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Abstract8

Experience shapes our expectations and helps us learn the structure of the environment. Inference models render such9

learning as a gradual refinement of the observer’s estimate of the environmental prior. For instance, when retaining an10

estimate of an object’s features in working memory, learned priors may bias the estimate in the direction of common11

feature values. Humans display such biases when retaining color estimates on short time intervals. We propose that12

these systematic biases emerge from modulation of synaptic connectivity in a neural circuit based on the experienced13

stimulus history, shaping the persistent and collective neural activity that encodes the stimulus estimate. Resulting neu-14

ral activity attractors are aligned to common stimulus values. Using recently published human response data from a15

delayed-estimation task in which stimuli (colors) were drawn from a heterogeneous distribution that did not necessarily16

correspond with reported population biases, we confirm that most subjects’ response distributions are better described by17

experience-dependent learning models than by models with no learned biases. This work suggests that systematic lim-18

itations in working memory reflect efficient representations of inferred environmental structure, providing new insights19

into how humans integrate environmental knowledge into their cognitive strategies.20

Introduction21

Traditional descriptions of working memory, a core feature of cognition [1], conceive of a system that takes in, maintains,22

and computes information over short timescales without a constant source of input. Knowing the limitations of this23

system can help identify its role in cognition [2] and provide a bridge to developing relevant neural theories. The limits24

and biases of working memory can be measured by the statistics of recall errors after a delay, for instance, in a visual25

delayed response task [3]. In these tasks, humans are asked to recall object features, such as location, color, or shape, a26
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short time after presentation [2,4–6]. When feature values lie on a continuum, subject responses do as well, giving finely27

resolved measurements of the direction and magnitude of errors on each trial [7, 8]. For example, people’s responses28

on delayed-response tasks often exhibit error magnitudes that increase roughly linearly with time, comparable to the29

variance of a diffusion process [9, 10], providing a metric that can guide neural theories for working memory.30

Complementary to behavioral studies of working memory, theories describing how the brain encodes information31

over short periods of time provide mechanistic insight. One well-validated theory associates remembered stimulus val-32

ues with persistent neural activity in recurrently coupled excitatory neurons that are preferentially tuned to the target33

values [11]. Broadly tuned inhibitory neurons driven by excitation stabilize this activity into a localized structure called34

an activity bump [12, 13]. Variability in neural tuning and synaptic connectivity can cause this activity bump to wander35

about feature space, causing trial-by-trial errors and biases often perceived as limitations to the system [14–16]. For36

example, delayed estimates may exhibit serial bias, whereby stimulus values from previous trials may attract or repel37

the retained memory of the most recent stimulus value [17]. Analogous attractive biases emerge when subjects retain38

the values of multiple stimuli within a single trial [18]. Additionally, subjects may exhibit systematic biases that include39

preferences for focal colors [16, 19], orientations [20] and cardinal directions [21].40

While biases are often considered reflections of suboptimality, they can be advantageous when reflecting the structure41

of the environment or sequences of stimuli the subject might see [22, 23]. There is ample evidence that the working42

memory system can be trained, and such biases may be the result of long-term learning [24]. Mechanistically, systematic43

biases in stimulus coding or delayed estimates could emerge from variation in the sensitivity of stimulus feature tuning44

across neurons [6,25,26]. Alternatively, the strength of synaptic connectivity may vary systematically so collective neural45

activity is biased to specific conformations in the network [27]. Such heterogeneity in the spatial organization of synaptic46

connectivity can reduce error by maintaining representations that are less susceptible to noise perturbations [28–30].47

Thus, if synaptic heterogeneity reflects the expected distribution of stimulus values, recall of common features would be48

less error prone, improving cognitive efficiency [31].49

Since certain stimulus features may be overrepresented in the natural world (e.g.., green/brown colors are more50

common in a forest; see also [32, 33]), we propose that subjects’ systematic biases could result from learning the natural51

distribution of specific features of the environment, which modulates synaptic connectivity to produce representation52

biases. Here, we model the effects of environmental feature distributions on delayed estimation in neural circuit models53

and their low-dimensional reductions, considering both models with network connectivity that is fixed and those shaped54

by long-term plasticity. We compare these results to human behavior and find that most subjects exhibit strategies best55

described by learning models, supporting the hypothesis that long-term representation biases are the result from learning56

environmental structure.57

Results58

We begin with the premise that features of natural environments appear according to distributions that favor particular

values that are overrepresented and thus, statistically more likely to occur (Fig. 1a). Such parametric distributions could
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take on general forms [26], but for illustration, we assume a parametric prior that is periodic with peaks (dips) at common

(rare) stimulus values

Penv(θ) = eA cos(mθ),

where θ corresponds with a particular feature value described on a ring (e.g., one feature dimension wraps periodically),59

A describes the amplitude, and m describes the number of peaks in the probability distribution. This periodic function60

resembles the color biases displayed by humans in [16] as well as cardinal bias common to angle and direction esti-61

mates [20, 21]. Note, unless otherwise stated, all subsequent results assume that m = 4, so the peaks are centered at62

cardinal angles of θ, and θ is in radians in formulas, but plotted in degrees in figures for readability.63
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Figure 1: Heterogeneity in the distribution of environmental features is reflected in delayed estimates. a. Natural envi-
ronments that include overrepresented features, such as certain colors, are described by heterogeneous priors of feature
distributions with peaks at the overrepresented features. b. Schematic of the delayed estimation task, which requires
subjects to remember a target feature (e.g., color) and report it following a short delay period. c. The remembered tar-
get feature is represented neuromechanistically by a subpopulation of stimulus-specific excitatory neurons with local
recurrent excitatory and broad inhibition. The target representation is retained as a bump of sustained neural activity
wandering stochastically during the delay. Bump dynamics can be projected to a particle model describing its stochas-
tically evolving position: Spatial heterogeneity in synaptic connectivity is inherited by the particle model as a nontrivial
energy landscape with attractors corresponding to regions of enhanced excitation. d. Distortion, the circular distance
between the target and responses, is influenced by synaptic heterogeneity. In homogeneous networks, response errors at
common environmental targets (θ = 0, light grey) and rare targets (θ = 45, dark grey) are equivalent, giving the same
local mean distortion (d̄(θ)). With synaptic heterogeneity matched to the environmental prior Penv(θ), errors are reduced
near common stimulus feature values (dashed lines). Parameters used as listed in Methods Table 1.
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Our models describe the maintenance of estimates of continuous features [34,35], arising in tasks where an observer64

is briefly shown a number of items and, after a delay, probed about remembered stimulus feature values (e.g., location,65

orientation, or color). These models allow us to theorize how the true priors on the environmental features impact (and66

potentially bias) how stimulus feature values are remembered (Fig. 1b). To illustrate, we focus on examples in which67

subjects recall colors, though equivalent results can be produced for models of orientation and location recall. Our68

models are motivated by previous observations that show human performance on delayed estimation tasks degrades over69

time, such that response variance increases roughly linearly, suggesting a diffusive process drives memory errors [9].70

Such diffusive degradation of a stimulus estimate has been modeled in neural circuits as a localized region of persistent71

activity (bump) that stochastically wanders feature space due to neural and synaptic fluctuations [11,36]. Activity bumps72

emerge from strong stimulus-tuned recurrent excitation paired with broad stabilizing inhibition, which generates self-73

sustained activity [12]. Spatial variation in synaptic connectivity can shape the preferred locations (attractors) of the74

bump, introducing drift toward attractors.75

Since the location of the activity bump is a proxy for the remembered stimulus feature value [14,15], we can simplify76

our analysis of the impact of activity bump fluctuations by considering low-dimensional models that describe the bump77

as a particle stochastically moving through an energy landscape (Fig. 1c). Spatial variations in synaptic connectivity are78

thus accounted by the resulting energy landscape (and bump drift) they invoke [28, 29, 37] and can be derived asymp-79

totically [37, 38], making it a useful simplification of delayed estimate dynamics. Energy landscapes can be updated to80

represent an observer’s current estimate of the environmental feature distribution Penv(θ) (see Methods) and can be more81

easily fit to response data than neural circuit models [14, 16, 23, 39], providing a tractable model for studying the origins82

of systematic biases in working memory.83

We compute our models’ average error between a true target feature value θ and its estimate as the mean distortion84

d̄(θ), the circular distance between the target and responses. Overall error across all target values is computed as the total85

mean distortion d̄tot =
∫ π
−π d̄(θ)Penv(θ)dθ [15, 29]. Thus, when synaptic connectivity (and the corresponding energy86

landscape) is aligned with the environmental prior Penv(θ), the mean distortion is reduced at common target feature87

values d̄(common) but increased for rare values d̄(rare). In contrast, purely distance-dependent synaptic connectivity88

(and a flat energy landscape) produces response distributions and mean distortion that are similar for common and rare89

target feature values (Fig. 1d), making mean distortion a useful metric for quantifying error with respect to changes in90

synaptic connectivity.91

Combining analysis of the energy landscapes with our distortion metric, we now systematically consider the impacts92

of environmental stimulus distributions on working memory responses, which can guide our understanding of how ex-93

pectations about the environmental prior can be learned from experience and how these expectations can lead to more94

efficiently retained memories.95
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Energy Landscapes Shape Recall Distortion96

