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Optimization of transcription factor genetic circuits
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Summary
Transcription factors (TFs) affect the expression of mRNAs. In essence, the TFs form a large computa-
tion network that controls many aspects of cellular function. This article introduces a computational
method to optimize TF networks. The method extends recent advances in artificial neural network op-
timization. In a simple example, computational optimization discovers a four-dimensional TF network
that maintains a circadian rhythm over many days, successfully buffering strong stochastic perturba-
tions in molecular dynamics and entraining to an external day-night signal that randomly turns on
and off at intervals of several days. This work highlights the similar challenges in understanding how
computational TF and neural networks gain information and improve performance, and in how large
TF networks may acquire a tendency for genetic variation and disease.
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Introduction

Transcription factors (TFs) influence mRNA produc-

tion. Multiple TFs form inputs into a biochemical net-

work that affects mRNA outputs. The TF networks

govern the biochemical dynamics that control much

of cellular function.

TF networks pose five key challenges. How do nat-

ural processes design TF networks? What TF network

architectures commonly arise? What consequences

follow from the particular architectures? How can

human-engineered TF networks achieve particular

design goals? How do TF networks compare with

other input-output networks, such as artificial neu-

ral networks?

This article introduces a computational optimiza-

tion method to design TF network models. The com-

putation process differs from how natural selection

designs actual biochemical TF networks but does

provide insight into design by blind search.

On the technical side, the computational approach

arises from the great recent advances in automatic

differentiation algorithms.2,19 Automatic differentia-

tion provided the key step that transformed modern
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AI by allowing realistic optimization of large artificial

neural networks.13 In the same way, it is now possi-

ble to optimize TF networks that depend on large

numbers of parameters.

As often happens with novel computational op-

timization applications, the techniques from other

fields do not work immediately without additional

technical modifications and advances. This article in-

troduces several small but essential technical steps.

Such steps include expanding the thermodynami-

cally motivated TF input-output function into a com-

putational function for arbitrary network sizes, de-

veloping an inverse computational map from realis-

tically motivated parameter bounds to computation-

ally useful parameter ranges for optimization, and

finding the various computational hyperparameters

and initial conditions that allow successful optimiza-

tion.

This article also illustrates the method with a sim-

ple example and lists promising directions for future

work. Given the wide interest in such computational

models and the potential for broad future develop-

ment and insight, this first small step may motivate

further progress.

Literature search did not turn up any prior meth-

ods for the general optimization of TF networks.

Hiscock14 used machine learning algorithms to op-

timize differential equation models of biochemical
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dynamics. Hiscock’s work did not consider mRNAs,

gene expression, or TF control networks. Lopatkin

& Collins16 reviewed various related modeling ap-

proaches for microbial biology and their future po-

tential. Much recent work focuses on the general op-

timization of differential equation models,22 which

motivated my application to TF networks and bio-

chemical dynamics.

Results

Dynamics of TF networks

The derivatives with respect to time for numbers of

mRNA molecules, x, and the TFs produced by those

mRNAs, y , are

ẋi =mifi(y)− δixi
ẏi = sixi − γiyi,

(1)

formi as maximum mRNA production rate, δi as the

mRNA decay rate, si as the TF production rate per

mRNA, and γi as the decay rate of i = 1, . . . , n TFs.18

TF network as input-output function

The function fi transforms the numbers of TFs in

the vector y into the production level of each mRNA,

varying between 0 for complete repression and 1 for

maximum production. The activation function arises

from thermodynamic theory,5 leading to the calcula-

tion for a single TF as4,18

f(y) = α0 +α1v
1+ v ,

in which v = (y/k)h is activation by TF abundance

y relative to the TF–promoter binding dissociation

constant, k, reshaped by the Hill coefficient, h. The

parameters α0 and α1 weight the expression levels

when the promoter is unbound or bound, respec-

tively, with α varying between 0 and 1. For two TFs,

f(y1, y2) =
α0 +α1v1 +α2v2 +α3rv1v2

1+ v1 + v2 + rv1v2
,

in which each TF has its own intensity parameters,

vi = (yi/ki)hi , and r quantifies synergy between TFs.

My computer code expands f for any number of TFs.

Maintaining circadian rhythm as a design challenge

To illustrate the optimization method, the design

goal is for TF 1 to follow a 24h period. TF abundance

above 103 molecules per cell corresponds to an “on”

state for daytime. Below that threshold, the cell is in

an “off” nighttime state.

