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Abstract 
Insights from biomedical citation networks can be used to identify promising avenues for 

accelerating research and its downstream bench-to-bedside translation. Citation analysis 

generally assumes that each citation documents causal knowledge transfer that informed the 

conception, design, or execution of the main experiments. Citations may exist for other reasons. 

In this paper we identify a subset of citations that are unlikely to represent causal knowledge 

flow. Using a large, comprehensive feature set of open access data, we train a predictive model 

to identify such citations. The model relies only on the title, abstract, and reference set and not 

the full-text or future citations patterns, making it suitable for publications as soon as they are 

released, or those behind a paywall (the vast majority). We find that the model identifies, with 

high prediction scores, citations that were likely added during the peer review process, and 

conversely identifies with low prediction scores citations that are known to represent causal 

knowledge transfer. Using the model, we find that federally funded biomedical research 

publications represent 30% of the estimated causal knowledge transfer from basic studies to 

clinical research, even though these comprise only 10% of the literature, a three-fold 

overrepresentation in this important type of knowledge transfer. This finding underscores the 

importance of federal funding as a policy lever to improve human health. 

Significance statement 
Citation networks document knowledge flow across the literature, and insights from these 

networks are increasingly used to form science policy decisions. However, many citations are 

known to be not causally related to the inception, design, and execution of the citing study. This 

adds noise to the insights derived from these networks. Here, we show that it is possible to train 

a machine learning model to identify such citations, and that the model learns to identify known 

causal citations as well. We use this model to show that government funding drives a 

disproportionate amount of causal knowledge transfer from basic to clinical research. This 

result highlights a straightforward policy lever for accelerating improvements to human health: 

federal funding. 

Introduction 
United States (US) federal science funders, research institutions, and investigators are jointly 

charged with advancing the frontiers of knowledge to stimulate innovation, improve human 

health, and maintain a competitive national edge in the global knowledge economy (1). In recent 

years, the generation of large open datasets of grants, publications, clinical trials, and patents 

have facilitated the generation of linked knowledge networks that relate resources to knowledge 

creation and eventual flow into applied outcomes (2-5). Insights from these networks, about the 

most effective approaches in achieving these important research goals, can be used to identify 

promising avenues for accelerating research and its downstream applied impacts (6). However, 

despite the power of analyzing large-scale knowledge flow to inform the decision-making of 

scientists, institutions and funders, these efforts are complicated by one simple fact: many, if not 

most, of citations in the scientific literature represent transfer of information that did not 

directly influence the inception, design, or execution of a research study. This makes it more 

challenging than would otherwise be the case to identify the subset of citations in the literature 

that really drove subsequent advancements in discovery. 

Some references document the provenance of information that was used to inform the 

inception, design, or execution of the main experiments of the new study. These references are 
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the ones that indicate some degree of causality. In other words, the prior work was used in such 

a way that the experiments and results would have been different (or not even performed) 

without the prior knowledge being referenced. In the context of biomedicine, this knowledge 

flow is thought to drive the discovery of fundamental principles of biology, the causes of disease, 

and effective therapies (1). These are the most important for researchers, funders, and 

administrators to identify in order to understand the past and future progression of biomedical 

research. 

However, other references are discursive in nature. These help to place new results in the 

context of other studies in the field. They can showcase the novelty of the new discovery. In 

some cases, such references are perhaps aimed at persuading reviewers and editors to accept the 

paper for publication. These references are important to the business of science and the process 

of communicating, but lack the same causal nature of those that described prior work that was 

built upon. A small proportion of references track ideas that the authors consider, but then 

reject. Such ‘negative’ citations are estimated to be < 10% of the references in the literature (7-

9), a figure that may vary in degree by field. It should be noted that these citations are still a 

marker of scientific influence, since they are thought to accelerate the self-correcting nature of 

science (7). Finally, some references are strategic in nature, designed to game citation metrics, 

or draw reader attention to the author’s prior work. Often, self-citations are viewed through this 

lens (10), although this interpretation is debatable (11, 12). The omission of these classes of 

references could, in principle, be an avenue for improving signal-to-noise in tracing the 

provenance of important ideas that contributed to human health through advancing clinical 

research. 

Given the interest in identifying references that represent a causal relationship, and are well-

aligned with the interpretation of a scientific article having impact (13-16), we asked whether it 

is possible to train a scalable model to identify the likelihood that a reference is causal in nature. 

Prior work has focused on identifying the type of discourse surrounding the reference in text 

(known as the “citation context”), as a proxy for author intent. Such models have made 

significant advancements in recent years (17-22).  

However, approaches using citation contexts face two major limitations. First, it is unclear the 

extent to which different classes of discourse reveal a causal relationship between the citing and 

referenced work. Second, and most seriously, they require full text as an input and most articles 

are still not open access. This limitation means that even if hypothetical models were perfect, 

they could only capture a minority of causal citations at best. In biomedicine, the PubMed 

Central repository of public access articles captured 7 of the 32 million biomedical research 

articles in PubMed in 2021. This means that approximately 80% of causal citations in 

biomedical research would be overlooked even with a perfectly accurate model. 

Here, we use information that is publicly and widely available to overcome this limitation of 

coverage. We asked whether information embedded in the combination of title/abstract text, 

article metadata, and the public domain citation graph (2, 23), contains enough information to 

indicate the likelihood that a reference is causal in nature. We leverage a data resource that has 

only recently become available at scale in biomedical research: biomedical preprints indexed in 

bioRxiv. When compared with the published version of the same manuscript, these reveal 

important information about the (non)causality of some references because these were added 

after the main body of experiments were conceived, designed, and executed, and therefore in 

general did not contribute to these formative steps of the research study. This interpretation is 
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strongly supported by empirical work showing that authors deem the references they added 

during review to have been unimportant to these formative stages of research (24). This should 

not be surprising, since the main mechanisms by which authors might fail to include such 

papers in a pre-review reference list are most likely (1) authors were unaware of these papers, in 

which case it is hard to argue that direct knowledge transfer occurred at all, or (2) the authors 

were aware of these papers yet chose not to cite them. Here, we describe a model that is trained 

to identify such putative non-causal references, and also learns about the characteristics of 

causal references in the process. We show with classes of citations that are known a priori to be 

causal that the prediction scores of this model can be interpreted as a type of causal uncertainty. 