Uniform Stimulus Priors97

We consider a particle model that describes the stochastically evolving estimate of the target feature value with an energy

landscape that can incorporate bias, introduced by breaking the symmetry of continuous attractor models of delayed

estimation [40]. This low-dimensional model can be derived asymptotically from the stochastic evolution of the position

θ(t) of an activity bump that encodes the estimate and the information about the prior in its network connectivity (see

Methods). The energy landscape that reflects an observer’s long-term estimate of the periodically-varying environmental

prior Penv(θ) can be generated as

U(θ) = −Ap cos(nθ), (1)

where Ap describes the well amplitude and n is the number of attractors (each located at the believed common environ-98

mental feature values). This simple form for U(θ) allows us to probe how the alignment of the energy landscape to the99

true stimulus distribution shapes an observer’s distortion and produces response biases (Fig. 2a).100

The movement of the particle through this landscape evolves according to the stochastic differential equation

dθ(t) = −U ′(θ(t))dt+ σdW (t), (2)

a

b

Diffusion Only
Flat Landscape Heterogeneous Landscape

Drift + Diffusion

c
Diffusion
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Figure 2: Particles in heterogeneous landscapes are drawn toward attractors. a. Schematics of the flat (homogeneous)
landscape, with only diffusion, and heterogeneous landscapes, with potential-driven drift and diffusion. b. Example
of particle trajectories in the flat and heterogeneous energy landscapes in a, sampled from a uniform environmental
distribution. In the flat energy landscape, particle motion is driven purely by diffusion. In the heterogeneous energy
landscapes, the particle drifts toward attractors over time but diffusion can cause the particle to ”jump” wells. Drift-
only process shown in green for comparison. c. Total mean distortion in a heterogeneous landscape with only diffusion
(targets sampled at attractor points) and moderate diffusion (σ = 0.05). d. Total mean distortion in a heterogeneous
landscape with only drift. Parameters for all sub-figures: Ap = 0, 1, n = 4, 8, all others as listed in Methods Table 1.
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where the particle evolves as it: 1. descends wells surrounding attractors (drift), and 2. diffuses due to noise fluctuations101

given by W (t), a Wiener process. Considering a particle model with a flat energy landscapes (Ap ≡ 0), memory of102

the target stimulus feature evolves according to pure diffusion during the delay period. In contrast, particles evolving103

along non-trivial energy landscapes (Ap > 0) are biased toward the periodically placed attractors at θ = ±(j/n)π104

(j = 0, ..., n− 1) (Fig. 2b).105

We first quantify the total mean distortion d̄tot of responses from particle models encoding stimuli from a uniform106

prior. Even given a uniform environmental prior, delayed estimates can be improved due to the stabilizing effects of107

local attractors that mitigate the wandering from diffusion [28, 29, 41]. However, distortion of the target estimate is108

also enhanced by the introduction of drift. Therefore, we consider the individual contributions of diffusion and drift to109

the total mean distortion. Fixing the diffusion coefficient and sampling responses that only originate at attractor points110

(wells, e.g., θ = 0), we assess the impact of diffusion alone in heterogeneous energy landscapes (n > 0). Distortion111

varies non-monotonically with the number of wells (Fig. 2c). This relationship is enhanced with longer delays and112

can be attributed to the close proximity of nearby wells as the well number (n) increases, reducing the strength of113

perturbation needed for the particles to ‘jump’ between attractors (see also Fig. S1 and [29, 42]). Low (high) levels of114

diffusion correspondingly show reduced (enhanced) total mean distortion (Fig. S2). In contrast, when we remove noise115

so particles in heterogeneous landscapes only drift, total mean distortion decreases considerably as the number of wells116

increases (Fig. 2d), indicating reduced distortion is due primarily to the the constraint of diffusion by attractors.117

Heterogeneous Stimulus Priors118

In addition to the form of the energy landscape, mean distortion is impacted by the form of the environmental prior119

Penv(θ). While the conditional probability of responses P (θresp|θenv) is only altered by heterogeneity in the energy120

landscape, the marginal probability of response P (θresp) is impacted by both the energy landscape and the environmental121

prior (Fig. S3), confirming that the mean distortion changes with the environmental prior. Matching the number and122

position of energy landscape wells to the peaks in the prior, we find the mean distortion d̄(θ) is significantly reduced at123

common (attractor) locations compared to a model with a flat energy landscape, but shows comparable levels of distortion124

at rare (saddle) locations (Fig. 3a; bootstrapped distortion, p < 0.05).125

We ask if the total mean distortion typically decreases for periodic energy landscapes Eq. (1) as compared to flat126

landscapes when environmental priors are heterogeneous, and find that it is generally reduced (relative distortion is127

negative), with a dramatic reduction in distortion when attractors are aligned with peaks in the prior (Fig. 3b), though128

the number of wells does not need to exactly match the number of peaks (Fig. S4). Energy landscapes misaligned with129

the environmental prior (e.g., aligned with rare target locations) generally produced response distributions with higher130

total mean distortion than aligned models (Fig. S5), confirming that aligning attractors to environmental peaks increases131

coding accuracy of delayed estimates.132
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Figure 3: Distortion is reduced when energy landscapes match the environmental prior. a. Top: a heterogeneous environ-
mental distribution (Penv(θ)) passes through a heterogeneous energy landscape (U(θ)) and alters the mean bootstrapped
distortion (d̄(θ)) at a given target value θ (Nboot = 1e3). b. Relative total mean distortion compared between the flat
landscape and heterogeneous landscapes (negative values denote reduced distortion for heterogeneous landscape). Red
vertical line denotes where the number (and position) of attractors are aligned to peaks in the environmental prior.
c Schematic of learning in a particle model. Based on the target observed on each trial, the estimated environmental
distribution PN

est(θ) = P (θ|θ1:N ) and the particle landscape UN
est(θ) is updated at the target location. Over the course of

many trials, the estimated distribution PN
est(θ) becomes more similar to the environmental prior Penv(θ), and the energy

landscape aligns its wells to its peaks. d Heatmap showing the landscape updating over the course of many trials. Top
trace shows initial landscape. Bottom trace displays the landscape on the final trial. Grey traces are 10 examples of
the learning model, black trace is the average learning model’s landscape. e Top: L2−norm for the difference between
the experience-dependent belief about the environmental distribution (PN

est(θ)) and the true environmental distribution
(Penv(θ)). Bottom: Running average of the learning model’s total mean distortion (d̄tot). Parameters for all sub-figures
as listed in Methods Table 1.
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Experience-dependent Learning in Particle Models133

We next ask whether energy landscapes that model the effects of long-term plasticity can infer a prior based on a long134

sequence of observations. The effective learning rule assumes subjects sequentially infer the environmental prior from135

long-term experience: After each trial, the subject’s running estimate of the environmental prior is merged with a like-136

lihood function peaked at the current trial’s target value. This evolving estimate of the prior can be represented in the137

energy landscape by updating the landscape such that peaks in the prior estimate are encoded by attractors, correspond-138

ing to regions of synaptic potentiation in an equivalent neural circuit description (see Methods and Fig. 3c). Over many139

trials, the energy landscape develops attractors aligned with the common feature locations (Fig. 3c,d), regardless of ob-140

servation order (Fig. S6). Thus, the experience-dependent updates generate learning of the environmental prior, and the141

energy landscape reflects better estimates of the environmental structure, which reduces total mean distortion, trending142

towards the distortion of a particle model assigned an environment-matched energy landscape (Fig. 3e).143

Subjects’ Behavior shows Hallmarks of Learning144

We next validate our static and learning particle models against responses from a previously reported data set in which145

120 human subjects perform sequences of delayed-estimation trials for target colors drawn from distributions along a146

one-dimensional ring (see [16] for more details). Subjects were cued with two items, the target and distractor, and asked147

to respond with the color of one item after a short (0.5s) or long (4s) delay. Item colors on each trial were selected from148

either an (a) uniform stimulus distribution or (b) heterogeneous distribution with four peaks, offset randomly for each149

subject (Fig. 4a).150

We ask if subject responses are best described by particle models with energy landscapes from one of three classes:151

(a) fixed and uniform; (b) fixed and heterogeneous; or (c) evolving from each subject’s stimulus history. Our fixed152

and heterogeneous class of models includes three variations: 1. a model with attractors spaced evenly around the ring153

aligned to each subject’s assigned environmental offset (Static Heterogeneous), with free parameters for the amplitude,154

the number of attractors, and the noise amplitude; 2. a variation allowing the offset of the attractors to deviate from the155

peaks of the prior (Offset Heterogeneous model); and 3. a variation in which the energy landscape is determined by two156

Fourier modes (Dual Heterogeneous model) (Figs. 4b and S7).157

We also consider four learning models: one form (two models) updates the energy landscape based only on the target158

(Target Only), and another form (two models) updates the potential landscape based on both observed items (Target +159