For a system with n = 4 TFs, the differential equa-

tions for the system have 164 parameters (see Meth-

ods). In Fig. 1a, we seek a parameter combination

that minimizes the loss measured as the distance be-

tween the target circadian pattern shown in the gold

curve and the transformed abundance of TF 1 in the

green curve.

Optimization of the deterministic system in eqn 1

often finds a nearly perfect fit between the system’s

temporal trajectory and the target circadian pattern.

Repeated computer runs with different random ini-

tialization and search components typically converge

to different TF networks.

Stochastic molecular dynamics

Different optimized fits for the deterministic system

in eqn 1 had widely varying sensitivities to pertur-

bation by stochastic molecular dynamics. The real

challenge is to optimize a stochastic system. To each

derivative in eqn 1, I added a Gaussian noise pro-

cess weighted by the square root of the molecular

abundance. The updated dynamics fluctuate stochas-

tically.

Random external light signal for entrainment

A stochastic system inevitably diverges from the tar-

get circadian trajectory. The system may use an ex-

ternal entrainment signal, such as daylight, to correct

deviations. In this example, I added a strong boost

to the production rate of TF 2 in proportion to the

intensity of external light. Initially, the light signal

is absent. The signal switches on and off randomly.

In Fig. 1b, the gold curve shows the external light

signal, which switches on in the middle of the third

day and stays on for the remaining days shown. The

blue curve traces the abundance of TF 2. The updated

challenge is for TF 1 to track the circadian pattern,

with stochastic molecular dynamics and a randomly

occurring external entrainment signal.
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Dynamics of an optimized system

Figure 1 shows the best-performing system obtained

by optimization. In panel (a), the system’s trajec-

tory (green) lags the target pattern (gold) during the

first few days because of stochastic perturbations

from molecular dynamics. When the external light

signal switches on in the middle of day 3, the system

quickly entrains to the circadian pattern and remains

tightly synchronized for the remaining days shown.

Panels (c) and (d) show the other two TFs, and panels

(e-h) show the mRNAs for each matching TF.

Each stochastic trajectory of the system differs be-

cause of the stochastic molecular dynamics and the

random switching of the external light signal. Panel

(i) shows 20 system trajectories over 20 days, in

which the average waiting time between the switch-

ing on and off of the light signal isw = 2 days. In this

case, the signal comes on often enough for the sys-

tem to correct most deviations caused by stochastic

dynamics.

In panel (j), the average waiting time for the light

switch is w = 1000. Because the light starts in the

off state, it essentially never comes on. Thus, the

trajectories show how well the system can maintain

a circadian pattern in response to internal stochas-

tic molecular perturbations, with no external signal

to correct deviations. In this case, most trajectories

remain remarkably close to their target over a long

time period.

Figure 2a shows the deviations of system trajecto-

ries from the circadian target for 1000 sample tra-

jectories. The numbers associated with the w la-

bels show the average waiting time between random

switches of the external light signal. In each vertical

set of circle and lines, the circle shows the median

deviation in hours between the target and system

entry times into the daylight state. The upper line

traces the range of the 75th to 95th percentile, and

the lower line traces the 5th to 25th percentile. The

left, middle, and right set for each w value shows

the distribution of deviations at day 10, 20, and 30,

respectively. With an entrainment signal of w ≤ 16,

the system typically remains close to its target.

When there is effectively no external entrainment,

forw = 1000, the system inevitably diverges from its

target with an increase in the day of measurement.

Nonetheless, the match remains very good given the

highly stochastic molecular dynamics.

This system performs better than other optimiza-

tion runs in my study. When I tried to improve the

performance of this system further with additional

optimization steps and altered optimization hyper-

parameters, the performance always decreased. The

reason remains an open puzzle. Further study may

provide insight into the geometry of the performance

surface, an analogy for the commonly discussed fit-

ness landscape problems of evolutionary theory.17,24

TF logic of an optimized system

Figure 2b illustrates the TF network input-output

function, f . This subsection links the observed TF

logic to the design challenge of circadian pattern

with a randomly fluctuating daylight entrainment

signal.

The plots show the expression level output for the

mRNA that makes TF 1. In each plot, the bottom axes

show TF protein numbers, labeled as p1 and p2 for

TFs 1 and 2, respectively. The scale is log 10(1+y), in

which y is the number of TF molecules per cell. Rows

show increasing amounts of TF protein 3, labeled p3.