We then apply our model to references from clinical articles and studied the resultant causal 

uncertainty scores to gain insights into the efficacy of government funding (defined, for US 

biomedical research in this paper, as NIH funding for research articles indexed in PubMed) in 

stimulating the causal flow of information from basic to clinical research. 

Results 
Identification of non-causal citations 
Large-scale identification of the subset of citations that are likely to be causal in nature is not a 

solved problem (25-28). However, researchers have identified subsets of citations that are a 

priori less likely to be causal in nature. Survey data asking researchers about the importance of 

the references that they themselves added to their publications shows that those added late in 

the writing process are far less likely to be important for the inception, design, or execution of 

the main body of experiments (24). Although it is possible for such citations to have contributed 

substantially to the small number of additional experiments requested during peer review, 

citations added after the writing and submission for publication of a largely complete scientific 

manuscript are therefore highly questionable as to their causal contribution to a scientific 

project. 

Until recently, it was not possible to identify in the context of biomedicine which citations were 

added after the writing and submission of a scientific publication. However, biomedical 

researchers’ recent embrace of preprints has made this possible. The National Institutes of 

Health defines preprints as “a complete and public draft of a scientific document” and 

encourages their use and citation (29). There is evidence that biomedical researchers at present 

use preprints as largely complete scientific documents. The similarity of preprints and their later 

peer-reviewed version is high (30). Peer reviewed publications on COVID-19 rarely change the 

sentiment of their claims compared to their preprint version (31). Preprints describing clinical 

trials on COVID-19 did not change their conclusions during peer review (32). Finally, primary 

data from preprints are remarkably stable as they undergo peer review (33, 34). 

Together, these findings support the theory and evidence that citations added in peer review, in 

general, are unlikely to have contributed to the inception, design, and execution of the core 

experiments constituting a study, which we refer to in this manuscript as the definition of a 

‘causal citation’ (24). It should be noted that citations added in peer review may be related to 

additional experiments undertaken in response to reviewer criticism. However, the community 

is divided on the utility of these additional experiments relative to the time and expense of 

conducting them (35), and these results are often relegated to supplemental materials (36). 

Therefore, at a minimum, the uncertainty that these citations made a causal contribution to the 

main body of work (hereafter referred to as causal uncertainty) is very high. 
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To index citations that were present in biomedical preprints, we downloaded the full set of 

biomedical preprints from bioRxiv linked to peer-reviewed versions, identified using the Europe 

PubMed Central application programming interface. Citations were resolved with the Hydra 

citation resolution service (4). We then cross-referenced these preprint citations with those 

appearing in the peer-reviewed, published versions of the same paper using the NIH Open 

Citation Collection (2). In general, 11.6% of citations that were present in the peer reviewed 

version of the paper were added during review.  

The causal uncertainty of references added during review may be high, but most publications do 

not have preprints with which to compare reference lists. However, it may be possible to identify 

patterns in the citation network and metadata of a paper and its references that represent 

citations with higher causal uncertainty. This problem is challenging because citation dynamics 

are noisy and therefore difficult to analyze. However, citation dynamics do follow certain 

mathematical principles (14, 15). By combining measures of article content with measurements 

of citation dynamics, it is possible to detect enough statistical regularity to predict, years in 

advance, outcomes like knowledge transfer from basic to clinical research (3). Therefore, it 

stands to reason that there may be enough statistical regularity in an article’s metadata to 

identify which citations have a high degree of causal uncertainty on that paper’s core 

experiments using machine learning. 

Many machine learning models, in addition to learning patterns in the training data to identify 

the outcome measure that they were assigned, also learn enough about the underlying data 

structures to transfer that knowledge to answer other research questions. For that reason, we 

asked whether machine learning models developed to identify citations with high causal 

uncertainty could also identify citations that the scientific community expects a priori to be 

causal in nature, i.e. those with low causal uncertainty (more likely to represent a causal 

citation). 

Feature space 
In order to generate a feature space in which a machine learning classifier could detect patterns 

in the content network that are associated with a citation being added during peer review vs. 

appearing in the original preprint, we considered information in three categories. The first 

category is metadata about the citing and referenced articles themselves. These included 

publication years of each paper, the degree of Human, Animal, and Molecular/Cellular Biology 

focus for each paper (3, 37), whether the citing and referenced paper appeared in the same 

journal, and whether the citing and referenced papers are primary research articles as defined in 

the NIH iCite tool (38). 

The second category of information we included was information about the citation network and 

relationship between the citing and referenced articles. To encode this information, we 

generated measures that reflect size of the network, its growth rate, and particular types of 

citation relationship. First, we included information about the citing and referenced articles’ 

Relative Citation Ratio (RCR), which is a field- and time-normalized metric of an article’s 

citation rate (39, 40). Since its dissemination, RCR has been used by NIH in its portfolio 

analysis supporting science policymaking, strategic planning, and as evidence of good 

stewardship of taxpayer funds in U.S. Congressional Appropriations hearings supporting 

increases to the NIH budget (41-44). We also included information about ranking of these RCRs 

relative to the NIH-funded publication portfolio (here termed the RCR Percentile, but also 

referred to as Weighted RCR). 
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Previous work showed that highly cited papers are more likely to be the recipients of causal 

citations as identified by authors (24). We confirm the inverse, that papers with high causal 

uncertainty have lower ranked citation rates in general; the RCR percentile of papers where the 

reference was originally found in the preprint was 2.4% higher than for papers whose reference 

was added during review (p < 0.001, Wilcoxon Rank Sum test).  This is not because older papers 

have had more time to accrue citations. The relative age of citations added in peer review was 

lower (6 year gap) than for citations originally found in the preprint version (7 year gap, p < 

0.001, Wilcoxon Rank Sum test). In addition, RCR percentile time-normalizes its measure of 

scientific influence, so this comparison would not be affected by differences in publication age. 