Distractor)(Fig. 4c). The initial prior (initial landscape) is also varied to account for subjects’ potential systematic biases,160

since subjects can exhibit color biases even given uniform environmental priors [16]. Learning models are initialized161

either with a flat landscape (Flat Prior) or with a landscape with attractors at the locations of the subject population’s162

biases identified in [16] (Heterogeneous Prior) (Fig. S7).163

To identify the model that best matches each subject’s responses, we apply cross-validation based on the mean164

squared error between subject and simulated responses (see Methods), across many possible parameter sets for each165

model. Nearly all subjects’ responses (93% of subjects in short trials and 96% of subjects in long trials) are best described166
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Figure 4: Subject responses based on targets drawn from heterogeneous distributions are best replicated by models
governed by heterogeneous landscapes (static and learned). a. Experiment 2 from [16] in which subjects were shown
two items, each of which could be drawn from a heterogeneous distribution whose peaks were evenly distributed but
randomly offset for each subject. Subjects were prompted to respond with the corresponding color of one item. b. Fixed
particle models used. Homogeneous landscape includes one free parameter, diffusion. Fixed Heterogeneous models
include at least three free parameters: amplitude, number of wells, and diffusion. c. Learning particle models. Each
model updates iteratively based on three parameters: width of the bump, depth of the bump, and diffusion. Target-
Only learning models incorporate only the target prompted for response, and Target+ Distractor models incorporate both
items. d. Number of subjects best matched to each model type for short and long delay periods. e. Assigned offsets
for subjects best matched to Fixed Heterogeneous models (yellow) and Learning models (purple). Dashed lines shows
human population bias location.

by heterogeneous models, with a majority of subjects applying learning models (72% of subjects in short trials and 73%167

of subjects in long trials; Fig. 4d). We find that many subjects best matched to learning and fixed heterogeneous168

models have assigned environmental prior offsets centered away from the population biases but not uniformly distributed169

for both short and long trials (p < 0.05, two-sample Kolmogorov-Smirnov test) and that the distribution of assigned170

offsets for learning model subjects is significantly different than that of subjects best fit to fixed heterogeneous models171

(p < 0.05, two-sample Kolmogorov-Smirnov test), with more learning model subjects having an assigned offset that is172

far from the population biases (Fig. 4e). This finding suggests that many subjects confronted with observations from an173

environmental prior that differs from their baseline prior learn the new distribution of stimuli through experience.174

Neural Mechanism for Learning Environmental Priors175

We next identify a neural network model capable of implementing experience-dependent inference of environmental176

priors, comparable to our particle models [22,38] (see Methods for a demonstration that this model can be asymptotically177

9

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.07.05.498889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498889
http://creativecommons.org/licenses/by-nc/4.0/


a

e

Homogeneous Heterogeneous

c

LTP

Homeostatic Plasticity

<latexit sha1_base64="JJKN/eFyWZ9ayhcwT/fBY8T7Y8A=">AAAB8HicbVBNS8NAEN3Urxq/qh69LFbBU0mkqMeCF48V7Ie0oWy2k3bpbhJ2J0Ip/RVePCji1Z/jzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnHb3dnd2z8oHR41TZJpDg2eyES3Q2ZAihgaKFBCO9XAVCihFY5uZ37rCbQRSfyA4xQCxQaxiARnaKVHt4tDQNbze6WyV/HmoKvEz0mZ5Kj3Sl/dfsIzBTFyyYzp+F6KwYRpFFzC1O1mBlLGR2wAHUtjpsAEk/nBU3pulT6NEm0rRjpXf09MmDJmrELbqRgOzbI3E//zOhlGN8FExGmGEPPFoiiTFBM6+572hQaOcmwJ41rYWykfMs042oxcG4K//PIqaV5W/KtK9b5arp3lcRTJCTklF8Qn16RG7kidNAgnijyTV/LmaOfFeXc+Fq0FJ585Jn/gfP4A+7mPyw==</latexit>

✓1

b

LTP

Homeostatic Plasticity

<latexit sha1_base64="rsJwqvZtt2kkFbjEpd0fE2Sxm9o=">AAAB8HicbVBNS8NAEN34WeNX1aOXxSp4Kkkp6rHgxWMF+yFtKJvtpF26m4TdiVBKf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7Dj7u7tHxwWj46bJsk0hwZPZKLbITMgRQwNFCihnWpgKpTQCke3M7/1BNqIJH7AcQqBYoNYRIIztNKj28UhIOtVesWSV/bmoKvEz0mJ5Kj3il/dfsIzBTFyyYzp+F6KwYRpFFzC1O1mBlLGR2wAHUtjpsAEk/nBU3phlT6NEm0rRjpXf09MmDJmrELbqRgOzbI3E//zOhlGN8FExGmGEPPFoiiTFBM6+572hQaOcmwJ41rYWykfMs042oxcG4K//PIqaVbK/lW5el8t1c7zOArklJyRS+KTa1Ijd6ROGoQTRZ7JK3lztPPivDsfi9Y1J585IX/gfP4A/T2PzA==</latexit>

✓2

Homogeneous
Heterogeneous

Learning

f

N
eu

ra
l A

ct
iv

ity Excitatory

Inhibitory

Excitatory

InhibitoryC
on

ne
ct

iv
ity

Common CommonRare Rare

C
on

ne
ct

iv
ity

d

C
on

ne
ct

iv
ity

<latexit sha1_base64="syD/Tqagcbj9pBjeX4VGvaU1iIY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSRD0WvHis0C9oQ9lsJunSzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5fsqZ0o7zbZW2tnd298r7lYPDo+MT+/Ssq5JMUujQhCey7xMFnAnoaKY59FMJJPY59PzJw8LvTUEqloi2nqXgxSQSLGSUaCONbLtNZAQa1wKIJIC6HtlVp+4sgTeJW5AqKtAa2V/DIKFZDEJTTpQauE6qvZxIzSiHeWWYKUgJnZAIBoYKEoPy8uXlc3xllACHiTQlNF6qvydyEis1i33TGRM9VuveQvzPG2Q6vPdyJtJMg6CrRWHGsU7wIgYcMAlU85khhEpmbsV0TCSh2oRVMSG46y9vkm6j7t7Wb54a1SYu4iijC3SJashFd6iJHlELdRBFU/SMXtGblVsv1rv1sWotWcXMOfoD6/MHn9iS5w==</latexit>

Target (degrees)
<latexit sha1_base64="syD/Tqagcbj9pBjeX4VGvaU1iIY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSRD0WvHis0C9oQ9lsJunSzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5fsqZ0o7zbZW2tnd298r7lYPDo+MT+/Ssq5JMUujQhCey7xMFnAnoaKY59FMJJPY59PzJw8LvTUEqloi2nqXgxSQSLGSUaCONbLtNZAQa1wKIJIC6HtlVp+4sgTeJW5AqKtAa2V/DIKFZDEJTTpQauE6qvZxIzSiHeWWYKUgJnZAIBoYKEoPy8uXlc3xllACHiTQlNF6qvydyEis1i33TGRM9VuveQvzPG2Q6vPdyJtJMg6CrRWHGsU7wIgYcMAlU85khhEpmbsV0TCSh2oRVMSG46y9vkm6j7t7Wb54a1SYu4iijC3SJashFd6iJHlELdRBFU/SMXtGblVsv1rv1sWotWcXMOfoD6/MHn9iS5w==</latexit>

Target (degrees)
<latexit sha1_base64="syD/Tqagcbj9pBjeX4VGvaU1iIY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSRD0WvHis0C9oQ9lsJunSzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5fsqZ0o7zbZW2tnd298r7lYPDo+MT+/Ssq5JMUujQhCey7xMFnAnoaKY59FMJJPY59PzJw8LvTUEqloi2nqXgxSQSLGSUaCONbLtNZAQa1wKIJIC6HtlVp+4sgTeJW5AqKtAa2V/DIKFZDEJTTpQauE6qvZxIzSiHeWWYKUgJnZAIBoYKEoPy8uXlc3xllACHiTQlNF6qvydyEis1i33TGRM9VuveQvzPG2Q6vPdyJtJMg6CrRWHGsU7wIgYcMAlU85khhEpmbsV0TCSh2oRVMSG46y9vkm6j7t7Wb54a1SYu4iijC3SJashFd6iJHlELdRBFU/SMXtGblVsv1rv1sWotWcXMOfoD6/MHn9iS5w==</latexit>

Target (degrees)
<latexit sha1_base64="syD/Tqagcbj9pBjeX4VGvaU1iIY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSRD0WvHis0C9oQ9lsJunSzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5fsqZ0o7zbZW2tnd298r7lYPDo+MT+/Ssq5JMUujQhCey7xMFnAnoaKY59FMJJPY59PzJw8LvTUEqloi2nqXgxSQSLGSUaCONbLtNZAQa1wKIJIC6HtlVp+4sgTeJW5AqKtAa2V/DIKFZDEJTTpQauE6qvZxIzSiHeWWYKUgJnZAIBoYKEoPy8uXlc3xllACHiTQlNF6qvydyEis1i33TGRM9VuveQvzPG2Q6vPdyJtJMg6CrRWHGsU7wIgYcMAlU85khhEpmbsV0TCSh2oRVMSG46y9vkm6j7t7Wb54a1SYu4iijC3SJashFd6iJHlELdRBFU/SMXtGblVsv1rv1sWotWcXMOfoD6/MHn9iS5w==</latexit>