Columns show increasing amounts of TF 4.

A high value of p2 associates with a strong exter-

nal light signal, as in Fig. 1b. The TF network only

strongly stimulates p1 production when the external

light signal is strong and both p3 and p4 are high.

From the plots in Fig. 1b-d, those conditions are only

met from a couple of hours past the temporal tran-

sition into daytime through midday. Transition into

daytime is marked by the vertical dotted lines in pan-

els (a) and (b). Those requirements allow the system

to entrain accurately to the external daylight signal

when it is present.

In the absence of an external light signal, p2 rises

to a lower level at the onset of daylight. Once again,

with high levels for both p3 and p4, the rise of p2

increases expression of the mRNA that produces p1.

That pattern creates the same temporal entrainment

to daylight, but in this case solely by internal signals

from the cell’s intrinsic dynamics. However, when

there is no external light signal, the system lacks the

very strong rise in expression of p1 in midday that

seems to be the main entrainment force to an exter-

nal daylight signal.

In this way, the cell entrains relatively weakly to its

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498863
http://creativecommons.org/licenses/by/4.0/


git • master @ biorxiv_1.0-1::662ce85-2022-07-05 (2022-07-05 18:47Z) • safrank

stochastic and less reliable internal circadian signals

and entrains relatively strongly to an external day-

light signal, when that external signal is present. The

use of two internal signals, p3 and p4, may help to

buffer the effects of stochastic perturbations.

The story outlined here gives a plausible interpre-

tation of the system design. However, when I tried to

further optimize this system, I observed significant

reductions in performance. That decay raises a puz-

zle. What causes the sensitivity of the parameter tun-

ing with respect to the dual challenges of buffering

stochastic molecular dynamics and entraining to an

external light signal when present? In other words,

what is the geometry of the optimization surface

with respect to the parameters?

Finally, Fig. 2b suggests that the TF logic tends

to create steep sigmoid step changes in response

to changes in TF input concentrations. That pat-

tern matches a common theoretical assumption that

TF logic can be modeled by a piecewise continuous

pattern.7 Further optimization studies may show the

conditions that favor such piecewise continuous out-

puts versus other patterns.

Discussion

Optimize a neural network and fit a TF network

A TF network is a function, f , that inputs n TFs

and outputs N mRNA expression levels. Perhaps one

could take a two-step approach in optimization mod-

eling. First, use an artificial neural network model for

the function, f . Optimize the system’s temporal tra-

jectory with respect to a design challenge. Second, fit

the TF parameters against the optimized neural net-

work function, f .

This two-step approach allows one to use highly

efficient neural network algorithms for the initial op-

timization. Then, in the fitting of the TF parameters

to the optimized neural network function, one can

explore the role of various biochemical constraints

on the TFs and their effects. One may also gain in-

sight into the geometry of optimization surfaces for

TFs versus other types of computational networks.

The current neural network literature is actively

exploring how and why various network architec-

tures succeed or fail in gaining information and im-

proving performance.1,8,21,23 Can we bring TF net-

works and cellular computations for information

processing and control within this broader concep-

tual framework? TF optimization modeling will play

an important role in answering this question.

Large networks, flat fitness surfaces, and disease

Greater dimensionality of computational networks

and more parameters sometimes lead to better opti-

mization. The reasons are not fully understood.21 It

may be that more dimensions and parameters tend

to smooth the optimization surface, perhaps also

flattening the surface in many directions. With re-

spect to TF networks, larger systems may adapt bet-

ter to new challenges.6 In more highly parameter-

ized and flatter optimization surfaces, a particular

TF variation would have less average effect.

In a flatter optimization surface and fitness land-

scape, genetic variants and mutational effects may

tend to be smaller. Smaller fitness effects asso-

ciate with more genetic variation. There are some

hints that, in theory, flatter landscapes and more ge-

netic variation associate with increased heritability

of failure.9,10 Thus, studying TF optimization mod-

els may lead to better understanding of fitness land-

scapes, genetic variation, and disease.
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Methods

I wrote the computer code in the Julia programming

language.3 I used the SciML packages to optimize dif-

ferential equations.22 Efficient optimization depends

on automatic differentiation,2,19 which is built into

the SciML system. The source code for this article

provides the details for all calculations and plotting
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of results.11 The following sections highlight aspects

of the computations.