Instead, references to papers added in peer review appear to have notably lower citation 

influence when adjusting for field and time. 

We considered second-order information about the citation relationship as well (that is, two 

steps away from the target publication on a citation or co-citation graph) and included three 

additional measures of the citation network. First, we identified the number of other articles in 

the citing paper’s reference list that also cited the referenced paper (Figure 1a). This could be 

interpreted as a measure of the authoritativeness of the referenced paper, since these other 

related works deemed it important enough to cite. Next, we identified whether a paper 

published after the two papers in question has subsequently cited both the citing and referenced 

papers (i.e. indicating the citation in question is both a direct citation and a co-citation). A direct 

and co-citation relationship (Figure 1b) could be an indication that the two papers have been 

built upon and utilized together in a later scientific project. Third, we considered the local 

citation network of the full set of articles referenced by the citing paper, and asked whether the 

referenced paper falls in the largest connected component of that network (Figure 1c). Falling 

outside that largest component might convey information that the referenced paper is less 

related to the main body of related work. 

The third and final category of information we included was the content similarity of the citing 

and referenced articles. Recent advances in natural language processing models have advanced 

the comparison of the similarity of scientific documents. A recently developed deep learning 

model, SPECTER (22), has also integrated network-aware contextual information during 

training to teach the model whether the documents are also likely to have a direct citation 

linking them in addition to being semantically similar. This pre-trained deep learning model, 

when used for inference, jointly provides information about the semantic and citation network 

similarity. We generated features using SPECTER that encode cosine similarity information for 

the citing- and referenced article pairs, as well as information about the similarity of the citing 

article to the rest of its reference list (mean similarity and standard deviation), and the 

referenced article to the other papers in the reference list (mean and standard deviation). 

Finally, to capture information about the cohesiveness of the overall reference list, we generated 

features encoding the similarity of all of the references to one another (mean and standard 

deviation). 

Model training and validation 
Collectively, these features comprehensively encode information about the citing and referenced 

articles, their relationships to one another, and the overall context of the other articles found in 

the reference list. These features have the advantage of being available at the time of publication 

and not reliant on additional information only disclosed after publication, as later forward-

citations would. We assembled balanced training and testing datasets where each instance 

represented information about the content network regarding a single citing/referenced article 
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pair. For the outcome measure, we applied a binary classification indicating whether this was a 

citation that was added in peer review (positive) or retained from the original preprint 

(negative). Some features that were initially promising were empirically tested and dropped 

from the final modelling process (see Supplemental Materials). We tested random forests, 

logistic regression models, support vector machines, and extreme gradient boosting (XGBoost). 

XGBoost (45) was selected for the remainder of the project because it had the highest predictive 

accuracy of these algorithms. 

Overall, the model achieved an F1 accuracy score of 0.7 (Figure 2) on the test dataset, compared 

to a chance rate of 0.5. This corresponds to a reduction in uncertainty by approximately 40%. 

The distribution of prediction scores on the test dataset after training is balanced, but bimodal 

rather than uniform, weighted toward the ends (Figure 2c). This degree of accuracy is notably 

lower than models that take advantage of the sentence text in which a reference was cited (and 

the number of times a reference was cited in a manuscript). The main limitation that we seek to 

overcome is not a lack of predictive power given such a citation context. Instead, we seek to 

overcome the massive coverage gap: quantitative measures that rely on citation contexts by 

definition omit the vast majority of citation links because they are not open access. In this 

overlooked space that constitutes the vast majority of the references of the scientific literature, 

there is an opportunity to shed light into which citations are among the most- or least-likely to 

represent causal information transfer. 

Feature importance scores are shown in Table 1. Out-of-sample positives received a higher 

prediction score of 0.63 on average, while out-of-sample negatives received an average 

prediction score of 0.37 (p < 0.01, Wilcoxon rank sum test, and Figure 2d-e). This is important 

because it is possible for a prediction system to have predictive power mainly for identifying 

positive values, while performing closer to chance at identifying negatives. If that were the case, 

it would indicate that the model had learned some predictive properties of papers added in peer 

review, but little else. The low distribution of prediction scores for the out-of-sample negative 

samples indicates that the model is learning patterns about citations that are possibly causal as 

well. 

Beyond accuracy testing, we asked whether there were other tests of model validity that could 

confirm or disconfirm that the model has learned how to predict citations with high causal 

uncertainty. We first identified a class that is enriched in citations with high causal uncertainty. 

First, we turned to citations that were present in the preprint version of a paper but were 

excluded in the published version. One caution about this dataset is that there is more than one 

reason that the citation could be dropped. First, an author may have deemed the citation 

unimportant. In this case, the interpretation that it was unlikely to be causal in nature is 

relatively straightforward. 

However, a second reason the citation might not appear in the published version has to do with 

an idiosyncrasy of the data processing pipelines of preprints vs. publishers. bioRxiv, the source 

of our preprint citation data, includes supplemental references in its online structured citation 

data. Many publishers do not, and so the citations may not have been dropped at all, but rather 

were in the supplement, where citations are not indexed for the publication version at many 

journals. Nevertheless, because both mechanisms can lead to the apparent removal of the 

citation, there should be more non-causal citations in these citations than in a random sample of 

citations. Thus, these citations should have higher than average prediction scores if the model is 

learning features correlated with high causal uncertainty. Figure 3a shows that this is indeed the 
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case (p = 0.0011, Wilcoxon rank sum test), supporting the hypothesis that the model identifies 

such correlates. 