Target (degrees)

<latexit sha1_base64="syD/Tqagcbj9pBjeX4VGvaU1iIY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSRD0WvHis0C9oQ9lsJunSzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5fsqZ0o7zbZW2tnd298r7lYPDo+MT+/Ssq5JMUujQhCey7xMFnAnoaKY59FMJJPY59PzJw8LvTUEqloi2nqXgxSQSLGSUaCONbLtNZAQa1wKIJIC6HtlVp+4sgTeJW5AqKtAa2V/DIKFZDEJTTpQauE6qvZxIzSiHeWWYKUgJnZAIBoYKEoPy8uXlc3xllACHiTQlNF6qvydyEis1i33TGRM9VuveQvzPG2Q6vPdyJtJMg6CrRWHGsU7wIgYcMAlU85khhEpmbsV0TCSh2oRVMSG46y9vkm6j7t7Wb54a1SYu4iijC3SJashFd6iJHlELdRBFU/SMXtGblVsv1rv1sWotWcXMOfoD6/MHn9iS5w==</latexit>

Target (degrees)

<latexit sha1_base64="syD/Tqagcbj9pBjeX4VGvaU1iIY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSRD0WvHis0C9oQ9lsJunSzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5fsqZ0o7zbZW2tnd298r7lYPDo+MT+/Ssq5JMUujQhCey7xMFnAnoaKY59FMJJPY59PzJw8LvTUEqloi2nqXgxSQSLGSUaCONbLtNZAQa1wKIJIC6HtlVp+4sgTeJW5AqKtAa2V/DIKFZDEJTTpQauE6qvZxIzSiHeWWYKUgJnZAIBoYKEoPy8uXlc3xllACHiTQlNF6qvydyEis1i33TGRM9VuveQvzPG2Q6vPdyJtJMg6CrRWHGsU7wIgYcMAlU85khhEpmbsV0TCSh2oRVMSG46y9vkm6j7t7Wb54a1SYu4iijC3SJashFd6iJHlELdRBFU/SMXtGblVsv1rv1sWotWcXMOfoD6/MHn9iS5w==</latexit>

Target (degrees)

<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

Preferred Target (degrees)

<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

Preferred Target (degrees)
<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

Preferred Target (degrees)

<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

P
re

fe
rr

ed
T
ar

ge
t

(d
eg

re
es

)

<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

Preferred Target (degrees)<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

P
re

fe
rr

ed
T
ar

ge
t

(d
eg

re
es

)

<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

Preferred Target (degrees)
<latexit sha1_base64="mxCoh180IlBO4VDkMG9edINpAog=">AAACA3icbVBNS8NAEN34WetX1JteFqtQLyUpoh4LXjxW6Be0oWw2k3bpZhN2N0IJBS/+FS8eFPHqn/Dmv3Hb5qCtDwYe780wM89POFPacb6tldW19Y3NwlZxe2d3b98+OGypOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q79dsPIBWLRUOPE/AiMhAsZJRoI/Xt47qEEKSEADeIHIDG5QAGEkBd9O2SU3FmwMvEzUkJ5aj37a9eENM0AqEpJ0p1XSfRXkakZpTDpNhLFSSEjsgAuoYKEoHystkPE3xulACHsTQlNJ6pvycyEik1jnzTGRE9VIveVPzP66Y6vPEyJpJUg6DzRWHKsY7xNBAcMAlU87EhhEpmbsV0SCSh2sRWNCG4iy8vk1a14l5VLu+rpdpZHkcBnaBTVEYuukY1dIfqqIkoekTP6BW9WU/Wi/VufcxbV6x85gj9gfX5AxBglw4=</latexit>

P
re

fe
rr

ed
T
ar

ge
t

(d
eg

re
es

)

<latexit sha1_base64="vsK5CHld2BqDgNVg0KhfknO5Fn0=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwFZK0tnVXcOOygn1AGspkOmmHTmbCzEQsoZ/hxoUibv0ad/6Nk7aCih64cDjnXu69J0wYVdpxPqzC2vrG5lZxu7Szu7d/UD486iqRSkw6WDAh+yFShFFOOppqRvqJJCgOGemF06vc790Rqajgt3qWkCBGY04jipE2kt8bZgMZQ3KP58NyxbEvm3XvwoOO7TgNr1rPideoeVXoGiVHBazQHpbfByOB05hwjRlSynedRAcZkppiRualQapIgvAUjYlvKEcxUUG2OHkOz4wygpGQpriGC/X7RIZipWZxaDpjpCfqt5eLf3l+qqNmkFGepJpwvFwUpQxqAfP/4YhKgjWbGYKwpOZWiCdIIqxNSiUTwten8H/S9Wy3btduapUWXMVRBCfgFJwDFzRAC1yDNugADAR4AE/g2dLWo/VivS5bC9Zq5hj8gPX2CZE8kVw=</latexit>

Wexc

<latexit sha1_base64="faFIeLraHHMnCUbMGTqt2dxqU6w=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4KplSarsruHFZwT5gOpRMmmlD8xiSjFCGfoYbF4q49Wvc+Tdm2goqeuDC4Zx7ufeeKOHMWIQ+vMLG5tb2TnG3tLd/cHhUPj7pGZVqQrtEcaUHETaUM0m7lllOB4mmWESc9qPZde7376k2TMk7O09oKPBEspgRbJ0U9EfZUAvI5HQxKldQFTk0GjAnfhP5jrRazVqtBf2lhVAFrNEZld+HY0VSQaUlHBsT+CixYYa1ZYTTRWmYGppgMsMTGjgqsaAmzJYnL+CFU8YwVtqVtHCpfp/IsDBmLiLXKbCdmt9eLv7lBamNm2HGZJJaKslqUZxyaBXM/4djpimxfO4IJpq5WyGZYo2JdSmVXAhfn8L/Sa9W9RvV+m290obrOIrgDJyDS+CDK9AGN6ADuoAABR7AE3j2rPfovXivq9aCt545BT/gvX0ChBGRVA==</latexit>

Winh

<latexit sha1_base64="zDNMOces/5icxDCgU/C7zWclN2o=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIqMeCF48V7Ae0IWw2m3bpbhJ2J0qJ+SlePCji1V/izX/jts1BWx8MPN6bYWZekAquwXG+rcra+sbmVnW7trO7t39g1w+7OskUZR2aiET1A6KZ4DHrAAfB+qliRAaC9YLJzczvPTCleRLfwzRlniSjmEecEjCSb9eHAVF5WPj5UEkMCRS+3XCazhx4lbglaaASbd/+GoYJzSSLgQqi9cB1UvByooBTwYraMNMsJXRCRmxgaEwk014+P73Ap0YJcZQoUzHgufp7IidS66kMTKckMNbL3kz8zxtkEF17OY/TDFhMF4uiTJgX8SwHHHLFKIipIYQqbm7FdEwUoWDSqpkQ3OWXV0n3vOleNi/uLhotXMZRRcfoBJ0hF12hFrpFbdRBFD2iZ/SK3qwn68V6tz4WrRWrnDlCf2B9/gC1AZQy</latexit>

d̄
to

t

Figure 5: Experience-dependent modulation via long-term potentiation and homeostatic plasticity reduces distortion of
encoded stimulus values. a. Localized excitatory (Wexc) and inhibitory (Winh) synaptic weights associated with preferred
item features in a neural field encoding a delayed estimate. Example of of synaptic weight originating from neuron with
preference θ = 0 shown in bold. Heterogeneous neural networks are modulated so synaptic footprints originating
from peaks of Penv(θ) are stronger. b. Example bumps of sustained neural activity over 10s delay period originating at
common and rare targets in a homogeneous (left) and heterogeneous (right) case. Cyan traces in heterogeneous plots
denote attractor locations with enhanced synaptic weights. Stimulus input duration shown in green. c. Experience-
dependent learning results from long-term potentiation (LTP) of neurons with a preference for the previous target value
and homeostatic reduction of connectivity elsewhere. d. Learning breaks the symmetry of the spatially-dependent weight
kernel, creating enhanced peaks originating from neurons activated across trials. e. After many trials, the weight matrix
recovers the static heterogeneous synaptic structure. f. Average total distortion over time decreases as the experience-
dependent neural field model learns the environmental distribution. Parameters for all sub-figures as listed in Methods
Table 3.

reduced to our particle models). In this neural field model, excitatory neurons are tuned to preferentially activate given178

specific stimulus feature values. Average neural activity of neurons with a particular feature preference (location) x at179

time t is described by the variable u(x, t) with synaptic connectivity (combining excitation and inhibition) described by180
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the function w(x, y). Excitatory coupling is strongest between neurons with similar preferential tuning, and inhibitory-181

excitatory feedback shows corresponding broader connections (Fig. 5a; left). Combined local excitation and lateral182

inhibition supports the formation of persistent neural activity bumps when a transient input is presented at a particular183

location [11,29,43]. When synaptic connectivity depends only on the difference between neurons’ stimulus preferences,184

bumps have no intrinsically preferred positions in the network and lie along a continuous attractor, establishing an185

unbiased code for delayed estimation of an input stimulus value. Fluctuations that reflect synaptic noise cause bumps to186

wander freely with pure diffusion, so bumps are equally likely to move any direction (Fig. 5b; left).187