Number of parameters

For n TFs, there are 4n rate parameters from the dif-

ferential equations in eqn 1. I included the 2n ini-

tial conditions as parameters to be optimized, which

improves the search process. In the activation func-

tion f , the n TFs potentially bind to n different pro-

moters, adding n2 values for each of k and h. There

are n2n values of α, and n(2n − (n + 1)) values

of r . Simplifying, the total number of parameters is

n
(
5+n+ 2n+1

)
. For example, n = 4 associates with

164 parameters.

As n rises above 5, the number of parameters

quickly approaches the approximation n2n+1. For

n = 10, there are approximately 2× 104 parameters,

and for n = 20, there are approximately 4× 107. The

large number of parameters favors study of the two-

step optimization approach suggested in the Discus-

sion.

Biological bounds on parameters

I set bounds on all parameters to be roughly compat-

ible with realistic value ranges.20 When a parameter

concerned the abundance of a molecule, I used num-

ber per cell. I list rates m,δ, s, γ on a per second ba-

sis. Using the notation aeb = a× 10b, the parameter

ranges are

m and δ = (1e–4,1e–2)

s and γ = (1e–3,1e0)

k = (1e2,1e4)

h = (0,5)
α = (0,1)
r = (0,10).

The rate parameters set bounds on the molecular

abundances, with mRNA molecules approximately

bounded on (0,1e2) and TF protein molecules ap-

proximately bounded on (0,1e3).

Optimization of bounded parameters

To keep the parameters bounded when using an

intrinsically unbounded optimization procedure, I

used an algorithmic transformation. The parameter

vector used for automatic differentiation and opti-

mization was unbounded. Before feeding the param-

eters into the differential equations of eqn 1, I trans-

formed the unbounded values into the bounds of

the prior section. For example, to transform an un-

bounded parameter value, p, into the range (0,1), I

used a sigmoid function

σ(p,d) =


p < d k1

(
1+ e−10p)−1

p > 1− d
(
1+ e−10p+k2

)−1

otherwise p

with k1 = d(1+e−10d), and k2 = 10(1−d)+log(d/(1−
d)), for d = 0.01. For the tranformed parameter, θ,

on the range (0,1), we obtain a biologically meaning-

ful range, (a,a + b) by a + bθ, which, for a = 0 or

b≫ a, is approximately (a, b).

Initial parameters and hyperparameters

I chose parameters within their bounded range and

then inverted the above transformation to store

those parameters on the unbounded scale for opti-

mization. The success of optimization depended on

the initial choice of parameters, including the initial

numbers of mRNAs and TFs.

In a typical run, I set the initial parameters and

then multiplied each value by 1+ z for the Gaussian

random variable z, with mean 0 and standard devia-

tion typically in the range (0.1,0.5). Common initial

parameters are m from a uniform random variate on

(1e–4,1e–2), δ = 1.01e–4, s = 1.01e–1, γ = 1.01e–3,

k = 5e2, h = 2, α from a random uniform variate on

(0,1), and r = 1. The computer code shows the exact

details of all values and calculations.

Setting the decay rates δ and γ near their mini-

mum seemed particularly important for successful

optimization. If these values were initially high, the

numbers of mRNAs and TFs often quickly decayed

toward zero, providing little opportunity for discov-

ering good parameter values.

Optimization success depends on many additional

choices, traditionally called hyperparameters. For ex-

ample, I used the Adam algorithm for updating pa-

rameter values given the gradient of performance

with respect to the parameters.15 That learning al-

gorithm has several hyperparameters that determine

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498863
http://creativecommons.org/licenses/by/4.0/


git • master @ biorxiv_1.0-1::662ce85-2022-07-05 (2022-07-05 18:47Z) • safrank

how new parameters are chosen. I typically used a

learning rate of 0.002, and reduced that rate when

attempting to refine a potentially good solution. I

also began the initial optimization search with only

a short period of the temporal target trajectory, and

then slowly lengthened the fitting period.12 The com-

puter code shows the full details for these and other

choices.11

Stochastic fluctuations vary with abundance

I set stochastic fluctuations for a molecule with abun-

dance z as
√
zdW in which W is a standard normal

variate with mean 0 and standard deviation 1, thus√
zW has a standard deviation of

√
z. As z drops,

the ratio of the standard deviation relative to the

mean increases. To prevent fluctuations becoming

too large relative to the abundance, which can cause

negative abundance values in the numerical analysis,

for z ≤ 16, I replaced
√
z with z/4.

