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Abstract 30 

The process by which sensory evidence contributes to perceptual choices requires an 31 

understanding of its transformation into decision variables. Here, we address this issue by 32 

evaluating the neural representation of acoustic information in auditory cortex-recipient parietal 33 

cortex while gerbils either performed an auditory discrimination task or while they passively 34 

listened to identical acoustic stimuli. During task performance, decoding performance of 35 

simultaneously recorded parietal neurons reflected psychometric sensitivity. In contrast, decoding 36 

performance during passive listening was significantly reduced. Principal component and 37 

geometric analyses each revealed the emergence of decision-relevant, linearly separable 38 

manifolds, but only during task engagement. Finally, using a clustering analysis, we found 39 

subpopulations of neurons that may reflect the encoding of separate segments during task 40 

performance: stimulus integration and motor preparation or execution. Taken together, our 41 

findings demonstrate how parietal cortex neurons integrate and transform encoded auditory 42 

information to guide sound-driven perceptual decisions.  43 
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Introduction 44 

Integrating sensory information over time is one of the fundamental attributes that is required for 45 

accurate perceptual decisions (Brody and Hanks, 2016; Shadlen and Kiani, 2013). This process 46 

is supported by the transformation of stimulus representations into decision variables. In the case 47 

of auditory stimuli, prior to the formation of decision variables, the central representations of 48 

acoustic cues are gradually reconfigured along the auditory neuraxis. Thus, auditory neurons 49 

become more selective to contextually-relevant acoustic features as one ascends the central 50 

pathway into the auditory cortex (Wang, 2018). Ultimately, individual acoustic components merge 51 

into auditory objects to guide perception (Bizley and Cohen, 2013). Similarly, primary visual cortex 52 

neurons are selective to the stimulus orientation (Hubel and Wiesel, 1962, 1968), whereas higher 53 

cortices are selective for more complex characteristics (Rust and Dicarlo, 2010; DiCarlo et al., 54 

2012; Movshon and Simoncelli, 2014). A hierarchical progression of sensory information 55 

processing is also seen across the somatosensory ascending pathway where receptive fields 56 

grow more complex (Iwamura, 1998). These hierarchically transformed neural signals are 57 

ultimately decoded downstream of sensory cortices for stimulus-dependent decisions (Gold and 58 

Shadlen, 2007; Bizley and Cohen, 2013; Tsunada et al., 2016; Gold and Stocker, 2017; Runyan 59 

et al., 2017; Town et al., 2018). 60 

  61 

Studies in both non-human primates and rodents suggest that the parietal cortex integrates 62 

sensory inputs and transforms them into decision signals (Shadlen and Newsome, 2001; 63 

Freedman and Assad, 2006; Harvey et al., 2012; Runyan et al.,2017; Driscoll et al., 2017). The 64 

parietal cortex receives direct projections from primary or secondary sensory cortices (Hackett et 65 

al., 2014; Wilber et al., 2015), has been causally implicated in the performance of perceptual 66 

decision-making tasks (Hanks et al., 2006; Katz et al., 2016; Licata et al., 2017; Yao et al., 2020), 67 

and its activity typically reflects action selection (Andersen and Cui, 2009; Hwang et al., 2017). 68 

Furthermore, parietal neurons gradually increase their spiking activity over time epochs that scale 69 

with the accumulation of sensory evidence (Roitman and Shadlen, 2002; Gold and Shadlen, 2007; 70 

Kiani et al., 2008; Hanks et al., 2015; Zhou and Freedman, 2019). Thus, while parietal cortex 71 

activity reflects decision variables, the manner in which relevant sensory stimuli are represented 72 

prior to this transformation remains uncertain. 73 

 74 

To dissociate encoding of stimuli from encoding of choice, we recorded neural activity from 75 

parietal cortex while gerbils performed an auditory discrimination task (Yao et al., 2020), and 76 

again during passive listening sessions, using the same acoustic stimuli in the absence of 77 
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behavioral choice. During task performance, decoded parietal cortex population activity correlated 78 

with psychometric sensitivity. Furthermore, neural trajectories from parietal cortex neural 79 

responses revealed the temporal progression of low-dimensional encoding of acoustic 80 

information that transitioned to encoding of behavioral choices. During passive listening sessions, 81 

decoded parietal cortex population activity was poorer than decoding during task performance, 82 

but scaled with stimulus duration. The neural trajectories differentiated between each stimulus 83 

condition, but did not reflect a decision variable. Thus, the parietal cortex could accumulate 84 

auditory evidence for the purpose of forming a decision variable during task performance. Finally, 85 

our clustering analysis based on neuronal response properties revealed subpopulations of 86 

parietal neurons that may reflect separate segments during task performance: stimulus integration 87 

and motor preparation or execution. We propose that the parietal cortex integrates and transforms 88 

bottom-up sensory information into decision variables during task performance. 89 

  90 

Results 91 

We trained gerbils (n = 5) to perform a single-interval, two-alternative forced-choice AM rate 92 

discrimination task (Yao et al., 2020). Gerbils were trained to self-initiate each trial by placing their 93 

nose in a cylindrical port for a minimum of 100 msec. On each trial, a 4- or 10-Hz AM signal was 94 

presented from an overhead speaker and animals approached the left or right food tray on the 95 

opposite side of the test cage. A food pellet reward was delivered when animals approached the 96 

left food tray following a 4-Hz AM signal or the right food tray following a 10-Hz AM signal (Figure 97 

1A). To measure the minimum time necessary to accurately perform the task, AM stimulus 98 

duration was varied across trials (100-2000 msec), and performance was quantified as the 99 

proportion of correct trials. Figure 1B shows example psychometric functions from two different 100 

animals. In both examples, task performance improved with increasing stimulus duration and 101 

reached an optimum at ≥800 msec. Figure S1 displays psychometric functions for all 5 gerbils (n 102 

= 44 sessions). Minimum integration time was defined as the shortest stimulus duration at which 103 

animals discriminated between the two AM signals at a performance level of 0.76, which is 104 

equivalent to the signal detection metric, d’ of 1 (Hacker and Ratcliff, 1979). The distribution of 105 

minimum integration times across all sessions is shown at the bottom of Figure S1. There was no 106 

significant difference between minimum integration times for the 4- and 10-Hz AM signals 107 

(Wilcoxon signed-rank test, p = 0.67; 4-Hz minimum integration time median: 391 msec; 10-Hz 108 

minimum integration time median: 402 msec), demonstrating animals were not biased to either 109 

stimuli. 110 
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  111 

To assess parietal cortex neuron responses during task performance, we implanted trained 112 

animals with 64 channel electrode arrays, and obtained wireless recordings during auditory 113 

discrimination task performance. These recordings were compared to responses from the same 114 

neurons while animals listened passively to the identical acoustic stimuli (Figure 1C). Recorded 115 

physiological data (Figure 1D) were preprocessed to extract candidate waveforms for offline spike 116 

sorting procedures. One anatomically confirmed electrode track within the parietal cortex is shown 117 

in Figure 1E. We recorded a total of 297 units (22.9%, 68/297 classified as single-units) during 118 

task performance sessions and 284 units during passive listening sessions (22.9%, 65/284 119 

classified as single-units). Figure S2 shows example post-stimulus time histograms (PSTHs) for 120 

one unit during one task performance and one passive listening session. The responses of all 121 

recorded units are shown in Figure 1F and G. Although there was a diversity of PSTH patterns 122 

during task performance, a fraction of parietal units displayed an initial decline in spike rate, 123 

followed by a gradual increase during the AM target stimuli. This temporal pattern of neural 124 

response was similar to that observed by parietal neurons during visual decision-making that also 125 

displayed ramping activity with increasing sensory evidence (Huk and Shadlen, 2005; Kiani et al., 126 

