
 1 

July 5, 2022 1 

 2 

TITLE: Epigenetic biomarkers of autoimmune risk and protective antioxidant signaling in methylmercury-exposed adults  3 

 4 

AUTHORS: Caren Weinhouse1, Luiza Perez2,3, Ian Ryde3, Jaclyn M. Goodrich4, J. Jaime Miranda5, Heileen Hsu-Kim6, 5 

Susan K. Murphy3,7, Joel N. Meyer2,3, William K. Pan2,3 6 

 7 

AUTHOR AFFILIATIONS:  8 
1Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 9 
2Duke Global Health Institute, Duke University, Durham, North Carolina 10 
3Environmental Science and Policy, Nicholas School of the Environment, Duke University, Durham, North Carolina 11 
4Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 12 
5CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru 13 
6Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North 14 

Carolina 15 
7Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, 16 

North Carolina 17 

 18 

CO-CORRESPONDING AUTHORS: 19 

Caren Weinhouse, PhD, MPH 20 

Oregon Institute of Occupational Health Sciences 21 

Oregon Health & Science University 22 

3181 SW Sam Jackson Park Road L606 23 

Portland, Oregon 97239 24 

(503) 494-1931 25 

weinhous@ohsu.edu 26 

 27 

William K. Pan 28 

Nicholas School of the Environment 29 

Duke Global Health Institute 30 

310 Trent Drive, Room 227 31 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.05.498896doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498896


 2 

Durham, North Carolina 27708 32 

(919) 684-4108 33 

william.pan@duke.edu 34 

 35 

 36 

KEYWORDS 37 

DNA methylation 38 

Epigenetics 39 

Methylmercury 40 

 41 

 42 

 43 

Conflicts of Interest. The authors declare that they have nothing to disclose. 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.05.498896doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498896


 3 

I. Abstract 63 

Background. Methylmercury (MeHg) is an environmental pollutant of global public health concern. MeHg is associated with 64 

immune dysfunction but the underlying mechanisms are unclear. The most common route of MeHg exposure is through 65 

consumption of fatty fish that contain beneficial n-3 polyunsaturated fatty acids (PUFA) that may protect against MeHg 66 

toxicity. 67 

 68 

Objectives. To better inform individual costs and benefits of fish consumption, we aimed to identify candidate epigenetic 69 

biomarkers of biological responses that reflect MeHg toxicity and PUFA protection.  70 

 71 

Methods. We profiled genome-wide DNA methylation using Illumina Infinium MethylationEPIC BeadChip in whole blood 72 

from N=32 individuals from Madre de Dios, Peru. Madre de Dios has high artisanal and small-scale gold mining activity, 73 

which results in high MeHg exposure to nearby residents. We compared DNA methylation in N=16 individuals with high 74 

(>10 µg/g) vs. N=16 individuals with low (<1 µg/g) total hair mercury (a proxy for methylmercury exposure), matched on age 75 

and sex.  76 

 77 

Results. We identified hypomethylated (i.e., likely activated) genes and promoters in high vs. low MeHg-exposed 78 

participants linked to Th1/Th2 immune imbalance, decreased IL-7 signaling, and increased marginal zone B cells. These 79 

three pathways are feasible mechanisms for MeHg-induced autoimmunity. In addition, we identified candidate epigenetic 80 

biomarkers of PUFA-mediated protection: hypomethylated enhancer binding sites for retinoid X receptor (RXR) and retinoic 81 

acid receptor a (RARa). Last, we observed hypomethylated enhancer and promoter binding sites for glucocorticoid receptor 82 

(GR), which is associated with developmental neurotoxicity, and transcription factor 7-like 2 (TCF7L2), which is associated 83 

with type 2 diabetes (T2D) risk.  84 

 85 

Discussion. Here, we identify a set of candidate epigenetic biomarkers for assessing individualized risk of autoimmune 86 

response and protection against neurotoxicity due to MeHg exposure and fish consumption. In addition, our results may 87 

inform surrogate tissue biomarkers of early MeHg exposure-related neurotoxicity and T2D risk. 88 

 89 

II. Introduction 90 

The organic heavy metal methylmercury (MeHg) is an environmental pollutant of global public health concern1-3. MeHg is 91 

formed by microbial methylation of inorganic mercury that deposits in waterways after atmospheric emission from coal-fired 92 

power plants and burning of gold-mercury amalgams during artisanal gold mining3,4. After conversion to the organic form, 93 
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MeHg bioconcentrates and biomagnifies in the aquatic food web and humans are exposed via consumption of contaminated 94 

fish and seafood4-6. Clinically apparent MeHg neurotoxicity, including gross motor impairment, was first documented after 95 

high dose poisoning events that occurred in Minamata, Japan7 and Iraq8 (reviewed in 9,10 ). However, exposure to much 96 