Spatially-varying heterogeneity (learned or prescribed) acting on the synaptic connectivity breaks the symmetry of188

the spatial synaptic footprint emanating from each neuron. When heterogeneity is strongest at the peaks of the envi-189

ronmental distribution, attractors are created (Fig. 5a; right) that bias bumps to drift toward the most common stimulus190

locations (Fig. 5b; right). This relationship between the increase in synaptic efficacy and the formation of attractors191

can be made mathematically precise via direct asymptotic analysis (see Methods). As such, there is a direct relation-192

ship between the stochastic dynamics of a bump’s position and the particle models we have discussed already. In short,193

the introduction of synaptic heterogeneity effectively reshapes an energy landscape that determines the bump position.194

While this reduces bump wandering when encoding common stimulus values, bumps drift more when instantiated at195

rare targets, causing larger errors as they are drawn toward attractor locations. As with the particle models, total mean196

distortion of input stimulus values during the delay is reduced by spatial heterogeneity aligned to the environmental prior197

(Fig. S8).198

We next identify a neuromechanistic learning rule that can modulate synaptic strength based on experience, reshap-199

ing the effective energy landscape along which the bump’s position evolves: Synapses emanating from activated neurons200

(those encoding the stimulus value) are potentiated [22], while homeostatic plasticity compensates for this local increase201

in synaptic strength by reducing synaptic strength elsewhere throughout the network (Fig. 5c). This rule comes from202

ample evidence for physiological mechanisms supporting long-timescale presynaptic potentiation throughout the ner-203

vous system [44, 45] and homeostatic mechansisms that can prevent runaway positive feedback loops of excitation and204

potentiation [46,47]. Such synaptic modulation leads to an increase in connectivity strength at the target location of each205

trial and a reduction of synaptic efficacy elsewhere (Fig. 5d). Updates occur iteratively, so synaptic plasticity modulates206

weight functions across long timescales to reflect the environmental prior (Fig. 5e). As with our particle models, once207

the neural network learns the environmental prior through experience, it maintains delayed estimates with reduced total208

mean distortion compared to homogeneous networks with fixed synaptic structure (Fig. 5f).209

Discussion210

We have demonstrated that systematic biases observed in human subjects’ delayed estimates can be attributed to envi-211

ronmental experience, specifically corresponding systematic variations in the frequency of stimulus feature values. Our212

work identifies a learning mechanism that can be implemented in reduced models and physiologically motivated neural213

circuit models and is validated by human response data. This moves beyond prior work which primarily proposed anal-214
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ogous attractor-based models with fixed energy landscapes [16, 29]. Our analysis lends credence to the claim that errors215

reflect a gradual inference of the environmental stimulus prior.216

Beginning with a simplified model of delayed-estimate degradation, we confirm that systematic response biases can217

be induced by breaking the symmetry of the energy landscape that shapes the evolution of the delayed estimate over time.218

Such symmetry-breaking stabilizes memories at attractor locations that, when aligned to peaks in the environmental prior,219

reduce response error at common stimulus values at the expense of larger errors for rare feature values. Overall, total220

mean distortion of responses is reduced in models with aligned heterogeneous energy landscapes, compared to those221

with flat landscapes, given the higher propensity of common input stimulus values. Experience-dependent learning of222

the environment can be implemented neuromechanistically via long-term potentiation that enhances recurrent excitation223

in neurons encoding common stimulus values and homeostatic plasticity that regulates connectivity across the neural224

population. Responses from human subjects are better matched to models that learn environmental priors than those that225

do not, particularly if the task environment does not well match their baseline beliefs. Thus, subjects confronted with226

environments that deviate from their priors appear to dynamically update their beliefs based on experience, supporting227

our hypothesis that systematic biases are learned via experience-dependent plasticity.228

Our work supports previous findings that response variability can be reduced in neuronal networks with spatial229

heterogeneity in synaptic connectivity, even if the stimulus probability is uniformly distributed across values [16, 28–230

30], and extends these findings to measure the efficiency of such codes when stimulus priors are non-uniform. While231

others have shown repulsive effects in persistent activity codes when implementing heterogeneous priors and computing232

efficient codes [6, 48], our models suggest synaptic heterogeneities should be aligned with peaks in the environmental233

prior to incorporate stronger connectivity at common stimulus values. These differences in results can be explained by234

applying two different underlying mechanisms to learning the environmental prior: “anti-Bayesian” biases can emerge235

from redistributing the frequency of neural tuning preferences such that more neurons have stimulus preferences near236

common feature values, and the stimulus estimate is biased away from common values due to the higher variance in the237

estimation of rare values [48]. In contrast, our work suggests that synaptic plasticity modifies connectivity to encode238

environmental priors. In humans, results on systematic working memory biases are mixed [21, 49–51], suggesting that239

subjects do not necessarily use consistent or optimized strategies. Our work supports this finding by identifying a number240

of different models that best match individual subject’s responses, many of which produce suboptimal results.241

For example, subjects’ use of the distractor item as part of their updating procedure suggests that experience-242

dependent updates could occur during stimulus observation, rather than after subjects’ response as suggested by work on243

short-term serial biases [8, 22]. Representations of memoranda in multiple item working memory tasks have also been244

shown to interact, sometimes causing additional errors in memory [18, 52, 53] or reducing cardinal biases [54]. Notably,245

multi-items were presented sequentially in [54], implying that both short-term plasticity rules [22] and multi-item in-246

teractions, such as swapping errors [55], may work in conjunction to produce suboptimal strategies. Future work may247

consider how multi-item working memory tasks impact experience-dependent learning of task environments.248

We had hypothesized that our fixed heterogeneous models would better represent subject responses when environ-249
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mental priors were more aligned to the population biases (offsets closer to the population bias peaks), because these250

environments would require less updating to subjects’ environmental beliefs. In contrast, the population of subjects251

whose strategies are best described by fixed heterogeneous models have a wide range of assigned offsets, while most252

subjects described by learning models have assigned offsets that deviated from the original population biases. It is un-253

clear whether subjects matched to static models were resistant to learning or were not given sufficient experience (i.e.,254

trials) to adapt. Future studies could investigate the rate of learning when subjects are presented with stimuli drawn from255

heterogeneous environmental priors to identify the causes for subject-model variability.256

Our work has established and validated a novel mechanistic hypothesis to describe how people infer the distribution257

of environmental stimuli and its impacts on their delayed estimates. Our results support recent findings on training-258

induced changes in prefrontal cortex [56], suggesting learning over longer timescales can have substantial stimulus-259

specific impacts in working memory. Moreover, our work posits that limitations and biases in working memory are not260

necessarily suboptimal, but can be motivated by efficient coding principles and modulated by environmental inference261

processes. These findings establish a correspondence between environmental inference and working memory that reveals262

a deeper understanding on the role of working memory in cognitive processes.263

Materials and Methods264

Particle Model265

We described the models here in radian coordinates (i.e., the distance around the ring is 2π rather than 360 degrees), but

all figures were plotted by rescaling to degrees deg = (180/π) · rad. All particle models with fixed energy landscapes

used

U(θ) = −Ap cos(nθ),

in which Ap described the amplitude and n described the number of wells (attractors). The homogeneous model was

recovered when taking Ap = 0. Particle movement was simulated using a stochastic differential equation

dθ(t) = −U ′(θ(t))dt+ σdW (t),

which incorporated noise as a Wiener process with increment dW (t). Numerical simulations were performed using266

the Euler-Maruyama scheme in which the values for θ were discretized to 1 degree (π/180 radian) bins and time was267

discretized to 10ms bins. To recover the effects of drift alone −U ′(θ(t))dt, we set σ = 0. All parameter values listed in268

Table 1 were used unless otherwise stated.269
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Variable Value
σ 0.05
Ap 1
n 4

TDelay 5
β 8
h 0.25
s 5

Table 1: Parameter values for particle models.