2008; Okazawa et al., 2021). In contrast, a differential firing rate across time was not evident 127 

during passive listening sessions. 128 

  129 

To determine whether parietal cortex population activity was sufficient to account for sound-driven 130 

task performance, we constructed linear classifiers using support vector machines (SVM), as 131 

described in Yao and Sanes (2018; see Methods). Briefly, AM discrimination was quantified 132 

across our parietal cortex population with a linear population readout scheme. The population 133 

linear classifiers were trained to decode responses from a proportion of trials to each individual 134 

AM rate signal (4- versus 10-Hz) across each stimulus duration (Figure 2A). Cross-validated 135 

classification performance was determined as the proportion of correctly classified held-out trials. 136 

This population decoder analysis was applied to our dataset in two ways. First, decoder 137 

performance was assessed from simultaneously recorded single- and multi-units within each 138 

behavioral session (i.e., “within-session” analysis; Figure 2B). Second, we assessed decoder 139 

performance for all units pooled across all behavioral sessions (Figure 2F). 140 

  141 

For the within-session analysis, we implemented a standard criterion to only assess sessions with 142 

a minimum of 5 simultaneously recorded single- and/or multi-units (n = 28/44 sessions). Figure 143 

2B shows example within-session population decoder results from two animals during task 144 
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performance. In both cases, decoding performance increases with longer stimulus durations, in 145 

line with psychometric performance. Decoding performance and corresponding behavioral 146 

performance for each stimulus type (4- and 10-Hz AM rate) across all sessions are shown in 147 

Figure 3SA. Neural minimum integration times were calculated as the stimulus duration 148 

corresponding to decoding performance of 0.76. The distributions of neural minimum integration 149 

times are plotted in Figure 3SB. We found a significant positive correlation between behavior 150 

integration times and corresponding decoder integration times (Figure 2C; r = 0.49, p = 0.02), and 151 

similar trends were observed for both trial types (Figure 3SC; 4-Hz AM: r = 0.54, p = 0.01; 10-Hz 152 

AM: r = 0.44, p = 0.05). This suggests parietal cortex activity reflects auditory-based decisions. 153 

  154 

We next asked whether the time course of decoder performance aligned with behavioral 155 

integration times. Figure 2D displays average ± SEM decoding performance as a function of time 156 

for correct left versus right trials across all 31 recorded sessions. At trial onset, decoding 157 

performance was near chance, and increased to a peak value of ~0.80 (average ± SEM, Left: 158 

0.81 ± 0.03; Right: 0.80 ± 0.03). The maximum decoding performance occurred at ~350 msec of 159 

AM signal duration which is nearly identical to the average behavioral integration time (378 msec; 160 

Figure S1). To illustrate choice-related activity across trial durations, we also plotted decoding 161 

performance as a function of time relative to response latency (Figure 3SD). Decoding 162 

performance gradually begins to increase ~1000 msec prior to response latency and decoding 163 

performance peaks ~600 msec prior to response latency. 164 

  165 

Although the striking alignment of neural and behavioral performance suggests that auditory 166 

information is being integrated within the parietal cortex, it does not provide a direct measure of 167 

stimulus coding. Therefore, we recorded from the same parietal neurons studied during task 168 

performance while animals listened passively to the identical 4 and 10 Hz AM stimuli (Figures 1G 169 

and S2B). Within-session population decoder results for two passive listening sessions are shown 170 

in Figure 2E. Decoding performance across all sessions for each stimulus type are shown in 171 

Figure S3E. The distributions of neural minimum integration times during passive listening 172 

sessions are plotted in Figure S3F. Overall, only a fraction of passive listening sessions yielded 173 

minimum integration times (n = 17/29; maximum decoding performance did not reach 0.76 for the 174 

remaining 12 sessions). For these passive listening sessions, decoding performance scaled with 175 

increasing stimulus duration (Figure 2E and S3E), suggesting that the parietal cortex could 176 

accumulate this sensory evidence for the purpose of forming a decision variable. 177 

 178 
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To directly compare decoder performance during task performance and passive listening, we 179 

examined the 19 instances where both types of session fit the criterion of 5 simultaneously 180 

recorded units. In the majority of those instances (13/19 sessions), minimum integration time was 181 

better or could only be calculated during task performance (Figure S3G). In 6 cases, integration 182 

time diminished or could not be calculated during task performance (Figure S3H). This suggests 183 

that the parietal cortex is more strongly engaged when animals are required to integrate sensory 184 

information for decision-making. 185 

 186 

We further examined decoding performance as a function of the number of total recorded units 187 

for task performance and passive listening sessions (Figure 2F). A subsampling procedure was 188 

applied to randomly select a subpopulation of units (25-297 for task performance and 25-284 for 189 

passive listening sessions; increasing increments of 25) across 500 iterations. During each 190 

iteration of the resampling procedure, a new subpopulation of units was randomly selected 191 

(without replacement) prior to the decoding readout procedure. For each stimulus duration, 192 

decoding performance for both task performance and passive listening session types increased 193 

with the number of units, demonstrating evidence for population-level encoding.  194 

 195 

If the parietal cortex does compute a decision variable, then its population activity should gradually 196 

evolve into two independent patterns. To test this idea, we assessed the dynamics of parietal 197 

cortex population activity by applying principal components analysis to the trial averaged neural 198 

responses (Figure 3A). This analysis was conducted on two of the five recorded animals as they 199 

both provided the large majority of recorded units (Gerbil 1 n = 115/297 units; Gerbil 2 n = 165/297 200 

units). Figure 3B depicts population activity in a three-dimensional (3D) principal component 201 

space that originated from PSTHs of recorded units from two animals during task performance 202 

(top 3 principal components, explained variance: Gerbil 1 = 79.7%; Gerbil 2 = 88.8%). The neural 203 

trajectories in this state space correspond to the population responses across different times for 204 

each AM rate and the stimulus durations. At stimulus onset, neural trajectories started at a similar 205 

position, but began to diverge toward the relevant decision subspace (4 Hz versus 10 Hz) after 206 

~300 msec of acoustic stimulation. This divergence toward the relevant decision subspace over 207 

time is further demonstrated when we measured the euclidean distance between each pair of 208 

trajectories in the space spanned by the top three principal components (Figure 3C). Over time, 209 

the distance between the trajectories that correspond to the stimulus durations of opposing AM 210 

rates (4 Hz versus 10 Hz) dramatically increased (Figure 3C, upper right and lower left quadrants 211 

of each matrix; outlined in red), while the average distance between the trajectories that 212 
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correspond to the stimulus durations within each AM rate remained low (Figure 3C, upper left and 213 

lower right quadrants of each matrix). In other words, the resulting distance matrix is block 214 

diagonal showing that trajectories corresponding to the same choice remained closer to each 215 

other than to the trajectories corresponding to the opposite choice – thereby indicating the 216 

existence of a choice manifold. We define “manifold” as the collection of population neural 217 

responses that encode a stimulus. These results are consistent with the integration of sensory 218 

evidence over time and the representation of a decision variable (DV) by the neural population. 219 