lower doses that are common in fish-consuming communities are sufficient to cause subtler neurotoxic effects, including 97 

impairment of learning and memory, particularly in individuals exposed during critical windows of brain maturation, including 98 

fetal development or early childhood (reviewed in 11).  In addition, both MeHg and inorganic mercury species trigger 99 

increased levels of circulating inflammatory cytokines and autoreactive antibodies and T-cells in humans12-21 and animals22-100 
25, as well as autoimmune disease risk26,27, suggesting that MeHg increases risk of chronic inflammation and 101 

autoimmunity28,29. One hypothesis for the underlying mechanism for immunotoxicity is MeHg-induced mitochondrial 102 

dysfunction and subsequent increase in reactive oxygen species (ROS) and oxidative damage to cellular 103 

components18,19,30,31. These damaged cellular components, including damaged mitochondrial DNA and membrane proteins, 104 

serve as damage-associated molecular patterns (DAMPs) that activate innate immune responses through the same 105 

pathways as pathogen-associated molecular patterns (PAMPs)32.  However, not all studies of low dose MeHg exposure 106 

point to clear autoimmune responses in exposed individuals33-35, and there are noted beneficial effects of other nutrients 107 

contained within MeHg-contaminated fish and seafood, including polyunsaturated fatty acids (PUFAs) that support healthy 108 

brain development in infants and children9,36 and cardiovascular protection to adults37,38 . In addition, some communities 109 

have strong cultural connections to foodways centered on fish and seafood that should be considered in this cost benefit 110 

analysis39. Considering the increasing environmental levels of MeHg with climate change40-42 and the projected increase in 111 

human exposure43,44, understanding the individualized cost-benefit relationship between toxic and healthful outcomes of 112 

fish consumption is an important public health priority. To offer personalized environmental health recommendations, often 113 

referred to as “precision environmental health” or “functional exposomics”45, it is important to develop reliable and 114 

informative biomarkers of effect that report on both toxic and protective health responses in individuals. 115 

 116 

A current focus of the precision environmental health approach is the development of epigenetic biomarkers of effect that 117 

reflect individuals’ biological responses to chemical exposures45. Epigenetic biomarkers comprise changes to the DNA-118 

protein structure, including DNA methylation and histone modifications, as well as regulatory non-coding RNA, that reflect 119 

current or past gene expression responses to pollutants or nutrients46. Ideal epigenetic biomarkers are specific to particular 120 

chemical or dietary exposures and reliably report on biological responses that reflect known mechanisms of toxicity or 121 

protection46.  Although exciting and highly promising in theory, in practice, descriptive discovery experiments for MeHg 122 

exposure have identified only a small number of candidate epigenetic biomarkers47-55, possibly due, at least in part, to the 123 

low variance in exposure within studied populations that limits statistical power.  124 
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 125 

In this study, we conducted a discovery epigenetic experiment in age- and sex-matched Peruvian adults with high variance 126 

in MeHg exposure due to nearby artisanal and small-scale gold mining2 (Table 1).  This approach has two distinct strengths. 127 

First, we identify candidate epigenetic biomarkers that are directly relevant to health risks and protections that are specific 128 

to this population of highly exposed, vulnerable Peruvians, including indigenous Amazonian individuals2. Viewed through 129 

an environmental justice lens, we value the initial development of public health tools that directly serve the needs of the 130 

most vulnerable communities, rather than testing the cross-population validity of biomarkers initially developed in and for 131 

Western populations. Second, the high exposure variance in our study allowed us to identify candidate epigenetic 132 

biomarkers that reflect known MeHg and PUFA biology. Because they reflect this established biology, these biomarkers 133 

likely have strong public health relevance to Western populations with lower exposures, even though these biomarkers were 134 

undetected in previous Western population studies with lower exposure variance47-55. Therefore, this study represents an 135 

important advance in the development of precision environmental health tools for personalized recommendations of MeHg-136 

contaminated fish and seafood consumption. 137 

 138 

III. Methods 139 

Sample population 140 

This study leverages a larger mercury exposure assessment study in communities around the Amarakaeri Communal 141 

Reserve in Madre de Dios, Peru2. This reserve is bordered on the east by heavy artisanal and small-scale gold mining 142 

activity (ASGM), a form of mining that uses large inputs of elemental mercury and contaminates local fish with 143 

methylmercury2. Residents of these communities are exposed primarily to methylmercury by consuming methylmercury-144 

contaminated fish2. We previously quantified total mercury levels in proximal 2-centimeter segments of head hair, which 145 

represents ~2-3 months’ growth2,56. For populations in this region, methylmercury is the dominant form of mercury in scalp 146 

hair56. Thus, total mercury level in this hair segment length approximates primarily methylmercury exposure over the prior 147 