Distortion270

The mean distortion for a given input stimulus value was computed as

d̄(θenv) =

∫ π

−π
P (θresp|θenv)(1− cos(θresp − θenv))dθresp,

using Monte Carlo sampling. To compute stimulus-specific distortion for a given particle model and environment, θ was271

binned and simulations were used to compute d̄(θenv) for the bin (Nsim = 105 per bin). Bootstrapping procedures were272

used to resample distortion and compute the standard deviations (Nboot = 1e3). To compute the the effects of distortion273

purely based on diffusion for heterogeneous models, simulations were sampled at a single attractor/common stimulus274

value (θ = 0), while drift-only dynamics were simulated with σ = 0.275

Total mean distortion across all stimulus values in an environmental prior was computed

d̄tot =

∫ π

−π

∫ π

−π
P (θenv)P (θresp|θenv)(1− cos(θresp − θenv))dθenvdθresp,

which can be approximated by Monte Carlo simulations with initial conditions sampled from the environmental distri-276

bution Penv (Nsim = 105).277

Conditional and Marginal Distributions278

The conditional probability P (θresp|θenv) was computed by simulating the distribution of responses (particle end loca-279

tions) for each discretized θenv value (Nsim = 105). Marginal distributions of the response P (θresp) were computed by280

averaging the discrete conditional probability solutions relative to the known environmental distribution P (θenv).281

Relating the energy landscape to an experience-based posterior282

An experience-based posterior can be related to the stationary distribution of a particle on an energy landscape associated

with Eq. (2). The equivalent Fokker-Planck equation describing the evolution of the distribution p(θ, t) of possible

particle positions θ at time t assuming a potential function U(θ) was

∂tp(θ, t) = ∂θ
[
U ′(θ)p(θ, t)

]
+

σ2

2
∂2
θp(θ, t). (3)
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We derived the form of U(θ) that led to a stationary density that corresponds to a particular posterior L(θ) in the limit

t → ∞ in Eq. (3). The stationary density p̄(θ) was analogous to a posterior L(θ) since it is the probability density that the

system represents when there is no information about the current trial’s target remaining. Thus, we derived an association

between p̄(θ) and U(θ) to identify how the energy landscape function U(θ) should be tuned so that p̄(θ) ≈ L(θ). In the

limit t → ∞, we found Eq. (3) becomes

∂2
θ p̄(θ) = − 2

σ2
∂θ

[
U ′(θ)p̄(θ)

]
, (4)

a second order ordinary differential equation with solution

p̄(θ) = χ exp

[
−2U(θ)

σ2

]
, (5)

where χ is a normalization factor. Thus, to match p̄ ≈ L, we need

U(θ) ≈ σ2

2
log

χ

L(θ)
.

We assumed that we were in the limit of weak heterogeneities, so the deviation of the function L(θ) from flat will be

weak, and L(θ) ≈ 1
2π + ϵl(θ) (where

∫ π
−π l(θ)dθ = 0), which allowed us to make a linear approximation

U(θ) ≈ σ2

2
[log 2πχ− 2πl(θ)] ∝ −l(θ),

Thus, we removed the constant shift and were only concerned about the proportionality of the energy landscape to the283

negative of the variation l(θ) in the posterior.284

Experience-dependent particle model285

To incorporate learning into the particle model, we updated its energy landscape based on the history of experienced

stimulus values according to the equation

UN
est(θ) =

N − 1

N
UN−1
est (θ) +NU

h− seβ cos(θ−θN )

N
(6)

which incorporated a von Mises distribution centered at the location of the true stimulus value θN on trial N with s as286

the scaling factor, h the shift, and β the spread. This energy landscape update was meant to represent the trial-by-trial287

probabilistic update to the stimulus distribution estimate. The mean distortion and the particle landscape were updated288

iteratively on each trial, such that for each stimulus, the distortion was computed and included in the running average.289

All parameter values listed in Table 1 were used unless otherwise stated.290

The additive update of the particle landscape linearly approximated the typical multiplicative scaling of posterior

updating based on successive independent observations. To demonstrate how the updating rule for the energy landscape
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is related to Bayesian sequential updating of the posterior, recall that that enforcing U(θ) ∝ −l(θ) ensured an energy

landscape aligned with the learned posterior. Thus, we derived an approximate inferred distribution of possible future

stimulus target values, updated based on the observed history θ1:N . We assumed that when an observer sees a target

value θN , they inferred that subsequently similar values are more likely, according to the von Mises distribution

fθN (θ) = N eβ cos(θ−θN ),

where N was a normalization factor. We noted this was self-conjugate (fθ′(θ) ≡ fθ(θ
′)). We will also assumed that

0 < β ≪ 1, so the variation in fθ′(θ) was weak, which allowed us to approximate fθN (θ) ≈ N [1 + β cos(θ − θN )]. Se-

quential analysis then could determine how a posterior for future observations should be updated based on each observed

target. Take pN (θ) = p(θ|θ1:N ) to be the posterior based on past observations θ1:N which can be computed directly as

the product of probabilities

pN (θ) =
p̄

p(θ1:N )

N∏
j=1

fθj (θ),

where p̄ is the uniform distribution and we have utilized the self-conjugacy of fθ′(θ) ≡ fθ(θ
′). We used the linearization

of the likelihood function and truncated to linear order in β to find

pN (θ) ≈ 1

2π

1 + β
N∑
j=1

cos(θ − θj)

 ,

which, with the approximate formula for fθN (θ), can be written as

pN (θ) ≈ N − 1

N
pN−1(θ) +

1

N
fθN (θ).

Lastly, noting the proportional relationship of the desired energy landscape to the posterior, UN (θ) ∝ −lN (θ), we found

that the appropriate update for the energy landscape to match this iterative additive update of the posterior was

UN (θ) ∝ N − 1

N
UN−1(θ)−

1

N
fθN (θ),

which we could rewrite using the full form of fθN (θ) plus a shift to obtain Eq. (6).291

Thus, in the long-term limit (as N → ∞), the energy landscape convolved the environmental prior Penv(θ) against

the negative of the likelihood function:

U∞(θ) ∝ −
∫ π

−π
Penv(θ − θ′) exp

[
β cos θ′

]
dθ′.

Given that the environmental prior had the form Penv(θ) = N eA cos(mθ), we then made the approximation Penv(θ−θ′) ≈
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1
2π +A cos(m(θ − θ′)) = 1

2π +A cos(mθ) cos(mθ′) +A sin(mθ) sin(mθ′), so we could compute

U∞(θ) ∝ −A cos(mθ),

where A = A
∫ π
−π cos(mθ′) exp [β cos θ′] dθ′ and the other term vanished due to its odd symmetry. This was consistent292

with the form of the fixed heterogeneity we used to align with this environmental prior.293

Human data294

Response data from a delayed estimation task was taken from [16], experiment 2, with permission. The task was admin-295

istered to 120 consenting subjects with normal color vision in Amazon Mechanical Turk who performed and achieved296

minimal engagement. Each trial within the task presented a subject with two colored squares simultaneously for 200ms297

after which time they disappeared and a delay of 500 ms (100 short trials) or 4000 ms (100 long trials) ensued prior to a298

response being cued by presenting an outlined square in the location of one of the two previous prompt (implicit identi-299

fication of the target object). Participants then provided an estimate of the cued color by using a mouse to drag a small300

circle around a ring of colored continuum. Each item had a 50% chance of being drawn from the biased distribution.301

The biased distribution included 4 peaks spanning 20 degrees, equally spaced about the circle. The offset of the stimulus302

peaks were picked uniformly and randomly and assigned independently to each subject. The location of the population303

bias was identified based on the peaks in response frequency across the population of human subjects observed in ex-304

periment 1 from [16], which probed subjects to report a color drawn from a uniform distribution but subject showed305

preferences in the reports.306

Subject model fitting307

We fit subject responses to 8 different particle models and identified the most likely model using cross-validation:

1. Flat potential (1 free parameter) in which the particle dynamics were only influenced by diffusion

dθ(t) = σdW (t).

2. Static Heterogeneous (3 free parameters) in which the particle was subject to drift and diffusion, parameterized by

the Ap (amplitude), n (number of wells), and noise σ,

dθ(t) = −Ap sin(nθ − θoff)dt+ σdW (t),

where θoff was the offset assigned to a subject by the experiment (not fit).308

3. Offset Heterogeneous (4 free parameters) included all of the above parameters but incorporated a free parameter309

for the offset value θsoff , such that a subject could use a model not aligned to their assigned offset θoff .310

4. Dual Heterogeneous (5 free parameters) assumed that subject response were governed by an energy landscape
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determined by two frequencies (n1 and n2) with amplitudes A1 and A2, and assuming the offset to be at the assigned

location. The stochastic dynamics of the particle were described

dθ(t) = −A1 sin(n1θ − θoff)dt−A2 sin(n2θ − θoff)dt+ σdW (t).

