20 Monte-Carlo replications. 769 
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 779 

Supplementary Figure 1. Genetic correlation between the complementation surrogates (individual-to-780 
population and individual-to-individual complementation) and hybrid performance. The correlation 781 
legend is shown in the upper left corner of each plot. Data comes from Technow et al. (2014) and 782 
comprises a real dataset of hybrids between the dent and flint heterotic pools. 783 
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 784 

Supplemental Figure 2. Additive and dominance for a trait in on-farm hybrids under different mean 785 
dominance degrees and number of QTLs for different simulated breeding strategies. The columns 786 
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represent the comparison of strategies where the simulated trait has different number of QTLs behind (1, 787 
10, 50, 100, 1000 QTLs). The rows represent the comparison of strategies where the simulated trait has 788 
different levels of mean dominance degree (0 implies a completely additive trait, 0.5 partial dominance, 789 
and 0.95 represents a trait with almost complete dominance). A value of varDD=0.2 was used across all 790 
scenarios. In the x axis, the number of selection cycles (20) are indicated whereas in the y axis the gain is 791 
shown. The different lines represent the different selection strategies: 1) reciprocal recurrent selection 792 
program that selects and recycles parents based on GCA (TWO_POOL_GCA_PHENO), 2) reciprocal 793 
recurrent selection program that selects and recycles parents based on genetic complementation 794 
(TWO_POOL_COMP), 3) reciprocal recurrent selection program that selects and recycles parents based 795 
on genetic complementation using true QTLs (TWO_POOL_COMP_TRUE; positive control 1), 4) 796 
reciprocal recurrent selection program that selects and recycles parents based on true GCA 797 
(TWO_POOL_GCA_TRUE; positive control 2), 5) recurrent selection program that selects and recycles 798 
parents based on breeding value (TWO_POOL_BV; negative control 1), 6) recurrent selection program 799 
that selects and recycles parents at random (ONE_POOL_RANDOM; negative control 2).  800 
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 801 

Supplementary Figure 3. Genetic gain for a complex trait (1000 QTLs behind) with intermediate mean 802 
dominance degree (0.5) measured in on-farm hybrids (solid lines) and parental lines (dotted lines) for a 803 
simulated line program transitioning to a hybrid program with different breeding strategies. In the x axis, 804 
the number of years is indicated whereas in the y axis the genetic gain for (A) additive (B) dominance 805 
value are shown. The different lines represent the different selection strategies tested: 1) line program 806 
continuing the recurrent selection based on breeding value in two independent pools and making hybrids 807 
among the pools (TWO_POOL_BV; positive control), 2) line program transitioning to RRS to select and 808 
recycle parents based on GCA (TWO_POOL_GCA_PHENO), 3) line program transitioning to RRS to 809 
select and recycle parents based on predicted GCA using GS (TWO_POOL_GCA_GS), 4) line program 810 
transitioning to select purely on complementation (χ) (TWO_POOL_COMP), and 5) negative control 811 
selecting lines at random (NEGATIVE_CONTROL). Every year 4 out of the top 5 testers is updated. The 812 
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value of varDD was 0.2 across all scenarios. Shadow lines represent standard errors for treatments across 813 
20 Monte-Carlo replications. 814 

 815 

 816 

Table 1. Summary of simulation features for the genome and phenotypes. 817 

Simulation features 

Burn-in 

 Generic genetic model Inbred and inbred-hybrid programs 

Genome 

sequence 

100,000 generations of evolution 100,000 generations of evolution 

1 chromosome pair 18 chromosome pairs 

1.43 Morgans per Chromosome 1.43 Morgans per Chromosome 

8 x 108 base pairs per chromosome 8 x 108 base pairs per chromosome 

2 x 10-9 mutation rate 2 x 10-9 mutation rate 

Founder 

genotypes 

100 inbred founders per pool 24 inbred founders per pool 

1, 10, 50, 100, 1000 QTNs 

(additive+ dominance effects) 

1000 QTNs (additive+ dominance 

effects) 

Normally distributed QTN effects 

with meanDD values of 0, 0.5 and 

0.95 and varDD=0.2 

Normally distributed QTN effects 

with meanDD value of 0.5 and 

varDD=0.2 

0 cycles of breeding 20 years of breeding 

Inbred individuals Inbred individuals 

Conventional breeding  Conventional line and hybrid breeding 

Evaluati

on 

Future 

breeding 

20 cycles of breeding 40 years of breeding 

Testing alternative allocation of 

resources 

Testing alternative allocation of 

resources 

Equal cost programs Variable cost programs 

Conventional breeding and 

alternative treatments 

Conventional breeding and alternative 

treatments 
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 823 

 824 

 825 

Table 2. Genetic correlation and VarD/VarG between the complementation surrogate χip (individual-to-826 
population complementation) and total genetic (additive + dominance) value of the hybrid performance at 827 
different levels of dominance degree in a simulated program. Genetic correlation is shown in cells and 828 
VarD/VarG is shown inside parenthesis. 829 

meanDD/Cycle 1 4 7 10 

0 -0.06 (0.12) -0.03 (0.18) -0.07 (0.14) 0.18 (0.26) 

0.5 0.62 (0.84) 0.58 (0.55) 0.43 (0.43) 0.06 (0.4) 

0.95 0.77 (0.89) 0.83 (0.86) 0.44 (0.81) 0.3 (0.7) 

 830 

 831 

 832 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498857