2-3 months2,56. For this study, we selected a subset of 16 adults with high chronic methylmercury exposure (defined as >10 148 

 µg/g total hair mercury) and 16 adults with low chronic exposure (defined as <1 µg/g total hair mercury), matched on age 149 

and sex2 (Table 1).   150 

 151 

DNA extraction 152 

For both DNA methylation and mtDNA analyses, 8.5 mL of whole blood was collected in PAXgene Blood DNA Tubes 153 

(Qiagen, 761115) which contain 2 mL of a proprietary additive that prevents coagulation of the blood and preserves 154 

genomic DNA. Tubes were stored for no more than four hours at room temperature, transferred to a -20°C freezer for a 155 
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period of four to seven days, and finally transferred to -80° until being shipped on dry ice to Duke University where they 156 

were stored at -80°C until DNA was isolated. For DNA isolation, the frozen whole blood samples were thawed in a 37°C 157 

water bath for 15 minutes and then immediately processed. PAXgene Blood DNA kits (QIAGEN, 761133) were used 158 

according to the manufacturer’s instructions to extract high molecular weight DNA from tissue (not cells). 159 

 160 

DNA methylation 161 

We assessed genome-wide DNA methylation using Illumina Infinium MethylationEPIC BeadChips and analyzed DNA 162 

methylation microarray data in R using the standard pipeline in RnBeads57. We estimated cell type proportions within whole 163 

blood samples using the estimateCellCounts function in the minfi package58 and estimated pairwise associations between 164 

age, sex, MeHg group, and cell type proportion variables. In addition, we estimated epigenetic age using an algorithm 165 

incorporated into the RnBeads pipeline, which uses an elastic net regression method (glmnet) and the Horvath laboratory 166 

age annotation as a response variable to account for different epigenetic age pacing between younger and older age 167 

groups59. We used pre-defined age predictors developed from training methylation datasets from multiple, publicly available 168 

studies (incorporated into the RnBeads pipeline) to annotate our data; these training datasets include Infinium 27K 169 

BeadChip (N=2,286 from 6 studies), Infinium 450K BeadChip (N=1,866 samples from 20 studies from Gene Expression 170 

Omnibus or The Cancer Genome Atlas), and Reduced Representation Bisulfite Sequencing data (N=232 samples of 171 

German origin). Training datasets include majority European samples (datasets are listed at 172 

https://github.com/epigen/RnBeads_web/blob/master/ageprediction.html.) We conducted differential methylation analysis 173 

on the site and region level between high and low MeHg groups (based on a binary MeHg variable) adjusted for sex, age, 174 

community and estimated proportions of the following cell types: CD8+ T cells, CD4+ T cells, B cells, natural killer cells, 175 

monocytes, granulocytes. RnBeads computed p-values and adjusted p-values (using the Benjamini-Hochberg false 176 

discovery rate (FDR) correction for multiple comparisons) on the site and region levels using hierarchical linear models from 177 

the limma package and fitted using an empirical Bayes approach on derived M-values. Then, RnBeads assigned 178 

differentially methylated sites ranks based on three criteria: 1) the difference in mean methylation, 2) the quotient in mean 179 

methylation, and 3) a statistical test (limma or t-test). A combined rank was computed based on the maximum rank among 180 

these three metrics (the lower the rank, the greater the evidence for differential methylation). Differentially variable sites 181 

were computed using the diffVar method from the missMethyl R package60. Differential methylation on the region level was 182 

computed using: 1) the mean differences in means across all sites in a region between high and low MeHg groups, 2) the 183 

mean of quotients in mean methylation, and 3) the combined p-value from all site p-values in the region. Each region was 184 

assigned a combined rank based on the maximum rank among these three metrics. Regions were divided into four genetic 185 

context categories: genomic tiling, CpG islands, promoters, and genes57. Differential variability on the region level was 186 
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computed similarly to differential methylation on the region level, using the mean of variances, log-ratio of the quotient of 187 

variances, and p-values from the differentiality test to compute ranks. We conducted a Gene Ontology (GO) enrichment 188 

analysis of differential and differentially variable genes enriched in our DNA methylation results using a hypergeometric 189 

test61, as well as a Locus Overlap Analysis (LOLA) enrichment62 using Fisher’s exact tests to derive ranked enrichments in 190 

functional genomic and epigenomic annotations from the following reference databases: cistrome_cistrome, 191 

cistrome_epigenome, codex, encode_segmentation, encode_tfbs, Sheffield_dnase, and uscs_features.  192 

 193 

Mitochondrial DNA damage and copy number  194 

We assessed mitochondrial DNA copy number (mtDNA CN) and mitochondrial DNA damage (mtDNA damage) as follows. 195 

DNA was quantified using PicoGreen (ThermoFisher P7589) with a standard curve of a HindIII digest of lambda DNA 196 