  220 

In principle, decision variables should not be computed when animals are disengaged from a 221 

sensory task. To test this idea, we performed the same PCA analysis to trial averaged neural 222 

responses recorded during passive listening sessions. Figure 4A depicts population activity in 3D 223 

principal component space that originated from PSTHs of recorded units from two animals during 224 

passive listening (top 3 principal components, explained variance: Gerbil 1 = 82.3%; Gerbil 2 = 225 

85.2%). In contrast to the neural trajectories of parietal cortex neural responses during task 226 

performance, the neural trajectories elicited during passive listening did not diverge according to 227 

the two separate manifolds corresponding to AM rates (Figure 3C versus Figure 4B, outlined red 228 

squares). This is reflected in the difference in decoding performance between the two behavioral 229 

conditions (Figure 2B, E, and F). Instead, the neural trajectories elicited by each combination of 230 

AM rate and stimulus duration eventually occupied separate positions in the principal component 231 

space. This is further demonstrated by the differences in distances between each stimulus 232 

condition (Figure 4B). Combined with the finding that several decoding sessions yielded an 233 

integration time (n = 17/29; Figure S3F), this suggests that, while acoustic information is encoded 234 

in the parietal cortex during passive listening, decision variables are not computed.  235 

 236 

Previous studies have hypothesized that the brain transforms sensory information into linearly 237 

separable representations (Cohen at al., 2020; Chung and Abbott, 2021). This “untangling” of 238 

representations has been suggested to be a more prominent feature of higher-order brain areas 239 

(Cohen at al., 2020; DiCarlo and Cox, 2007). Thus, the segregation of neural trajectories from 240 

parietal cortex activity into two separate subspaces during task performance may represent an 241 

encoding strategy that enables linear readout of decision variables (Figure 5A). To test whether 242 

the neural representations of the AM rate stimuli in principal component space are consistent with 243 

this prediction, we employed three measures of “untangling”: capacity, manifold radius and 244 

manifold dimensionality (Chung et al., 2018). These three measures define the separability of 245 

objects based on their neural manifolds. Capacity measures how many different object classes 246 
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can be linearly separated with high probability. Manifold radius and dimensionality quantify the 247 

size of the manifold; essentially, the variance of the points that belong to the manifold as well as 248 

its spread along different axes. To compute these measures, we first binned the spiking activity 249 

into 80 msec bins and then split the trial activity into 2 conditions according to the AM rates, 4- 250 

and 10-Hz, combining across stimulus durations as well as all of the animals. Consistent with the 251 

idea of untangling, we found that there was an increase in capacity (Figure 5B) and a decrease 252 

in manifold radius and dimensionality after the onset of the AM stimulus (Figure 5C and D). Finally, 253 

we computed the norm of the manifold center over time, which measures the distance of the 254 

center of the manifold to the origin, to understand if the object manifolds corresponding to each 255 

stimulus frequency move over time. This measure increased (Figure 5E), suggesting that the 4- 256 

and 10-Hz manifolds moved away from their starting position over time. These trends continue 257 

until about 600 msec into the AM stimulus (1000 msec of absolute trial time) at which point all 258 

four measures plateau. Importantly, the time course of this change in neural representation is 259 

consistent with the time window over which the animal has to accumulate evidence and make its 260 

decision. Together, our findings suggest that the transformation of sensory evidence into decision 261 

variables in the parietal cortex is accompanied by changes in the neural representation that 262 

supports the separability of the stimulus manifolds. 263 

 264 

Up until this point, we have assumed that the recorded population was homogeneous. Therefore, 265 

we asked whether there were distinct functional classes and, if so, whether they differentially 266 

represented the decision variable. To test this, we performed clustering on PSTHs (Raposo  et 267 

al., 2014; Namboodiri et al., 2019; Hocker et al., 2021). Specifically, for each neuron we averaged 268 

over trials with the same AM stimulus rate (4- or 10-Hz) to obtain two conditional PSTHs spanning 269 

the 2 seconds after trial initiation. We then concatenated these 2 PSTHs to create a high-270 

dimensional feature space that represents the unique activity of each neuron across the two 271 

stimulus conditions. Analysis of the angles between these data points in feature space indicated 272 

that there were clusters in this dataset (PAIRS test, Raposo et al., 2014), and further analysis 273 

using the gap statistic revealed 3 subpopulations of neurons in the population response (Figure 274 

6A-D). Cluster 1, the largest cluster in the population, demonstrated activity at the onset of 275 

unmodulated noise (i.e., the 400 ms before the AM stimulus), and persisted through the trial 276 

(Figure 6A, B). Clusters 2 and 3 displayed decreased activity at the beginning of a trial, with a 277 

ramping of activity peaking at ~1s, which is approximately the time that animals had already made 278 

their initial movement towards the reward ports. Clusters 1 and 3 were well-represented, though 279 

Cluster 2 was predominantly represented in only one gerbil. We confirmed that this clustering 280 
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result is robust to different forms of pre-processing of the responses, such as downsampling to 281 

coarse time bins, or smoothing over multiple time bins (Figure S4A-D). Clustering on the passive 282 

condition reveals the presence of 2 clusters, though the population predominantly belonged to 283 

only a  single cluster (Figure S5). 284 

 285 

To evaluate the computational roles of each neural cluster and determine whether specific 286 

subpopulations of neurons reflect the integration of sensory evidence and the formation of 287 

decision variables, we performed principal component analysis on each cluster individually. 288 

Specifically, the principal component analysis was fit to trial averaged neural responses across 289 

time for the 3 clusters separately for 2 of the 5 gerbils. The neural trajectories in this state space 290 

correspond to the population responses for each cluster across different times for separate AM 291 

rates and stimulus durations. We show the neural trajectories for each cluster in the space 292 

spanned by the top 3 principal components of each respective cluster (Figure 6E-G). The neural 293 

trajectories across all clusters show a separation between the two AM rates, but diverge at 294 

separate time points. This suggests that each cluster may encode different task-relevant 295 

information. For example, the neural trajectories in the principal component space of Clusters 1 296 

(Figure 6E) and 2 (Figure 6G) display strong divergence between the corresponding AM rates 297 

much sooner than the neural trajectories of Cluster 3 (Figure 6F). Specifically, the divergence of 298 

neural trajectories for Clusters 1 and 2 occurs within 600 msec after stimulus onset, which 299 

corresponds to the behaviorally-relevant integration times (Figure S1). This suggests that Clusters 300 

1 and 2 may reflect the transformed sensory signals received from the auditory cortex during task 301 

performance. The neural trajectories for Cluster 3 diverge later than ~600 msec after stimulus 302 

onset (>~1000 msec total trial duration), suggesting that Cluster 3 may reflect the motor 303 

preparatory signal that is executed during the task. Overall, our results demonstrate distinct 304 

subpopulations of parietal cortex neurons encode separate segments of task performance: 305 

stimulus integration and motor preparation or execution. 306 

 307 

Discussion 308 

Our central finding is that, during task performance, parietal cortex neurons integrate and 309 

transform behaviorally-relevant acoustic information to drive sound-driven perceptual choices. 310 