We next turned to a class of citations that has gathered much scrutiny because of their potential 

for gaming of citation statistics. These are citations that were added in peer review and cite 

earlier papers from the same journal. These citations are highly suspect; editors insisting on the 

addition of such citations, in order to game journal-level citation metrics like the Journal Impact 

Factor, before acceptance have been termed “coercive citations” (46). Note that authors need 

not wait for editorial feedback before adding such non-causal citations. They may instead 

anticipate more favorable editorial decision-making if the citations are added, and preemptively 

add these (46). Thus, if the model has learned about causal uncertainty, these should also 

receive high scores. We examined out-of-sample citations to the same journal that were added in 

peer review. Notably, these putative coercive citations received the highest prediction scores for 

being non-causal of any class of citation we examined (p < 0.001, Wilcoxon rank sum test and 

Figure 3b), even the out-of-sample positives. 

External validation 
Since these results show that the trained model has learned to predict the citations that we have 

a priori reason to believe are less likely to be causal in nature, we turned our attention to the 

question of whether it learned about citations that are more likely to be causal as well. We 

identified five classes of such citations as tests of the trained model’s external validity. 

First, we relied on the highly structured regulatory framework surrounding drug development to 

identify causal citations. In the United States, this framework constrains the generation of 

clinical knowledge and applies order to this process. Clinical trials proceed in phases that test 

first for safety and then for efficacy, progressing to larger trials that build off the preceding 

trials. Therefore, to comply with clinical regulation, later-stage clinical trials for a given drug 

must by definition draw on previous, lower-stage clinical trials assessing that same drug for 

treating the same disease. These citations from later-stage clinical trials to earlier stage clinical 

trials for the same drug therefore are among the most likely citations to represent causal 

knowledge transfer. Our model was trained to identify citations with high causal uncertainty 

(i.e. those least likely to have contributed to the inception, design, or execution of the main body 

of a paper’s experiments). If the model has learned that putatively causal citations are, in many 

respects, the opposite, the prediction scores for this opposite class of citations should have low 

values. Figure 4a shows that this is the case (p < 0.001, Wilcoxon rank sum test). Thus, the 

prediction scores can in some sense be interpreted as an estimate of causal uncertainty. 

We next asked whether the model’s external validity extended to clinical trials studying the same 

disease rather than the same drug. While perhaps less tightly ordered around the regulatory 

framework governing drug development, we reasoned that this class of citations, when they 

occur, are likely to be enriched in causal citations because of their shared goal of treating a 

common disease. This is especially true because some clinical trials are structured to compare 

novel treatments with the established standard of care, where the regulatory framework 

encourages knowledge flow within the same disease topic but across different drugs. Here, too, 

the model gave low prediction scores (Figure 4b), consistent with a successful prediction (p < 

0.001, Wilcoxon rank sum test). 

We next turned our attention to fundamental research with a study that rapidly emerged into its 

own research topic. Rather than drawing upon the US regulatory framework, we next drew upon 
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acknowledged contributions to the scientific literature by Nobel prizewinning research. In the 

mid-2000’s, human embryonic stem cell (hESC) research was a novel and promising approach 

to modeling human biology, contributing to therapeutic development, and being used as a 

possible therapeutic agent themselves. At that time, the number of hESC papers in PubMed was 

growing exponentially. However, there was unmet demand from the scientific community and 

the public for sources of pluripotent stem cells that carried fewer ethical concerns about 

abortion and might be subject to less administrative oversight and restriction. 

In 2006, the Yamanaka lab produced induced pluripotent stem cells (iPSCs) from adult, rather 

than embryonic, cells (47). This discovery was followed shortly thereafter in 2007 by production 

of human iPSCs by the Yamanaka and Thompson labs (48). iPSC research rapidly spread 

through the cell biology community, and by the mid-2010’s eclipsed hESC research (which had 

started to decline) and is still growing rapidly. Citations from the later iPSC papers that used or 

improved upon the original study’s methodology can be inferred to be causal in nature. We 

identified iPSC papers that cited the original iPSC article (47), and asked whether these, too, 

received low prediction scores. Figure 4c shows that this is the case (p < 0.001, Wilcoxon rank 

sum test). Thus, this model can identify references, with low prediction scores, that are known a 

priori to have contributed to the genesis of a new research topic. 

Studies that spawn a research topic are rare, and we asked whether enabling technologies that 

spread rapidly into other established topics are also identified. The development of fluorescent 

proteins fits this description, although earlier works describing the Green Fluorescent Protein 

(GFP) might be considered to have emerged into its own scientific topic. This technology 

enabled the tagging of individual proteins within the cell, so that their subcellular distribution 

could be quantified with a genetic, rather than chemical, approach. For that reason, we 

examined later-stage fluorescent protein development, when fluorescent protein research had 

already emerged as a topic of scientific inquiry, but new fluorescent proteins with unique 

spectral properties represented an enabling technology for other, already established fields of 

science (49). 

In order to identify suitable citations, we turned to the methods section of articles with free full-

text in PubMed Central. This is because, unlike the iPSC topic, we sought papers that were not 

necessarily studying fluorescent proteins per se, but rather were more likely to use them as a 

means to an end. Open science databases such as OpenCitations and COLIL have parsed the 

citation context (50, 51), which is the sentence in which a reference is cited, alongside the 

section of the article in which the citation is found. We queried references appearing in the 

Methods section of articles in citation contexts containing names of specific fluorescent proteins 

that were developed after the emergence of fluorescent proteins as a research topic, but that 

were still widely used and disseminated in other fields. Like the other classes of citation used for 

external validation, these are expected to receive low prediction scores if the model is successful. 