5-6. Target-only Learning (3 free parameters) assumed the energy landscape was updated on each trial as described311

in the experience-dependent particle model section above, by adding an inverted von Mises distribution centered at the312

target location with free parameters for β and s. Noise was parameterized by σ as before. The initial landscape was313

either chosen to be (a) flat U0(θ) = 0, or (b) heterogeneous U0(θ) = −Ap cos(4(θ− θoff)) with Ap = 1 and θoff aligned314

to the offset of the established population biases described above.315

7-8. Target + Distractor Learning (3 parameters) models were implemented equivalently to the “Target-only”316

model but were updated by adding two inverted von Mises distributions to the energy landscape on each trial, one317

centered at the target and the other centered at the distractor stimulus value.318

Models were fit to each subject’s set of responses using 5-fold cross-validation performed for short and long delay319

trials separately. For each subject-model, we tested 100 parameter sets, selected uniformly from a bounded domain for320

each parameter (Table 2), on 80% of the trials, running 100 simulations with each set of parameters for each trial. The321

mean squared error (MSE) between each simulated and subject response were computed, and the parameter set with the322

lowest MSE was selected for that subject-model pair. We then simulated responses for the final 20% of trials using the323

selected parameter set and computed the MSE for these trials. This process was performed 5 times, testing all trials. The324

testing-set MSEs were then averaged, and the model with lowest mean testing-set MSE was selected for each subject.325

Neural Field Model326

We used a lateral inhibitory neural field model on the ring [29,43,57], in which the locations of neurons corresponded to

their preferred stimulus value

du(x, t) = [−u(x, t) +

∫ π

−π
(1 + h(y))w(x− y)f(u(y, t))dy]dt+ ϵu(x, t)dW (x, t) + I(x, t)dt, (7)

Model Class Variable Bounded Domain
Flat, Fixed, Learn σ 0.01− 0.2

Fixed Ap/A1/A2 0.1− 2
Fixed n/n1/n2 1− 12
Fixed θsoff 0− π/2
Learn β 1-10
Learn s 1-10

Table 2: Parameter ranges for human response model fitting.
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where u(x, t) was the mean activity at the location x ∈ [−π, π]. Spatial connectivity was described by

w(x− y) = exp
[
−(x− y)2

]
−Ainh exp

[
−(x− y)2

σ2
inh

]
,

combining both local excitation and broad inhibition, where Ainh was the strength of inhibition and σ2
inh described the327

inhibitory spread. Heterogeneity in connectivity was described by the function h(y), which could be learned or fixed.328

Fixed periodic heterogeneity was incorporated by taking h(y) = An · cos(ny), where we bounded An ∈ (−1, 1) to329

preserve excitatory/inhibitory polarity.330

The firing rate nonlinearity f(u(y, t)) was taken to be a Heaviside function

H(u− κ) =


1, u ≥ κ,

0, u < κ,

in which κ described the firing rate threshold.331

Noise ϵu(x, t)dW (x, t) was weak, multiplicative, and driven by a spatially-dependent, white-in-time, Wiener process

with the spatial filter that decayed with distance |x− y|:

F (x− y) =
√
ϵ exp(−|x− y|)

√
(dx),

and ϵ described the noise strength.332

Input to the network corresponding to the true location of the stimulus target at location xtarg was given by

I(x, t) = I0(1−H(t− tinp)) exp

[
−(x− xtarg)

2

2σ2
inp

]
,

where I0 was the strength of the input and σ2
inp parameterized the width of the input. Note, the location xtarg was sampled333

from the environmental distribution P (xenv) as described above to comprise a long sequence x1:N across trials.334

Neural activity evolved by applying Euler-Maruyama iterations to the timestep dt and Riemann integration with dx335

to the integral in the discretized version of Eq. (7). The bump’s centroid was then identified as the peak in neural activity336

at each time θcent(t) = argmaxx∈[−π,π]u(x, t). All model parameters are given in Table 3 and were selected to ensure337

bumps would not extinguish prior to the end of the delay period. Responses for each trial were reported as the location338

of centroid at the end of the delay period θcent(T ).339

Linking the neural field and particle models340

The dynamics of bump solutions to Eq. (7) can be reduced to first order to describe how their position θ̃(t) evolved over341

time, roughly approximating the centroid (peak location of neural activity). A reduced stochastic differential equation342

can be derived describing how this position evolves in time due to noise, inputs, and heterogeneity in the weight function.343

Technical details for such calculation can be found in [22,38]. Here we give a brief sketch of such analysis, to demonstrate344
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Variable Value
Ainh 0.35
σinh 3
An 0.4
n 4
κ 0.1
ϵ 0.5
I0 1
tinp 0.5
σinp 1
Tdelay 10
Ainp 1
slearn 0.1
dt 0.1
dx 0.036

Table 3: Neural Field Parameter Values.

the tight mathematical link between our particle models and the stochastic dynamics of bump solutions to our neural field345

equations.346

Ignoring noise (ϵ → 0), heterogeneity (h(y) → 0), and input I → 0, Eq. (7) had bump solutions U(x) that satisfied

the equation U(x) =
∫ π
−π w(x−y)f(U(y))dy [38]. This bump was marginally stable and lay on a continuous attractor, so

it could be placed at any position [−π, π] [43]. Without loss of generality, we assumed this position was initially x = 0,

we could track dynamics of the bump’s position θ̃(t) once noise, heterogeneity, and input were reintroduced by deriving

a hierarchy of equations for the expansion u = U(x− θ̃) + ϵΦ(x− θ̃, t) + ϵ2Φ1(x− θ̃, t) + · · · . Enforcing solvability

of this hierarchy introduced a condition requiring the sum of the noise, input, and heterogeneity to be orthogonal to the

nullspace φ(x) of the adjoint of the operator that comes from linearizing Eq. (7) about the bump solution. The result

was a drift-diffusion equation whose drift was determined by the energy landscape invoked by both the synaptic weight

heterogeneity and input

dθ̃ = −U ′(θ̃)dt+ dW(t),

precisely the form of Eq. (2), where the drift had contributions from the weight heterogeneity and input

U ′(θ̃) =

∫ π
−π φ(x)

∫ π
−π w(x− y)h(y + θ̃)f(U(y))dydx∫ π

−π φ(x)U ′(x)dx︸ ︷︷ ︸
heterogeneity

+

∫ π
−π φ(x)I(x+ θ̃, t)dx∫ π

−π φ(x)U ′(x)dx︸ ︷︷ ︸
input

(8)

and the Wiener process noise W(t) had zero mean and variance

⟨W(t)2⟩ = ϵ2
∫ π
−π

∫ π
−π φ(x)U(x)φ(y)U(y)C(x− y)dxdy[∫ π

−π φ(x)U ′(x)dx
]2 . (9)

The heterogeneity and input introduced an energy landscape that steers the position θ̃(t) of the bump as it responds to

noise fluctuations. As shown in [22, 38], by dropping the input term and considering a Heaviside nonlinearity f(u) =
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H(u − κ), f(U(x)) = H(x + a) − H(x − a) and φ(x) = δ(x − a) − δ(x + a) where a was the half-width of the

bump such that U(x) > κ for x ∈ [−a, a] and U(x) < κ otherwise and δ was a Dirac delta function. As such, we could

simplify the energy landscape gradient formula to find

U ′(θ̃) = α

∫ a

−a
[w(y − a)− w(a+ y)]h(y + θ̃)dy.

Approximation with Fourier modes. Note that by decomposing the even weight function into its Fourier series, we have

w(x− y) =
∞∑
k=0

wk cos(k(x− y)),

which allowed us to write

w(a− y)− w(a+ y) = 2
∞∑
k=1

wk sin(ka) sin(ky).

In a similar way, we could decompose the function describing the heterogeneity in the weight

h(y) =
∞∑
k=0

ak sin(ky) + bk cos(ky).

Approximating by the dominant Fourier mode (assume it is even, m = argmaxkbk), we took h(y) ≈ bm cos(my).

Integrating against the difference of the shifted homogeneous weight function, then we found U ′(θ̃) ≈ 2αm sin(mθ̃) and

thus U(θ̃) ≈ −2αm
m cos(mθ̃), where

αm =
αwm

2m
sin(ma)(sin(2 ∗ma)− 2ma) +

∑
k ̸=m

2bmwk

m2 − k2
sin(ka) [m cos(ma) sin(ka)− k sin(ma) cos(ka)] .

Note also that as m and k differ more, the coefficient in the sum will decrease, suggesting the dominant terms from the347

series description of w will be those for the modes k indexed close to m. Thus, a scaling of the dominant Fourier mode348

of the weight heterogeneity well approximated the energy landscape associated with the bump’s stochastic motion.349

350

Narrow bump approximation. Assuming the bump width was narrow compared to the length scale of the heterogeneity,

we could estimate the integral using the trapezoidal rule

U ′(θ̃) = αa
[
(w(2a)− w(0))h(−a+ θ̃) + (w(0)− w(2a))h(a+ θ̃)

]
,

so by expanding the even weight function w(2a) ≈ w(0)+2a2w′′(0) as well as linearizing the heterogeneity h(±a+θ̃) ≈

h(θ̃)± ah′(θ̃), we obtained

U ′(θ̃) ≈ −4αa3w′′(0)h′(θ̃),
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and thus

U(θ̃) ≈ −4αa3w′′(0)h(θ̃),

so the energy landscape generated for the bump position from weight heterogeneity h(y) was approximately proportional351

to the negative shape of the heterogeneity. As such, any neurons whose emanating synapses were potentiated/depressed352

then attract/repulse the bump.353

Plasticity rules in neural field model354

To include experience-dependent learning into our neural field model, we allowed the function that modulated the

synapses emanating from each neuron to evolve (1 + s(y, t)), updating with each trial N based on presynaptic neu-

ral activation ¯(u(x, Tinp;N − 1)) while the network received input (i.e., at the stimulus location in trial N − 1, xN−1),

s(y, Tinp;N) = s(y, Tinp;N − 1) + βs · u(x, Tinp;N − 1)

where βs was a scaling factor for long-term plasticity. Such a rule implemented an activity-dependent form of pre-

synaptic potentiation, deemed transmitter-induced long-term plasticity by [46] and for which multiple mechanisms have

been proposed [47, 58, 59]. Equivalently, this is a slow form of short-term synaptic facilitation, emerging in neural field

models the same way we have included it here [22, 37]. Inclusion of homeostatic mechanisms was based on ample

evidence showing it capable of preventing runaway potentiation [46, 60]. In particular, we considered a mechanism that

provides a saturation threshold setting an upper limit on potentiation [61]. Since potentiation would otherwise drive

network strength above this threshold, mathematically this amounted to always normalizing peak synaptic strength via

the computation

s(y, Tinp;N) = 2 ∗ (s(y, Tinp;N)− min(s(y, Tinp;N))/(max(s(y, Tinp;N)− min(s(y, Tinp;N))− 1.