Resource availability

All computer code, parameters and output used to

generate the figures are available on Zenodo.11
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

(i)

(j)

Figure 1: Circadian dynamics with stochastic fluctuations and random daylight signal. Caption on next page.
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Figure 1: Stochastic dynamics of TF proteins (a-d) and the mRNAs that produce them (e-h) over six

days. The parameters were obtained from the best result of all optimization runs, in which best means

the closest match of cellular dynamics to a circadian pattern, as defined in the following paragraphs.

The vertical lines in (a,b) show entry into daylight (dotted) and nighttime (solid). The y-axis is log 10(1 + y) for

number of molecules per cell, y . The optimization design goal is for the blue curve in (a), the number of TF 1 molecules,

to match a circadian rhythm. To define the optimization loss value to be minimized, the number of TF 1 molecules,

y , is transformed by a Hill function, ỹ = y2/(10002 + y2), to yield the green curve, which traces values 1 + 4ỹ .

The gold curve traces the target circadian pattern. The optimization loss value to be minimized is the sum of the

squared deviations between the gold and green curves at 50 equally spaced time points per day. The number of TF

2 proteins in (b) is influenced by the internal cellular dynamics and is also increased in response to an external day-

light signal (see text). The availability of the light signal switches on and off randomly. It is initially off. The average

waiting time for a random switch in the presence or absence of the signal is w, measured in days. In this exam-

ple, w = 2. The signal turns on around sunrise of day 3 and stays on for the remaining days shown. Because the

switching is random, daylight can be present or absent for several days in a row, or it can switch on and off several

times in one day. In this particular example, looking at the match between cellular state shown by green curve in (a)

compared with the target gold signal, stochastic molecular perturbations push the cellular rhythm behind the actual

circadian pattern during the first few days. When the daylight signal appears in the middle of day 3, the system en-

trains to the external signal and closely matches the target circadian pattern for the remaining days shown in the plot.

Panels (i,j) illustrate the match of internal cellular state (green) and target circadian pattern (gold) over 20 days. Each

plot shows a sample of 20 stochastic trajectories for cellular state, showing the magnitude and the randomness in the

degree of mismatch between actual and target trajectories. In (i), the average waiting time between random switching of

for the presence or absence of the external light signal is w = 2 days. In (j), the waiting time is w = 1000 days. Because

the signal starts in the off state, in (j) the external signal essentially never comes on. Thus, the green stochastic cellular

dynamics in (j) illustrate the ability of the cell to hold a circadian rhythm over many days in the absence of an external

light signal for entrainment.
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(a)

(b)

Figure 2: Stochastic perturbations to entrainment (a) and TF logic for mRNA expression (b). Caption on next page.
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Figure 2: Panel (a) presents the deviation of cellular dynamics from the circadian target pattern. Each set of two

vertical lines and a circle show the distribution of the deviation between the entry into daytime cellular state

and the actual onset of daytime. The circle denotes the median of 1000 stochastic cellular trajectories. The up-

per line shows the 75th percentile at the bottom and the 95th percentile at the top. The lower line shows the

5th (bottom) and 25th (top) percentiles. Each set of three distributions shows, from left to right, the distribu-

tion of deviations measured at 10, 20, and 30 days. The w labels below denote the average waiting time in days

for random switches between the presence or absence of the external daylight entrainment signal (see caption for

Fig. 1). From left to right, the waiting times vary over 2,4,8,16,1000. Shorter waiting times provide more fre-

quent entrainment signals, reducing the consequences of the intrinsic molecular stochasticity of cellular dynam-

ics. For w1000, the external signal essentially never occurs, thus the set of distributions shows the intrinsic cel-

lular stochasticity and the ability of the cell to maintain a circadian pattern in the absence of an external signal.

(b) TF protein levels control mRNA expression. The four TF proteins form the inputs, and the four expression levels

for the associated mRNAs form the outputs. This panel shows all four TF inputs and the associated mRNA expression

level for protein 1 as the surface levels of each plot. In each plot, the basal axes quantify the levels of TF 1 and TF 2,

labeled as p1 and p2 in the bottom row of plots. The scale is log 10(1+y) for TF protein level y . The height of each plot

shows the relative expression level triggered by the TF inputs, scaled from 0 for complete repression to 1 for maximum

expression. The rows from top to bottom show increasing levels of TF 3, labeled as p3. The columns from left to right

show increasing levels of TF 4, labeled as p4. See the text for interpretation of the plots.
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