Figure 4d shows that these fluorescent protein citations also receive low prediction scores (p < 

0.001, Wilcoxon rank sum test). Citations to enabling technologies in two contexts, then, can be 

detected, without respect to whether the cited article launched a new topic of scientific inquiry. 

Finally, we asked whether citations to innovations with particularly high commercial potential 

are also identified. This is not to say that the commercial potential of iPSCs and fluorescent 

proteins were not high, but some technologies are known a priori to have especially high 

commercial potential. Broadly effective genome editing technology is one of these. In 2013, 

Doudna and Charpentier described a novel gene editing approach using the CRISPR/Cas9 
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system (52). Subsequently, patent rights for its application were sharply disputed (53). To test 

whether subsequent citations from papers employing this technique are identified by our model, 

we again extracted citation contexts from citing papers and included citations to the 

CRISPR/Cas9 article that appeared in the Methods section. This final class of citations that are 

thought to be causal in nature also received low scores by the model (p < 0.001, Wilcoxon rank 

sum test and Figure 4e). Thus, the trained machine learning model seems to have identified not 

only that citations with high prediction scores are less likely to be causal citations that 

contributed to the inception, design, or execution of the main experiments in a study (e.g. 

similar to those added during review), but also gives the opposite prediction scores (i.e. low 

absolute prediction values) for known causal citations (Figure 4f). 

US Federal support of fundamental knowledge cited by clinical studies 
One pressing question in the biomedical research literature is how to more effectively facilitate 

the generation of knowledge that will drive later clinical discovery. However, before applying our 

causal uncertainty scores to address this question, it is first necessary to understand the overall 

dynamics of bench-to-bedside translation in recent years. We focused on the distinction 

between federally funded vs. non-federally funded research within the United States because 

science funding is a major policy lever easily accessible to lawmakers for advancing science, and 

the value of government funded science is under constant scrutiny. Using the Human, Animal, 

and Molecular/Cellular Biology classification initially developed by Weber (37) can help to 

identify the domain of science for each paper. Human publications, which are conceptually the 

closest to clinical research, while Animal and especially Molecular and Cellular Biology research 

are conceptually farther. These can be visualized on the Triangle of Biomedicine (3, 37), which 

places articles into a translational space that visually depicts where articles are found in this 

space. Human research articles characterize the majority of biomedical studies. By contrast, 

NIH-funded research has a more basic research focus (Figure 5a), although this difference is 

closing over time (Figure 5). 

It stands to reason that the more basic-research favored for federal funding might be less-well 

cited by clinical articles, due to the larger conceptual distance to applied clinical research. 

Extending this line of reasoning, it may be that those clinical citations that exist might be less 

likely to represent causal knowledge transfer because of the large conceptual gap between basic 

and applied clinical research. Over the period we studied, NIH-funded scientific papers 

represented 10.6% of biomedical publications (Figure 5b). We therefore asked whether US 

federally funded research articles represent more or fewer than ~10% of clinical citations as a 

first test of the representation of US federally funded biomedical research in clinical citations. 

NIH identifies clinical citations as citations from clinical observational studies, trials, or 

guidelines in its iCite web service (3). NIH-funded articles comprise 15.7% of papers cited by 

clinical articles (Figure 5). Despite the more basic research focus, NIH-funded articles receive 

nearly 50% more clinical citations than might be expected based on their fraction of the 

literature. However, because of the limitations of citation analysis, this result does not 

necessarily reveal the over- or under-representation of causal knowledge flow from federally-

supported to clinical articles. 

 

Causal uncertainty in government-supported bench-to-bedside translation 
To address questions about causal clinical citations, we first had to operationalize this concept 

for the purposes of this study. In our external validation studies involving citations that we have 
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reason a priori to believe represent causal knowledge flow, like iPSC and progressive phases of 

clinical trials involving the same drug, these generally scored below 0.5 on predictions from our 

model. Likewise, clinical citations to NIH-funded articles had a similar distribution of prediction 

scores (Figure 6a). We asked if this pattern changed when examining clinical citations to basic 

NIH research, given the greater conceptual distance between basic and clinical research. We 

observed that these clinical citations also had a low distribution of prediction scores (p < 0.001, 

Wilcoxon rank sum test Figure 6b), and also resembled the external validation datasets that are 

a priori likely causal citations. 

Based on the response characteristics of the model’s prediction scores and the external 

validation studies shown in Figure 4, we reasoned that citations with low prediction scores are 

likely to be enriched in causal citations. To be clear, we do not assert that each individual 

citation with a low causal uncertainty score is a causal citation. Instead, given the F1-score of 

0.7, we estimate that a comparable proportion of causal citations are likely to be found in the 

group of citations with a low causal prediction score. We therefore refer to this group of citations 

as estimated causal citations. Using this initial threshold as an operational definition of 

estimated causal citations from clinical articles, we found that NIH-funded publications 

comprised 20% of such citations, twice as high as the representation of NIH-funded 

publications in the scientific literature (Figure 6). Limiting to the estimated causal clinical 

citations thus reveals that, compared to the 15% of clinical citations received by NIH papers 

overall (Figure 5), US federally funded studies are overrepresented among those citations most 

likely to have driven causal knowledge transfer. Furthermore, this estimate was invariant to the 

particular threshold used. NIH-funded publications received 20% of the total likely causal 

clinical citations using more stringent thresholds of 0.33 and 0.2 as well (Figure 6c), the latter of 

which was the most stringent and the most concentrated in causal citations from our external 

validation (see Figure 4), and therefore used in the next analysis. Thus, independent of the 

particular threshold used, federally funded biomedical research is overrepresented twofold 

among clinical citations estimated as likely to be causal by our model. 