Decoded parietal cortex activity reflected psychometric sensitivity during task performance and 311 

aligned with behavioral measures of integration time. In contrast, decoded neural activity from 312 

passive listening sessions was dramatically reduced (Figure 2F). To analyze whether parietal 313 

cortex activity could support sensory evidence accumulation, we applied principal component and 314 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.05.498869doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498869


geometric analyses, and found the emergence of decision-relevant, linearly separable manifolds 315 

that reflect behavioral integration time during task performance. Taken together with our previous 316 

finding that auditory cortex projections to the parietal cortex play a causal role in producing 317 

behavioral integration time (Yao et al., 2020), we propose that the parietal cortex transforms 318 

auditory afferent input into decision variables. 319 

 320 

Previous work shows that parietal cortex neurons are strongly modulated by the behavioral 321 

relevance and context of acoustic stimuli (Stricanne et al., 1996; Nakamura, 1999; Grunewald et 322 

al., 1999; Linden et al., 1999). Furthermore, functional interactions of simultaneously recorded 323 

parietal neurons are greater than that seen among auditory cortex neurons and also extend to 324 

longer time scales (Runyan et al., 2017), demonstrating the transition to somewhat more 325 

behaviorally-relevant timescales for processing sensory information into stimulus-driven 326 

decisions. These functional properties are clearly associated with anatomical connectivity 327 

between primary or secondary auditory cortices to parietal cortex, which are strongly apparent 328 

across many species (Pandya and Kuypers, 1969; Reep et al., 1994; Rauschecker and Scott, 329 

2009; Wilber, et al., 2014; Song, et al., 2017; Yao et al., 2020). 330 

 331 

Our current results complement these findings by demonstrating how auditory encoded 332 

information is transformed from an uninformative representation during passive listening, to 333 

meaningful integration times that reflect behavioral performance. During passive listening, 334 

decoded activity from simultaneously recorded parietal cortex neurons is poorer than decoded 335 

activity during task performance, but scales with stimulus duration (Figure 2E). Thus, evidence 336 

for encoded sensory inputs within parietal cortex derives from the scaling of decoded parietal 337 

cortex activity with the amount of presented stimulus information. Our principal component 338 

analyses further demonstrate an even greater difference of parietal cortex activity between 339 

behavioral conditions. Whereas encoded auditory information from parietal neurons occupied 340 

separate positions in subspace during passive listening (Figure 4A, B), we found an emergence 341 

of decision-relevant, linearly separable manifolds on a behaviorally-relevant timescale during task 342 

performance (Figure 3B, C). This is specifically demonstrated by a clear separation of manifolds 343 

that correspond to the two AM rates (4- and 10- Hz), which is also reflected by two separate 344 

decision outcomes (e.g., approach the left or right food tray). The transition of sensory encoding 345 

between passive and task-engaged contexts suggests that sensory information transitions into a 346 

decision-making context and reflects the learned association between sensory categorization and 347 

motor execution. This is in contrast to categorical sensory representations (Banno et al., 2020), 348 
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which would be true if parietal cortex neurons represented stimulus categories during passive 349 

listening conditions. It is worth noting that the recordings for the passive condition were collected 350 

from the same highly trained animals, so the differences in representation cannot be explained 351 

by the lack of association between stimulus and choice. 352 

 353 

Our principal component and geometric analyses demonstrated that decision variables emerge 354 

within parietal cortex activity during task performance. We predict that the role of the parietal 355 

cortex is to transform stimulus information into a representation that can be easily decoded into 356 

action. While the neural manifolds that correspond to 4- and 10-Hz AM rates increasingly diverge 357 

during task performance (Figure 3B), these representations become more “untangled,” or linearly 358 

separable, over behaviorally-relevant timescales (Figure 5A-E). This is computationally desirable 359 

because it suggests that the parietal cortex can read out auditory information using the simplest 360 

possible decoder. This result is consistent with predictions from artificial neural network models 361 

for auditory processing (Stephenson at al., 2019) and is also consistent with the previous 362 

findings that individual neurons show mixed selectivity for task variables (Okazawa et al., 363 

2021) and may change activity patterns without affecting the overall ability of the population 364 

to encode the relevant task information (Driscoll et al., 2017). Finally, our result shows that 365 

this untangling of representations occurs not only by compression in dimensionality and size 366 

of the stimulus manifolds, but also by the stimulus manifolds moving away from each other. 367 

 368 

Clustering on the temporal responses of parietal cortex neurons during task performance revealed 369 

3 subpopulations of neurons, with two clusters being well-represented. One sub-population 370 

(“Cluster 1”) demonstrated the encoding of AM stimulus information, while the other dominant 371 

sub-population (“Cluster 3”) displayed a gradual increase in activity that peaked ~1 sec of total 372 

trial duration (~600 msec after stimulus onset), roughly around the time animals initiated their 373 

movement for reward retrieval. This late-in-trial segment is likely related to preparatory movement 374 

activity, and is distinctly separate from neurons that integrate stimulus information. A third cluster 375 

(“Cluster 2”) seemed to share a similar phenotype with Cluster 1 since its corresponding neural 376 

trajectories diverged relatively around the same time. However, when comparing PSTHs, Cluster 377 

2 neuronal responses were more modulated for ipsilateral (left; 4-Hz) conditions, relative to 378 

Cluster 1. It is important to note that this cluster was only present in 1 gerbil. It is possible that 379 

neurons from Cluster 2 may belong to Cluster 1, or alternatively, observing ipsilateral encoding of 380 

sensory evidence integration is simply a rare type of response property in the parietal cortex. 381 

 382 
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Previous studies did not find separable clusters when examining the mixed selectivity of parietal 383 

cortex activity (Raposo et al., 2014). In that work, PAIRS analysis was performed on time-384 

averaged activity across different sensory stimuli (auditory and visual), and found that responses 385 

were not separable into distinct subpopulations. Our results in parietal cortex responses instead 386 

used time-dependent response profiles that were restricted to a single stimulus modality to 387 

analyze potential clustering. We believe that these two results do not conflict, and that taken 388 

together they highlight how clustering is a flexible tool to characterize a variety of encoding 389 

properties across subpopulations of neurons.	 390 

  391 

While our study focused on the sensory input to the parietal cortex, it did not address the neural 392 

mechanism that causes the transformation of sensory representations into decision variables. 393 

This process is thought to require descending input from the prelimbic region of the frontal cortex 394 

(Wilber et al., 2015; Granon and Poucet, 2000). The cingulate cortex may provide one source of 395 

task-relevant information to the parietal cortex as neurons can encode context-dependent signals, 396 

which can be read out by locus coeruleus activity (Joshi and Gold, 2022). This provides a potential 397 

neural circuit for appropriately modulating parietal cortex activity during task performance where 398 

represented encoded sensory information is integrated, grouped, and transformed into decision 399 

variables that can be projected to motor circuits (Harvey et al., 2012). 400 

 401 

Our results do not indicate whether the formation of sensory-driven decisions also occurs in pre-402 

motor circuits, such as those that strictly involve action planning, including striatal circuits (Cox 403 

and Witten, 2019). Furthermore, our results do not demonstrate whether the auditory temporal 404 

integration signals observed are exclusively computed within parietal cortex, or reflect a 405 

computation performed elsewhere in the brain that are contingent on motor execution, such as 406 

brainstem networks (Horwitz and Newsome, 1999; 2001; Horwitz et al., 2004; Felsen and Mainen, 407 

2008). Future work will determine whether the transformation of sensory integrated signals into 408 

task-engaged choice-specific variables occurs within separate neural circuits and/or is dependent 409 

on the execution of motor actions, such as the movements associated to report the decisions 410 