As in the case of the energy landscape, we could determine the long-term limiting heterogeneity s∞(y) resulting from

the learning rule combined with an environmental prior Penv(θ). Approximating the shape of the instantiated bump by

a von Mises distribution centered at the location of the stimulus value on each trial and assuming weak modifications to

the heterogeneity, the long time limit gave

s∞(y) ≈ βs

∫ π

−π
Penv(y − y′)exp

[
βu cos y

′] dy′,
and, by making the approximation Penv(y − y′) ≈ 1

2π +A cos(my) cos(my′) +A sin(my) sin(my′), then

s∞(y) ≈ β̃ cos(my),
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consistent with the expected form of synaptic heterogeneity and resulting energy landscape.355
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[60] Royer, S. & Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation.492

Nature 422, 518–522 (2003).493

[61] Roth-Alpermann, C., Morris, R. G., Korte, M. & Bonhoeffer, T. Homeostatic shutdown of long-term potentiation494

in the adult hippocampus. Proceedings of the National Academy of Sciences 103, 11039–11044 (2006).495

27

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.07.05.498889doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498889
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Materials496

<latexit sha1_base64="WtiP2ei1zzDKvJOgMv1hv7dhO74=">AAAB8HicbVBNSwMxEJ2tX3X9qnr0EmwFT2W3FPVY8OKxgv2QdinZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbTzv2ylsbG5t7xR33b39g8Oj0vFJW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcjv3O09UaRbLBzNNaCDwSLKIEWys9OhW+pqNBK4MSmWv6i2A1omfkzLkaA5KX/1hTFJBpSEca93zvcQEGVaGEU5nbj/VNMFkgke0Z6nEguogWxw8QxdWGaIoVrakQQv190SGhdZTEdpOgc1Yr3pz8T+vl5roJsiYTFJDJVkuilKOTIzm36MhU5QYPrUEE8XsrYiMscLE2IxcG4K/+vI6adeq/lW1fl8rN1AeRxHO4BwuwYdraMAdNKEFBAQ8wyu8Ocp5cd6dj2VrwclnTuEPnM8fg1OPeA==</latexit>�

Figure S1: Mean exit time for a particle to leave the current well of attraction. Computed as in [29, 42]. Parameters as
listed in Methods Table 1.
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Figure S2: Total mean distortion in a heterogeneous landscape with only diffusion (targets sampled at attractor points),
low diffusion (σ = 0.01, left) and high diffusion (σ = 0.1, right). Parameters as listed in Methods Table 1.
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Figure S3: Comparing energy landscapes (U(θ)) and heterogeneous feature value distribution (Penv(θ)), we find the
conditional probability of response P (θresp|θenv) and the marginal probability of response P (θresp) for particle models
with homogeneous and heterogeneous (four wells at environmental distribution peaks) landscapes. Parameters as listed
in Methods Table 1.
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Figure S4: Total mean distortion as amplitude and number of wells was varied for three example delay periods. Optimal
particle model identified based on minimum mean distortion (magenta dots). Top: Low diffusion (σ = 0.01) leads to
a optimal models with higher number of wells. Center: Moderate diffusion (σ = 0.05) leads to optimal models with
a variable number of wells based on amplitude, often harmonics of the number of environmental peaks. Bottom: High
diffusion (σ = 0.1) leads to a optimal models with lower number of wells.
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Figure S5: Left: The conditional and marginal probabilities when the heterogeneous particle model has more wells than
the environment and offset from the peak locations. This offset leads memoranda to drift to offset locations and shows
moderate distortion for all values of θ. Right: Total mean distortion in offset heterogeneous particle models as compared
to non-offset models for moderate diffusion (σ = 0.05). Positive values corresponds with higher levels of distortion in
offset models. Parameters: TDelay = 1, n = 8 offset = 45, all others as listed in Methods Table 1.

<latexit sha1_base64="zDNMOces/5icxDCgU/C7zWclN2o=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIqMeCF48V7Ae0IWw2m3bpbhJ2J0qJ+SlePCji1V/izX/jts1BWx8MPN6bYWZekAquwXG+rcra+sbmVnW7trO7t39g1w+7OskUZR2aiET1A6KZ4DHrAAfB+qliRAaC9YLJzczvPTCleRLfwzRlniSjmEecEjCSb9eHAVF5WPj5UEkMCRS+3XCazhx4lbglaaASbd/+GoYJzSSLgQqi9cB1UvByooBTwYraMNMsJXRCRmxgaEwk014+P73Ap0YJcZQoUzHgufp7IidS66kMTKckMNbL3kz8zxtkEF17OY/TDFhMF4uiTJgX8SwHHHLFKIipIYQqbm7FdEwUoWDSqpkQ3OWXV0n3vOleNi/uLhotXMZRRcfoBJ0hF12hFrpFbdRBFD2iZ/SK3qwn68V6tz4WrRWrnDlCf2B9/gC1AZQy</latexit>

d̄
to

t

<latexit sha1_base64="Qi4mqq+oIhMcyoh3ZLIfC7ai5gM=">AAAB+XicbVDLSgNBEOyNrxhfqx69DAYhXsJuEPUY8OIxQl6QhNA7mSRDZmeXmdlAWPInXjwo4tU/8ebfOEn2oIkFDUVVN91dQSy4Np737eS2tnd29/L7hYPDo+MT9/SsqaNEUdagkYhUO0DNBJesYbgRrB0rhmEgWCuYPCz81pQpzSNZN7OY9UIcST7kFI2V+q5bRzVihpQUDjhKfd13i17ZW4JsEj8jRchQ67tf3UFEk5BJQwVq3fG92PRSVIZTweaFbqJZjHSCI9axVGLIdC9dXj4nV1YZkGGkbElDlurviRRDrWdhYDtDNGO97i3E/7xOYob3vZTLODFM0tWiYSKIicgiBjLgilEjZpYgVdzeSugYFVJjwyrYEPz1lzdJs1L2b8s3T5VilWRx5OECLqEEPtxBFR6hBg2gMIVneIU3J3VenHfnY9Wac7KZc/gD5/MHpIGS6g==</latexit>

Target (radians)

<latexit sha1_base64="ndICbXqScGH5rTmzg4wVj/DSxjY=">AAAB8HicbVBNS8NAEN34WetX1aOXxSLUS0mkqMeCF48VTFtpQ9lsp+3S3STsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aeJUc/B5LGPdDpkBKSLwUaCEdqKBqVBCKxzfzvzWE2gj4ugBJwkEig0jMRCcoZUe/UoXR4Dsolcqu1V3DrpKvJyUSY5Gr/TV7cc8VRAhl8yYjucmGGRMo+ASpsVuaiBhfMyG0LE0YgpMkM0PntJzq/TpINa2IqRz9fdExpQxExXaTsVwZJa9mfif10lxcBNkIkpShIgvFg1SSTGms+9pX2jgKCeWMK6FvZXyEdOMo82oaEPwll9eJc3LqndVrd3XynWax1Egp+SMVIhHrkmd3JEG8QknijyTV/LmaOfFeXc+Fq1rTj5zQv7A+fwBDWOP0w==</latexit>

U
(✓

)

Figure S6: Ordering of observations in the learning particle model does not change the shape of the learned landscape
or overall distortion. Left: 10 iterations of the learning model with the same observations but randomized permutations
produce potential landscapes with the same shape but differing amplitudes. Right: 10 iterations of the learning model
with no diffusion (drift only) and the same observations but randomized permutations show the same overall mean
distortion after many trials with minor variations in the learning rate. Parameters used: σ = 0, all others as listed in
Methods Table 1..
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Figure S7: Left: All fixed heterogeneous models. Static Heterogeneous model includes three free parameters: amplitude,
number of wells, and diffusion. Offset Heterogeneous includes amplitude and number of wells, diffusion, and one
additional parameter for offset. Dual heterogeneous considers five parameters: amplitude and number of wells for the
first component, amplitude and number of wells for the second component, and diffusion. Right: Learning particle
models. Each updates iteratively based on three parameters: width of the bump, depth of the bump, and diffusion.
Target-Only learning incorporated only the target prompted for response, and Target+ Distractor incorporated both items.
Priors refer to initial landscape, beginning either with a homogeneous (flat) landscape or a heterogeneous landscape that
matched the human population biases. Parameter ranges as listed in Methods Table 2
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Figure S8: Total mean distortion in the homogeneous and fixed environment-matched heterogeneous neural field models.
Bootstrapped averages (NBoot = 1e3) show a significant decrease in distortion for the heterogeneous synaptic connec-
tivity. All model parameters as listed in Methods Table 3.
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