We next asked whether this finding extended to clinical citations to basic research articles rather 

than NIH-funded articles overall. This is because, although less Human-oriented than the 

literature as a whole, the NIH portfolio is increasingly focused on Human-focused research 

articles (Figure 5). Previous work has identified research that is less than 50% human focus as 

enriched in basic research articles (3, 37). Using that definition, we found that NIH-funded 

research articles comprised 30% of estimated causal citations from clinical to basic research 

articles (Figure 6). Thus, although NIH-funded work comprises only 10% of the literature, it 

represents an estimated 30% of the basic research literature that represents likely causal 

knowledge transfer into clinical research (p < 0.001, Chi-squared test for probabilities). 

Discussion 
An important applied goal of biomedical research is to generate knowledge that can advance 

human health. US Federal science funding is among the most prominent policy levers for 

stimulating basic research knowledge that could inform new therapeutic development. Citations 

represent knowledge flow from the referenced article to the citing one, and can be used to trace 

the movement of basic research ideas into such downstream applied research. Recently we  

developed a large-scale database of citations from the clinical literature to the rest of biomedical 

science, which for the first time can be used to address these kinds of questions (2, 3, 38). 

However, the presence of a citation does not reveal how that knowledge was put to use. Some 
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references are exclusively discursive in nature, and may not have been meaningfully built upon 

in the citing study. This is a known limitation of citation analysis, which makes the tracing of 

knowledge flow in bench-to-bedside translation noisier than would otherwise be the case. While 

citation serves as an acknowledgment of intellectual contribution to the specific research, not all 

citations are intended to perform the same task. For example, some citations are intended to 

provide the context of the problem or discuss seminal works in the field and such citations are 

mostly found in the introduction. Citations in the related work mostly discuss previous works on 

the same topic and the limitations of those works. Citations in the experiment sections are 

mostly related to baseline comparison and contribution analysis. These kinds of citations are 

important to provide the readers with enough context and knowledge on the topic and bring 

them to the same page as the authors. However, these citations do not necessarily have 

intellectual impact specifically with respect to the inception, design, or execution of a citing 

study. Many of those might be discovered at a much later stage, therefore, it will be misleading 

to claim those as the causal citation in this narrow context. 

Our results demonstrate that it is possible to use information about local network structure, 

deep learning semantic representations of text similarity, and article metadata to discern a 

signal of citation causality from the noisiness of citation dynamics. We took advantage of 

knowledge from preprints and their published versions to identify a class of citation that is, a 

priori, highly unlikely to have been used to inform the inception, design, or execution of the 

main experiments of the new study: those added during peer review, after the main body of 

work has been completed (24). We then trained a model to predict when the certainty is a priori 

low that a referenced paper contributed to these early stages of research development and 

execution. We found that citations that are known historically to have been causal in nature 

receive low causal uncertainty scores. Finally, we apply this model and find that federally funded 

publications are vastly overrepresented in the population of basic-to-clinical citations with low 

causal uncertainty scores. This population of citations is likeliest to represent causal knowledge 

transfer in a bench-to-bedside translation context, indicating that federal support for biomedical 

research is a highly effective tool for stimulating this process. 

This study has important limitations. First, because of the scope of this work and the data 

utilized (2, 23, 38), it is limited to biomedical research fields. It is possible that the model 

efficacy at identifying causal citations would change if expanded to other fields. Second, since 

preprint data are relatively recent in biomedicine, it may be the case that this modelling 

approach is most effective at making predictions about recent citations, rather than historical 

ones from decades past. This is especially salient because the later publications analyzed contain 

COVID-19 publications. It is not known if citation or semantic relationships shifted during the 

pandemic. Further, it is not known whether the network structures and semantic 

representations used for feature generation drift over the scope of decades. However, it is our 

anticipation that further research into identifying causal citations without full text will increase 

the accuracy and coverage of information about causal knowledge transfer and identify effective 

methods to combine the approaches reported here with the rich information for citations where 

contexts are fully available. 

Evidence from the literature supports the interpretation that citations added during review are 

unlikely to have informed the inception, design, or execution of the main experiments. This is 

because articles do not change much during the review process, leaving little scope for this stage 

of science communication to effect change. With an intention to rapidly and openly share 

research findings with the community, biomedical researchers have increasingly accepted 
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preprint servers. Several studies across different research domains compared preprints with 

their peer-reviewed counterparts to analyze the credibility of preprints as well as the 

effectiveness of peer-review. One study (54) manually compared the quality of reporting of both 

independent and paired preprint and peer-reviewed samples from bioRxiv and PubMed. Their 

findings suggest the quality of reporting in preprints and peer-reviewed articles is within a 

comparable range although the peer-reviewed articles have a slightly better quality of reporting 

on average. Dirnagl et al. analyzed the preprints recording the early phase of the COVID-19 

pandemic and their subsequently peer-reviewed versions (55). They compared the number of 

figures, panels, and tables and found no difference on average, suggesting that very few new 

experiments or analysis were conducted during the peer-review. Moreover, the abstracts and 

conclusions of the preprints experienced very minor changes during review. However, Xu et al. 

(56) found that preprints that were published performed better in altmetrics than those 

preprints that were never published, indicating important differences in usage among the 

scientific community between preprint-only manuscripts vs. those published. Other studies 

analyzed the text-similarity and semantic features of preprints and their peer-reviewed 

counterparts and the findings are consistent across different fields (57, 58). The semantic 

analysis of the title, abstract, and body of the preprints in arXiv and bioRxiv found little notable 

difference with their peer-reviewed versions (57). Comparison of preprints and their peer-

reviewed versions on COVID-related research also found coherence in the reported results (54, 

57, 59), extending the findings of these studies.  In addition, analysis of the primary data 

constituting the evidence base suggests that estimate values in published papers are nearly 

identical to those in preprint versions (32, 33). In addition, there are not measurable differences 

in peer review evaluations of article quality between preprints that are published vs. those that 

remain unpublished (33). Studies that examined non-COVID preprint-publication pairs drew 

similar conclusions (60-64). These studies support the use of preprints, as one important 

component of the scientific literature, in downstream research development and decision-

making. 