(Freedman and Assad, 2011).  411 

 412 

In summary, the representation of behaviorally-relevant auditory information occurs in the parietal 413 

cortex even when animals are passively listening to the stimuli. However, it is only during task 414 

engagement that this information is transformed to a decision variable that correlates with 415 

psychometric performance. We demonstrated this with principal component and geometric 416 
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analyses, each of which show that sensory evidence is accumulated across a time frame that 417 

matches behavioral integration time (Yao et al., 2020). Thus, our findings provide a plausible 418 

argument for the parietal cortex’s role in integrating and transforming encoded auditory 419 

information into decision variables to guide sound-driven behavior.  420 

 421 

 422 

Materials and Methods 423 

Adult Mongolian gerbils (Meriones unguiculatus, n = 5, 3 males) were weaned from commercially 424 

obtained breeding pairs (Charles River). Animals were housed on a 12 h light/12 h dark cycle and 425 

provided with ad libitum food and water unless otherwise noted. All procedures were approved 426 

by the Institutional Animal Care and Use Committee at New York University. 427 

  428 

Behavior 429 

Behavioral apparatus 430 

Adult gerbils were placed in a plastic test cage (0.4 x 0.4 x 0.4 m) in a sound-attenuating booth 431 

(GretchKen Industries, Inc; internal dimensions: 1.5 x 1.5 x 2.2 m) and observed via a closed-432 

circuit monitor. Acoustic stimuli were delivered from a calibrated free-field tweeter (DX25TG0504; 433 

Vifa) positioned 1 m above the test cage. Sound calibration measurements were made with a 1/4-434 

inch free-field condenser recording microphone (Brüel & Kjaer) placed in the center of the cage. 435 

Stimulus, food reward delivery, and behavioral data acquisition were controlled by a personal 436 

computer through custom MATLAB scripts (written by Dr. Daniel Stolzberg: 437 

https://github.com/dstolz/epsych) and an RZ6 multifunction processor (Tucker-Davis 438 

Technologies). 439 

Psychophysical training and testing was implemented with a positive reinforcement appetitive 440 

one-interval alternative forced-choice (AFC) procedure, as described previously (Yao et al., 441 

2020). Briefly, gerbils were placed on controlled food access and trained to discriminate between 442 

amplitude modulated (AM) frozen broadband noise (25-dB roll-off at 3.5 kHz and 20 kHz) at 4- 443 

versus 10-Hz at 100% modulation depth. Each AM stimulus were presented at a sound pressure 444 

level (SPL) of 66 dB and had a 200 ms onset ramp, followed by an unmodulated period of 200 445 

ms that transitioned to an AM signal for a set duration, followed by an unmodulated period. Gerbils 446 

self-initiated trials by placing their nose in a cylindrical port (nose poke) for a minimum of 100 ms 447 

that interrupted an infrared beam and triggered an acoustic stimulus. During acoustic stimulation, 448 

a gerbil approaches the left or right food tray and the infrared beam at the correct food tray is 449 

broken, a pellet dispenser (Med Associates) delivers one reward dustless precision pellet (20 mg; 450 
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Bio-Serv). Gerbils were first trained to distinguish between 4- versus 10-Hz AM with a stimulus 451 

duration of 2,000 ms (proportion of trials correct > 0.85) across two sessions, and then were 452 

presented with shorter durations (e.g., 1,000, 800, 600, 300, and 100 ms) across subsequent 453 

sessions. For each trial, the probability of a 4- or 10-Hz AM stimulus presentation is 50% and its 454 

duration is a random draw. Figure 1A displays the schematic of the task. 455 

During sessions to assess perceptual sensitivity, six signal durations for each of the 4- and 10-456 

Hz AM stimuli (100, 300, 600, 800, 1,000, and 2,000 ms) are presented. Integration time is 457 

assessed by examining how performance scales with stimulus duration. Proportions of correct 458 

trials across stimulus durations for each AM rate are fitted with psychometric functions using the 459 

open-source package psignifit 4 for MATLAB (Schutt et al., 2016). Psychometric functions of the 460 

proportion of correct trials are plotted as a function of stimulus duration. Minimum integration time 461 

was defined as the stimulus duration at which proportion of correct trials = 0.76, which is 462 

equivalent to the signal detection metric, d’, equal to 1 (Hacker and Ratcliff, 1979). 463 

  464 

Electrophysiology 465 

Extracellular single- and multiunit activity was recorded from the left medial parietal cortex. After 466 

gerbils were trained in the behavioral task, a silicon probe with 64 recording sites was implanted 467 

into the left medial parietal cortex (Neuronexus, model Buszaki64_5x12-H64LP_30mm). We 468 

targeted the medial portion of the parietal cortex because of its robust auditory cortex-recipient 469 

anterograde labeling (Yao et al., 2020). The probe was attached to a manual microdrive 470 

(Neuronexus, dDrive-XL) that allowed the electrode to be advanced and retracted. Probes were 471 

inserted at a 0- to 10-degree angle on a mediolateral axis. Typically, we aimed the rostral-most 472 

shanks of the array to be positioned at 3.3-3.6 mm rostral and 2.5 mm lateral to lambda. The 473 

surgical implantation procedure was performed under isoflurane anesthesia. Animals recovered 474 

for at least 1 week before being placed on controlled food access for further psychometric testing. 475 

At the termination of each experiment, animals were deeply anesthetized with sodium 476 

pentobarbital (150 mg/kg) and perfused with phosphate-buffered saline and 4% 477 

paraformaldehyde. Brains were extracted, post-fixed, sectioned on a vibratome (Leica), and 478 

stained for Nissl. Brightfield images were inspected under an upright microscope (Revolve Echo) 479 

and compared to a gerbil brain atlas (Radtke-Schuller et al., 2016) to verify targeted medial 480 

parietal cortex. 481 

Physiological data were acquired telemetrically from freely-moving animals with a wireless 482 

headstage and received (W64, Triangle Biosystems). Analog signals were preamplified and 483 

digitized at a 24.414 kHz sampling rate (PZ5, Tucker-Davis Technologies) and fed via fiber optic 484 
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link to the RZ5 base station (Tucker-Davis Technologies) and PC for storage and post-processing. 485 

Offline, electrophysiological signals underwent a common average referencing procedure 486 

(Ludwig et al., 2009) and bandpass filtered at 300-5000 Hz. Significant noisy portions of the signal 487 

that were induced by extreme head movements were removed by an artifact rejection procedure. 488 

An open source spike package (KiloSort; Pachitariu et al., 2016) was used to extract and cluster 489 

spike waveforms. Manual inspection of spike waveforms was conducted in Phy (Rossant et al., 490 

2016). Well-isolated single units displayed clear separation in principal component space and 491 

possessed few refractory period violations (<10%). Units that did not meet these criteria were 492 

classified as multi-units. All sorted spiking data were analyzed with custom MATLAB scripts. 493 

Recordings were made both during task performance, and during passively listening sessions 494 

that occurred after task performance. All passively listening sessions were recorded immediately 495 

after each recorded task performance session with the nose poke and food trays removed from 496 

the test cage. 497 

  498 

Neural analyses 499 

Population coding 500 

We used a previously employed linear classifier readout procedure (Yao and Sanes, 2018) to 501 

assess AM rate discrimination across a population of parietal cortex neurons. Specifically, a linear 502 

classifier was trained to decode responses from a proportion of trials to each stimulus condition 503 

(e.g., 4 versus 10 Hz; Figure 2A). Spike count responses from all recorded neurons were counted 504 

within 100 msec time windows across the entire trial durations and formed the population 505 