The methods explored here should not be viewed as an alternative for citation context-based 

approaches for identifying important citations (17-22). These two approaches, although aligned 

in their goals, utilize non-overlapping information, and the insights from each type of model can 

be combined to further reduce uncertainty about citation causality. Instead, the approaches 

used here can be used to address the large coverage gap in open access to free full text, and 

dramatically expand the scope of citations that can be examined from the context of causality 

and importance. We show that it is possible to generate predictions about citation causality even 

without access to full text citation context. 

Finally, our results indicate that federal support of science funding is a powerful lever to 

translate basic knowledge into clinical discovery. These results extend earlier work suggesting 

that most new therapeutics, typically privately funded, build on earlier federally funded work 

that formed the basis for new drug development (65). Our results indicate that this prior 

federally funded basic research is among the most likely to have fueled causal knowledge 

transfer to later clinical research. 

Materials and Methods 
Raw data & code availability 
Preprints that have been published were identified through the Europe PMC application 

programming interface, which matches the Digital Object Identifier (DOI) of the preprint and 
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published versions of a paper. DOIs corresponding to bioRxiv preprints were identified and 

their full text, which includes a structured reference list, were downloaded in October 2020 (33). 

It should be noted that it is possible that more recent preprint-publication linkage may not yet 

have been indexed in Europe PMC due to possible reporting or data processing delays. For this 

reason, more recent preprint-publication links may be underrepresented in our sample. 

References were matched with the National Library of Medicine’s Hydra citation resolution 

service (4). We used the NIH Open Citation Collection to identify references from the final, 

published version of a manuscript (2, 23). We used publication-grant linkages from NIH 

ExPORTER to identify federally supported biomedical research articles (66). 

Many of the derived features described below used data from the iCite database (e.g. Human, 

Animal, Molecular Biology scores (3), or the Relative Citation Ratio (39, 40) in its linear or 

percentiled form) (2, 3, 23, 40, 67). These are available at the Figshare data repository (67). Raw 

text for similarity comparisons are available at PubMed (68). Source code for the SPECTER and 

XGBoost libraries used in this study are available online (22, 69, 70). 

Feature descriptions 
• specter_cosine_sim: SPECTER cosine similarity using the title and abstract text of 

the citing paper and that of the referenced paper 

• pub_ref_reflist_sd: Standard deviation of the pairwise SPECTER cosine 

similarities using the title and abstract text of the referenced paper and that of all other 

papers in the citing article’s reference list 

• pub_ref_reflist_mean: Mean of the pairwise SPECTER cosine similarities using the 

title and abstract text of the referenced paper and that of all other papers in the citing 

article’s reference list 

• pmid_reflist_sd: Standard deviation of the pairwise SPECTER cosine similarities 

using the title and abstract text of the citing paper and that of all other papers in the 

citing article’s reference list 

• pmid_reflist_mean: Mean of the pairwise SPECTER cosine similarities using the title 

and abstract text of the referenced paper and that of all other papers in the citing article’s 

reference list 

• reflist_reflist_sd: Standard deviation of the pairwise SPECTER cosine 

similarities using the title and abstract text of all papers in the citing article’s reference 

list to one another 

• reflist_reflist_mean: Mean of the pairwise SPECTER cosine similarities using the 

title and abstract text of all papers in the citing article’s reference list to one another 

• ref_year: Publication year of the referenced paper 

• ref_rcr: Relative Citation Ratio of the referenced paper 

• pub_rcr: Relative Citation Ratio of the citing paper 

• cocited_by_ref: Count of the number of other papers in the citing paper’s reference 

list that also cited the referenced paper 

• pub_pctile: Percentile of the citing paper’s Relative Citation Ratio 

• ref_mc: Molecular/Cellular Biology score of the referenced paper. This is the average of 

relevant Medical Subject Heading terms attached to this paper that fall into the 

Molecular/Cellular category 
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• pub_mc: Molecular/Cellular Biology score of the citing paper. This is the average of 

relevant Medical Subject Heading terms attached to this paper that fall into the 

Molecular/Cellular category 

• ref_a: Animal score of the referenced paper. This is the average of relevant Medical 

Subject Heading terms attached to this paper that fall into the Animal category 

• pub_a: Animal score of the citing paper. This is the average of relevant Medical Subject 

Heading terms attached to this paper that fall into the Animal category 

• pub_year: Publication year of the citing paper 

• ref_pctile: Percentile of the referenced paper’s Relative Citation Ratio 

• ref_h: Human score of the referenced paper. This is the average of relevant Medical 

Subject Heading terms attached to this paper that fall into the Human category 

• pub_h: Human score of the citing paper. This is the average of relevant Medical Subject 

Heading terms attached to this paper that fall into the Human category 

• in_lcc: Binary flag for whether the referenced paper falls into the largest connected 

component of the local citation network of the papers in the citing article’s reference list 

• direct_and_cocitation: Binary flag for whether the direct citation between the 

citing and referenced paper is also a co-citations; in other words, has another article 

been published after the citing paper that referenced both the citing and cited paper? 

• ref_is_research: Binary flag for whether the referenced paper is a primary research 

article 

• same_journal: Binary flag for whether the citing and cited papers are both published 

in the same journal 

• pub_is_research: Binary flag for whether the referenced paper is a primary research 

article 

Machine learning & accuracy testing 
Our outcome measure for prediction was a binary flag indicating whether a given reference had 

been added in peer review (True) or was found in the original preprint and carried over to the 

published version (False). Training data contained 440,000 instances of balanced positive and 

negative data, and accuracy statistics were calculated from a smaller holdout test set. XGBoost 

was used for the final model (70), although we also tested random forests, support vector 

machines, and logistic regression (each of which had poorer performance). The model achieved 

an F1 score of 0.7. Training and testing using the complete balanced dataset with 10-fold cross-

validation yielded similar results. Our final test set comprised of 3482 citation linkages that 

were out-of-sample for training the model. 