“response vector”. Since the number of trials were typically unequal between stimulus conditions, 506 

we randomly subsampled (without replacement) a proportion of trials (i.e., 15 trials) from each 507 

unit. A support vector machine (SVM) procedure was used to fit a linear hyperplane to 80% of the 508 

data set (“training set”). Cross-validated classification performance was assessed on the 509 

remaining 20% across 250 iterations with a new randomly drawn sampled train and test sets for 510 

each iteration. Performance metrics were computed to determine the proportion of correctly 511 

classified and misclassified trials using an expanding time window (100 msec increments) across 512 

the entire trial duration. We restrained the analysis time window to correspond to each stimulus 513 

duration up to 600 msec (e.g., maximum time window did not exceed 300 msec for stimulus 514 

duration of 300 msec). A maximum time window of 600 msec was utilized for stimulus durations 515 

> 600 msec to control for movement-related signals that may arise when animals approach their 516 
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selected food tray. This was particularly the case during task performance sessions. The SVM 517 

procedure was implemented in MATLAB using the “fitcsvm” and “predict” functions with the 518 

“KernelFunction” set to “linear”. This analysis was conducted for task sessions with ≥ 5 519 

simultaneously recorded units and performance on easiest trial conditions (e.g., 2000 msec AM 520 

duration) ≥ 85% (n = 27/44 total sessions; median simultaneously recorded units = 6; interquartile 521 

range = 6.25). 522 

  523 

Population response manifolds 524 

Principal component analysis (PCA) was performed separately for both task performance and 525 

passive listening session types for each animal using trial averaged PSTHs. Trial averages were 526 

computed by binning the spiking data into 10 msec bins and using a rolling mean with a 50 msec 527 

window for each of 12 conditions (2 stimulus AM rates X 6 Durations) with each unit contributing 528 

to the PSTH for each condition. The PSTHs focused on the period of decision formation and 529 

spanned 400-1400 ms after stimulus onset (0-1000 msec after AM onset). For each unit, we 530 

concatenated the PSTH for each condition into a matrix of size N x CT where C is the number of 531 

conditions (2 AM rates x 6 durations), T is the number of time points (10 msec resolution) and N 532 

is the number of units. Each row of the matrix was then z-scored since PCA is known to be 533 

sensitive to overly active units. For the task performance condition, only trials where the animal 534 

made the correct choice were used in the analysis. Trials with only one spike in the time window 535 

of interest were left out from analysis. Units that had no data for one or more of the conditions 536 

were left out from the analysis. Finally, the analysis included all units recorded either 537 

simultaneously or separately. We confirmed that the same qualitative results (the presence of 538 

decision subspace during task performance and lack of one during passive listening) were 539 

obtained using simultaneously recorded units only. 540 

  541 

Calculating distance between neural trajectories 542 

To quantify the distance between neural trajectories (Figure 3C and 4B), we performed a 543 

bootstrapping procedure where the trial average was calculated over a random subsample of 10 544 

trials per condition and this was done 1000 times to create 1000 new trial averages per condition 545 

per unit. These conditions (1000 x 12 conditions) were concatenated into a matrix (N x 1000 CT). 546 

PCA was then performed on this matrix after z-scoring each row. This bootstrap procedure 547 

created a population of trajectories for each condition that captures some information about how 548 

much these trajectories may vary. It is worth noting that PCA assumes that the noise in the 549 
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neurons is uncorrelated and since we are using pseudo-populations, it is possible we are 550 

underestimating the correlations between neurons. Noise correlations between neurons can 551 

either increase or reduce the separation of these trajectories, which may affect decoding accuracy 552 

(Averbeck et al. 2006). To calculate the distance between every pair of  trial averaged trajectories 553 

for each time point, we computed the euclidean norm between the same time point for every pair 554 

of averaged trajectories in the space defined by the top 3 principal components.   555 

 556 

Geometric Analysis 557 

To understand how the representation of stimulus information in the parietal cortex changes over 558 

the course of decision-making, we use the mean-field theoretic manifold analysis technique 559 

(Chung et al., 2018; Cohen et al., 2020;  Stephenson et al. 2019) to study the geometric properties 560 

of the stimulus manifolds, including their manifold capacity, radius and dimensionality. To prepare 561 

the data, we counted the number of spikes per neuron in each 80ms time bin for each correct trial 562 

for the first 1200ms of each trial.  Next, we define 2 object manifolds, corresponding to the 4- and 563 

10-Hz stimulus. We subsampled 50 trials, combining across stimulus durations and animals, for 564 

each object manifold. Together, this formed a matrix of size (297 neurons x 2 object manifolds x 565 

50 trials x 14 time points). The neural activations for each stimulus frequency over the 50 trials 566 

defines the manifold for that stimulus frequency at each time point. The mean-field theoretic 567 

manifold analysis technique then uses this set of activations to compute geometric properties of 568 

each object manifold and to evaluate their linear separability. Calculation of each measure was 569 

performed using the Replica Mean Field Theory Analysis python library  (Stephenson et al. 2019) 570 

but we briefly describe the methodology below.  571 

 572 

Manifold capacity refers to the maximum number of object manifolds that can be linearly 573 

separable given a fixed number of features. If we consider P object manifolds and N neurons, the 574 

manifold capacity is defined as 𝛼 = 𝑃/𝑁. Intuitively, when 𝛼 is small, then there are few manifolds 575 

in a high dimensional space thus making it very easy to find a separating hyperplane for most of 576 

the random dichotomy of labels. Alternatively, when 𝛼 is large, there are many object manifolds 577 

in a low dimensional space and therefore, it becomes less likely that any dichotomy of manifolds 578 

can be linearly separable. The critical manifold capacity, as computed in our analysis, refers to 579 

the maximum number of object manifolds P that can be linearly separated given N neurons.  This 580 

quantity can be estimated from the statistics of anchor points, representative support vectors 581 

defining the optimal separating hyperplane, following the methods described in Chung et al. 2018.  582 
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In Figure 5, we report manifold capacity relative to its lower bound of 2/M, where M is the number 583 

of samples.   584 

 585 

Manifold dimensionality, computed from the realized anchor points, estimates the embedding 586 

dimension of the manifold contributing to classification. The dimensionality is bounded above by 587 

min(M,N). Since we have M<N, we report manifold dimensionality relative to M in Figure  5D. 588 

 589 

Manifold radius is the average distance between the center of the manifold and its anchor points. 590 

For linear separability, we care about the size of manifolds relative to how far they are from each 591 

other. The manifold radius is therefore reported relative to the norm of the center of the manifold. 592 

We also compute the norm of the center of the manifold separately in Figure 5E to estimate how 593 

the locations of the manifolds shift over time.  594 

 595 
Clustering 596 

Neuronal responses were clustered using K-means on a features space comprised of trial-597 

averaged, conditional PSTHs for left-cued and right-cued trials. PSTHs were binned into 10 ms 598 

bins, and were then smoothed over a 500ms moving window to reduce noise on the responses 599 

(Matlab’s smooth.m function). Each PSTH was then z-scored and combined into a total data 600 

matrix , where N is the number of neurons and neurons and T=151 is the number of data points 601 

for each conditional PSTH. PCA was performed on Z to reduce the dimensionality of population 602 

responses to obtain principal components W and score M, as . This feature space required k =16 603 

components to explain >95% of the covariance in Z. The first k columns of M (data projection onto 604 

the top principal components) were used as the feature space for clustering. 605 

The gap statistic criterion was used to determine a principled choice of the best number of clusters 606 