References that were found in the preprint version but not in the published version were 

omitted because of a difference in how such references are indexed. bioRxiv and medRxiv host 

both the primary reference list and references found only in the supplemental material, while 

many publishers do not deposit references from supplemental material into structured citation 

indices. It cannot be easily distinguished whether a reference is found in the preprint but not the 

published version due to being genuinely dropped, or whether it was part of the supplemental 

data and not covered by publishers. We therefore omitted such references from training data. 

External validation & analysis 
To identify earlier stage clinical trials cited by later stage clinical trials for the same drug, we 

used PubChem to match drugs and PubMed Publication Type terms to identify which Phase (I-
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IV) each citing/referenced paper was (68). To identify those trials studying the same disease, we 

matched based on the Disease Medical Subject Heading terms available in PubMed. To test the 

role of federal support on estimated causal translation on clinical citations, we randomly 

sampled 10,000 citations from clinical papers published in 2015-2019 for subsequent subsetting 

and analysis. Sample sizes for other external validation conditions were: Clinical progression of 

the same drug (955); clinical progression of the same disease (958), iPSC (12693), XFP (312), 

and CRISPR (81). 

Some external validations required examining the location in the citing paper of the citation. 

Such citation contexts are available from OpenCitations and COLIL (50, 51); we used context 

data from the latter service. Only citations in sections that contained the case-insensitive string 

“methods” in the header were used for matching citations in the Methods section (e.g. 

“Methods”, “Materials and Methods”, or “Methods and Results”). Additional citations to the 

same paper in other sections of a paper did not exclude a reference from consideration as long 

as it was also cited in the Methods section.  
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Figure legends 
Figure 1. Local citaiton network features that may hold predictive power for citaiton causality. 

A) Illustration of references (grey) of a citing paper (blue) that all co-cited the target referenced 

paper (red) found in the same citing paper’s reference list. In this case, 6 other papers from this 

reference list (grey) co-cited the referenced article (red), so the count is 6. B) Illustration of a 

direct citation that is also a co-citation. The blue paper cites both the other citing (grey) and 

referenced (red) articles, making this orange direct citation link also a co-citation. C) The local 

citation network of the papers found in the reference list. Many referenced papers appear in the 

largest connected component, but in this illustration the two papers (blue) that were added to 

the reference list during peer review are not part of this component. 

Figure 2. Model accuracy. A, B) Precision/recall graph and ROC curve of prediction scores on 

out-of-sample test data. C) Distribution of prediction scores on a balanced set of out-of-sample 

positives and negatives. D) Distribution of prediction scores for out-of-sample positives. E) 

Distribution of prediction scores for out-of-sample negatives. 

Figure 3. Prediction scores are higher for citations that a priori carry higher causal uncertainty. 

A) Distribution of prediction scores for preprint references that were dropped in peer review and 

no longer appeared in the published version. B) Distribution of prediction scores for possibly 

coercive citations, those that were added in peer review and cite the same journal that the paper 

was submitted to. 

Figure 4. Prediction scores are lower for citations that a priori are known to be causal, and can 

be interpreted as a measure of causal uncertainty. A) Prediction scores for citations from higher-

phase clinical trials to preceding, lower-stage clinical trials matched by the drug therapeutic. B) 

Prediction scores for citations from higher-phase clinical trials to preceding, lower-stage clinical 

trials matched by the disease being treated. C) Prediction scores for citations from iPSC papers 

to the paper describing the seminal iPSC methodology. D) Prediction scores for citations from 

papers using fluorescent proteins to the paper describing novel fluorescent proteins for use by 

the research community. E) Prediction scores for citations from CRISPR papers to the paper 

describing the seminal CRISPR gene editing technology. F) Visual interpretation of model 

prediction scores. Higher scores (i.e. those most similar to references added during peer review 

and therefore least likely to have informed the inception, design, or execution of the main body 

of experiments) are less likely to represent causal citations, while those with the lowest scores 

are validated as being more likely to represent causal citations. 

Figure 5. US Federal support for Human, Animal, Molecular/Cellular Biology research. (A) 

Density graph of over- and under-representation of NIH-funded articles in different domains of 

the Triangle of Biomedicine. NIH-supported papers are overrepresented in Molecular/Cellular 

Biology and Animal research, and comparatively underrepresented in Human research. (B) 

NIH-funded articles comprise ~10% of the biomedical literature. (C) NIH-funded articles 

typically receive 15-16% of citations from clinical research articles. (D) Shifts of the domains of 

research funded by NIH over time. (E) The non-NIH-funded literature has a strong and stable 

human focus. 
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Figure 6. Government support overrepresented in estimated causal knowledge flow from basic 

to clinical research. (A) Distribution of causal uncertainty scores for clinical citations to any 

NIH-funded articles. (B) Distribution of causal uncertainty scores for clinical citations to basic 

research papers funded by NIH (referenced papers have Human scores below 0.5). (C) NIH-

funded papers receive 20% of citations with causal uncertainty scores below threshold, 

regardless of the threshold chosen. (D) NIH-funded papers are overrepresented in clinical-to-

basic citations (20%, no filtering on causal uncertainty, “Translation (Any Cites)”). NIH-funded 

papers comprise nearly a third of basic research articles that receive clinical citations with a 

causal uncertainty score below 0.2 (“Est. Causal Translation”). 

Table 1. Feature importance scores from the trained model. See Methods for full feature 

descriptions. Gain, fractional contribution of features, indicating a more predictive feature. 

Cover, relative number of observations related to the feature. Frequency, a count of the relative 

number of usages of a feature within trees. 
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