(evalclusters.m in Matlab, 5000 samples for reference distribution) (Tibshirani  et al., 2001). 607 

Specifically, the chosen cluster was defined as the smallest cluster size K, beyond which jumps 608 

in gap score Gap(K) plateaued and became insignificant, 609 

 610 

𝐺𝑎𝑝(𝐾) 	≥ 	𝐺𝑎𝑝(𝐾	 − 	1) 	+ 	2𝑆𝐸(𝐾	 − 	1) 611 

 612 

We used the PAIRS statistic to determine if clusters were present in conditional PSTH responses 613 

of parietal neurons (Raposo et al., 2014; Hocker et al., 2021). The dimensionality reduced feature 614 

space (i.e., the first k columns of M) were further pre-processed with a whitening transform to 615 

yield zero mean and unit covariance. For each data point, the average angle with n=4 of its closest 616 
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neighbors,  𝜃5676 , was calculated. This angle distribution was compared with N=10,000 sets of 617 

independent draws from a reference Gaussian distribution (N(0,I)), with the same number of data 618 

points and the same dimensionality as our data. This N datasets were aggregated into a grand 619 

distribution, giving the estimated angles 𝜃𝑟𝑒𝑓. The number of nearest neighbors m is 620 

conventionally chosen as the number of neighbors required to give a median nearest neighbor 621 

angle 𝜋/4 for the reference distribution. This number is dependent on the dimensionality of the 622 

data, and given the high dimensionality of these responses, even K=2 neighbors yielded larger 623 

angles than 𝜋/4. We chose m =4 for the results in this work, but note that significant clustering 624 

was seen for a wide range of m values (m=[2,6]). 625 

PAIRS is a summary statistic of these averages nearest neighbor angles, using the median from 626 

the data distribution,  𝜃5676 and the median of the grand reference distributions  𝜃=>?: 627 

 628 

𝑃𝐴𝐼𝑅𝑆 = 	
𝜃=>? − 𝜃5676

𝜃=>?
 629 

 630 

To calculate p-values for the PAIRS statistic, reference PAIRS  values were generated for each of 631 

the N reference data sets, and the two-sided p value (assuming a normal distribution) for the data 632 

PAIRS compared to the distribution of reference PAIRS values were reported. We additionally 633 

performed a Kolmogorov Smirnov test on the grand reference distribution and data distribution of 634 

median nearest neighbor angles. 635 

 636 

Statistics 637 

Statistical analyses and procedures were implemented with custom-written MATLAB scripts (The 638 

Mathworks) that incorporated the MATLAB Statistics Toolbox or in JMP 13.2.0 (SAS). Normally 639 

distributed data (as assessed by the Lilliefors test) are reported as mean ± SEM unless otherwise 640 

stated. When data were not normally distributed, non-parametric statistical tests were used when 641 

appropriate.  642 
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Figures and Figure Legends 643 
 644 

 645 
Figure 1. Behavioral measures of auditory task performance and neural recordings 646 
(A) Schematic of the single-interval, two-alternative forced-choice AM rate discrimination task. 647 
Gerbils are required to discriminate between amplitude-modulated broadband noise presented at 648 
4- versus 10-Hz across a range of stimulus durations (100-2000 msec). 649 
(B) Two example psychometric functions from two animals. 650 
(C) Chronic 64-channel electrode arrays were implanted into the left parietal cortex of 5 gerbils. 651 
(D) Raw waveform trace of neural response to AM signal. 652 
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(E) Anatomically confirmed electrode track within the parietal cortex. 653 
(F) Normalized firing rate activity of all parietal cortex neurons during task performance sessions 654 
(n = 297) for “Long Stimulus” duration of 2000 msec (top) and “Short Stimulus” duration of 300 655 
msec (bottom), sorted by time of maximum activity. 656 
(G) Same format as panel F. Normalized firing rate activity of parietal cortex neurons during the 657 
passive listening session (n = 284). Note that the total stimulus time is shorter for passive listening 658 
because trials did not exceed a total stimulus time of 1500 msec.  659 
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 660 
Figure 2. Parietal cortex population activity reflects auditory task performance and 661 
contains auditory information 662 
(A) Schematic of linear population readout procedure. Population linear classifiers were trained 663 
to decode the responses from a subpopulation of simultaneously-recorded parietal cortex neurons 664 
from a proportion of trials to each AM rate signal (4 Hz versus 10 Hz) across each stimulus 665 
duration. Cross-validated classification performance was determined as the proportion of 666 
correctly classified held-out trials that were not used during classifier training. This procedure was 667 
performed across 250 iterations with new randomly drawn sampled train and held-out trials for 668 
each iteration. 669 
(B) Within-session population decoder results (pink) and corresponding behavior performance 670 
(black) from two example sessions from two animals during task performance. 671 
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(C) Behavior versus neural integration times. Solid red line represents the linear regression. 672 
Pearson’s r and statistical significance are noted in the top-left corner of the figure panel. 673 
(D) Average ± SE within-session decoding performance for correct Left versus Right trials. 674 
(E) Within-session population decoder results from two example sessions from two animals during 675 
passive listening sessions. 676 
(F) Population decoding performance for task performance (pink) and passive listening (purple) 677 
conditions across increasing number of recorded units for each stimulus condition. A resampling 678 
procedure was used to randomly select a subpopulation of units with increasing increments of 25 679 
across 500 iterations prior to applying the decoding readout procedure. Decoding performance 680 
for both session types increased with the number of units. For all stimulus durations except 300 681 
msec, decoding performance during task performance exceeded that of passive listening 682 
sessions across all unit totals. For passive listening sessions, maximum decoding performance 683 
was found when including all recorded units, whereas decoding performance during task 684 
performance reached its peak when including ~≥80% of total units. Maximum decoding 685 
performance for task performance sessions asymptotes higher than passive listening sessions, 686 
but are comparable between 300-600 msec stimulus duration (Figure S3I), which is near the 687 
average behavioral integration time.  688 
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 689 
Figure 3. Parietal cortex population dynamics during task performance 690 
(A) Principal component analysis (PCA) was performed on trial averaged neural responses from 691 
two of the five implanted gerbils. 692 
(B) Population activity plotted in a three-dimensional (3D) principal component space that 693 
originated from PSTHs of all recorded units for two gerbils during task performance. The neural 694 
trajectories (i.e., neural manifolds) in this state space correspond to the population responses 695 
across different times for separate AM rates and stimulus durations. Dot symbols represent 0, 696 
300, and 600 msec after stimulus (AM) onset. 697 
(C) Distances  between each stimulus condition, calculated using euclidean distance in the space 698 
spanned by the top 3 principal components, across time points of 0, 300, 600, and 1000 msec 699 
after AM onset.  700 
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 701 
Figure 4. Parietal cortex population dynamics during passive listening 702 
(A) Population activity plotted in a three-dimensional (3D) principal component space that 703 
originated from PSTHs of all recorded units for two gerbils during passive listening. The neural 704 
trajectories (i.e., neural manifolds) in this state space correspond to the population responses 705 
across different times for separate AM rates and stimulus durations. 706 
(B) Distances  between each stimulus condition, calculated using euclidean distance in the space 707 
spanned by the top 3 principal components, across time points of 0, 300, 600, and 1000 msec 708 
after AM onset.  709 
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 710 
Figure 5. “Untangling” of neural responses 711 
(A) 4- and 10-Hz stimulus manifolds (blue and red clouds) are entangled at the beginning of the 712 
trial but become more linearly separable over the course of the stimulus integration window.   713 
(B) Change in the mean manifold capacity over time. Amplitude modulated sound onset is at 400 714 
msec. Increasing capacity corresponds to an increase in linear separability of the manifolds. (C) 715 
Change in the mean manifold radius over time. Decreasing radius corresponds to an increase in 716 
linear separability of the manifolds.  717 
(D) Change in the mean manifold dimensionality over time. Decreasing manifold dimensionality 718 
corresponds to an increase in linear separability. 719 
(E) Change in the mean norm of manifold center over time. Increasing norm of manifold center 720 
corresponds to manifolds moving further away from the origin.  721 
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Figure 6. Clustering of conditional PSTH responses reveals three distinct subpopulations 723 
of neurons in the parietal cortex. 724 
(A) Cluster-averaged PSTH for 4-Hz AM stimulus indicating a reward at the left reward port. 725 
(B) Similar to (A). 10-Hz AM stimulus indicating food at the right reward port. Dotted line indicates 726 
onset of the 4- and 10-Hz AM stimulus, and error bars denote s.e.m. 727 
(C) Population PSTH responses for 4-Hz AM stimulus. 728 
(D) Similar to (C) except for 10-Hz AM stimulus. Responses are grouped by cluster identity 729 
(colored rectangles), and sorted by time-to-peak within each cluster, for each stimulus condition. 730 
(E) Population activity plotted in a 3D principal component space that originated from PSTHs of 731 
“Group 1” units for two gerbils during task performance. 732 
(F) Population activity plotted in a 3D principal component space that originated from PSTHs of 733 
“Group 3” units for two gerbils during task performance. 734 
(G) Population activity plotted in a 3D principal component space that originated from PSTHs of 735 
“Group 2” units for one gerbil during task performance. Dot symbols represent 0, 300, and 600 736 
msec after stimulus (AM) onset.  737 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.05.498869doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498869


Supplementary Figures 738 
 739 

 740 
Supplementary Figure 1. 741 
Psychometric functions for all 5 gerbils (44 total sessions) for each AM rate condition. The 742 
distribution of minimum integration times for each condition are plotted within each panel. Solid 743 
vertical lines within the box and whisker plots represent the median. 744 
 745 

 746 
Supplementary Figure 2. 747 
(A) Example trial-averaged firing rate post-stimulus time histograms (PSTHs) for one unit 748 
recorded during one task performance session across stimulus durations of 300 and 2000 msec. 749 
Bin width: 10 msec. Box and whisker plots represent the distribution of response latencies. 750 
(B) Example trial-averaged firing rate PSTH from the same unit recorded during one passive 751 
listening session across stimulus durations of 300 and 2000 msec. Bin width: 10 msec.  752 
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 753 
Supplementary Figure 3. 754 
(A) Decoding performance and corresponding behavioral performance for each AM rate (4- and 755 
10-Hz) for all sessions. 756 
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(B) Distributions of neural integrations for each AM rate condition. Of the 28 sessions examined, 757 
21 yielded a minimum integration time, while the remaining 7 sessions did not reach the 758 
performance criterion on 0.76. There was no significant difference of minimum integration times 759 
between acoustic stimuli (Wilcoxon signrank test, p = 0.50; 4-Hz AM median: 402.8 msec; 10-Hz 760 
AM median: 407 msec). 761 
(C) Behavior versus neural integration times for each AM rate condition. Solid red line represents 762 
the linear regression. Pearson’s r and statistical significance are noted in the top-left corner of the 763 
figure panel. 764 
(D) Average ± SEM within-session decoding performance for correct Left versus Right trials 765 
plotted as a function of time relative to response latency. 766 
(E) Decoding performance for each AM rate during passive listening for each session. 767 
(F) Distributions of neural integrations for each AM rate condition during passive listening. Only a 768 
portion of passive listening sessions yielded minimum integration times (n = 17/29; maximum 769 
decoding performance did not reach 0.76 for the remaining 12 sessions). Of the 17 eligible 770 
sessions, there was no significant difference of minimum integration times between acoustic 771 
stimuli (Wilcoxon signrank test, p = 0.49; 4-Hz AM median: 829.7 msec; 10-Hz AM median: 838.8 772 
msec). 773 
(G) Neural integration times between corresponding task performance and passive listening 774 
sessions. There were 19 instances where both corresponding task performance and passive 775 
listening sessions fit the criterion of 5 simultaneously recorded units. Of those 19 instances, 68.4% 776 
(13/19) displayed a decrease in minimum integration times from passive listening to task 777 
performance. 8/19 passive listening sessions did not yield a minimum integration time and the 778 
remaining 11 sessions produced relatively short minimum integration times (514.5 ± 112.7 msec). 779 
(H) In 6 cases, integration time diminished or could not be calculated during task performance 780 
(passive listening sessions produced minimum integration times of 668.6 ± 217.7 msec). 781 
(I) Average ± SEM maximum decoding performance across increasing number of units across 782 
each stimulus duration for task performance (pink; solid line) and passive listening (purple; 783 
dashed line) sessions. Vertical gray bar represents average behavior integration (n = 31 784 
sessions). 785 
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 786 
Supplementary Figure 4. Additional clustering analyses. 787 
(A) Analysis of angles among nearest neighbors in feature space (red) compared to a null 788 
distribution of gaussian data (blue). KS-statistic between these distributions is significantly 789 
different (KS test, p = 10-55), and PAIRS statistic additionally indicated clustering within the 790 
conditional PSTH-based feature space (PAIRS = 0.09, p = 10-57 ). 791 
(B) Gap statistic test for determining number of clusters across different preprocessing steps of 792 
the feature space. Data was z-scored in all cases, with additional downsampling from 10 msec, 793 
and/or smoothing over successive time bins. Red dots indicate the number of identified clusters, 794 
and error bars denote SEM. 500 msec smoothing without downsampling provided the largest gap 795 
statistic values, and this preprocessing was used for clustering in the main figure results. 796 
(C) PAIRS statistic values for different choices of nearest neighbors size. Red line indicates 797 
PAIRS value, and gray line indicates PAIRS value of null distribution, with error bars denoting the 798 
95% confidence interval. 4 nearest neighbors were used to build angle distributions for the PAIRS 799 
result in A, though PAIRS values were significant for a large range of numbers of nearest 800 
neighbors choice. 801 
(D) Results of PAIRS test for different preprocessing steps. Error bars denote 95% confidence 802 
interval of the null distribution. Only 50 msec downsampling without smoothing indicated a lack of 803 
clustering in the data. 804 
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 805 
Supplementary Figure 5. Clustering on conditional PSTHs in the passive listening 806 
condition. 807 
(A) Analysis of angles among nearest neighbors in feature space (red) compared to a null 808 
distribution of gaussian data (blue). KS-statistic between these distributions is significantly 809 
different (KS-test, p = 10-49), and PAIRS statistic additionally indicated clustering within the 810 
conditional PSTH (PAIRS = 0.09, p = 10-47 ). 811 
(B) Gap statistic analysis indicates that two clusters are present in the feature space of conditional 812 
responses in the passive condition. 813 
(C-D) Cluster averaged PSTHs for the 4-Hz stimulus (C) and 10-Hz stimulus (D). 814 
(E-F) Population PSTHs, grouped by cluster and sorted by time-to-peak within each cluster. 815 
Cluster 1 comprises only a small portion of the population. Error bars in all cases are SEM.  816 
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