(Invitrogen 15612-013) as described63. Samples were then diluted to 3 ng/μL in 0.1X TE buffer for use in long amplicon 197 

Polymerase Chain Reaction (LA-PCR) and real time PCR assays. We measured mtDNA damage using an established 198 

long-range qPCR assay that evaluates whether DNA lesions are present that can halt or slow DNA polymerase progression 199 

during PCR amplification. This assay’s primers amplify an 8.9 kb fragment from mtDNA. Samples with greater loads of DNA 200 

damage yield fewer PCR products. For each mtDNA damage qPCR reaction, we used 15 ng DNA template, 0.4 uM each 201 

of forward (5’-TCT AAG CCT CCT TAT TCG AGC CGA-3’) and reverse (5’-TTT CAT CAT GCG GAG ATG TTG GAT GG-202 

3’) primers, nuclease-free water, and LongAmp Hot Start Taq 2× Master Mix (New England Biolabs), as described63. We 203 

amplified this product under the following conditions: an initial denaturation step of 2 min at 94°C, 21 cycles of denaturation 204 

at 94°C for 15 seconds and annealing at 64°C for 12 minutes, with a single final extension step at 72°C for 10 minutes. We 205 

quantified qPCR products using Picogreen dye in a 96-well plate reader as described63. We calculated DNA lesion frequency 206 

for mtDNA following a Poisson equation [f(x) = e-ll  lx/x!], where  l is the average lesion frequency in the reference template 207 

(i.e., the zero class; x=0, f(0) = e- l), as previously described64. We compared amplification of mtDNA in people with high 208 

hair mercury (AHIGH) to amplification of mtDNA in people with low hair mercury (ALOW) with a relative amplification ratio 209 

(AHIGH/ALOW). We defined the DNA lesion frequency as  l = -ln(AHIGH/ALOW). We calculated lesion frequency per base pairs 210 

(bp) of mtDNA by adjusting for amplicon size and normalizing amplification of the long mtDNA fragment to the short mtDNA 211 

fragment that reflects mtDNA CN per cell63.  212 

 213 

We measured mtDNA CN using an established short-range, real-time, standard curve-based qPCR assay that is specific 214 

to mtDNA. We prepared serial dilutions of a plasmid containing a 107-base fragment of the mitochondrial tRNA-Leu(UUR) 215 

gene to create a standard curve to then calculate absolute mtDNA CN, as previously described63. We evaluated associations 216 
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between MeHg and mtDNA CN or mtDNA damage with tests of correlation (Fig. 2B, Supplemental Fig. 2), as well as 217 

multivariate regression models, adjusted for age, sex, and cell type proportions.  218 

 219 

IV. Results 220 

Differential DNA methylation at the site and region levels 221 

We observed 43,011 CpG sites with differential DNA methylation between high and low MeHg groups (p <0.05) and 9 222 

CpG sites with differential DNA methylation (FDR <0.05). At the region level, we observed the following. In genomic tiling 223 

regions, we observed 7,565 regions with differential DNA methylation between high and low MeHg groups (p <0.05). In 224 

addition, we observed 370 gene regions, 567 promoter regions, and 376 CpG island regions with differential DNA 225 

methylation (p <0.05). Tables with complete data are available in the Gene Expression Omnibus (GSE207443). 226 

 227 

Differential variability in DNA methylation at the site and region levels 228 

We observed 45,403 CpG sites with differentially variable DNA methylation between high and low MeHg groups (p< 0.05) 229 

and 5 CpG sites with differentially variable DNA methylation (FDR <0.05). At the region level, we observed the following. In 230 

genomic tiling regions, we observed 7,745 regions with differentially variable DNA methylation between high and low MeHg 231 

groups (p <0.05). In addition, we observed 347 gene regions, 568 promoter regions, and 368 CpG island regions with 232 

differentially variable DNA methylation (p <0.05). Tables with complete data are available in the Gene Expression Omnibus 233 

(GSE207443). 234 

 235 

GO enrichment in differential and differentially variable DNA methylation 236 

Gene Ontology (GO) enrichment analysis leverages the GO Consortium’s curated, logical hierarchy of gene sets and their 237 

functional annotations to identify genes enriched within discovery datasets61. These gene sets are curated into groupings, 238 

or GO “terms”, within three categories: Biological Processes, Molecular Functions, and Cellular Components61. We 239 

observed enrichments of GO terms for regions in genes and promoters only, and no enrichments for genomic tiling regions 240 

or CpG islands. We observed 112 Biological Process (BP) GO terms enriched in gene regions and 51 terms enriched in 241 

promoter regions with hypomethylated DNA in high vs. low MeHg groups (using a cutoff of combined rank among the 1000 242 

best ranking regions, all with p≤0.01) (Supplemental Tables S1-2, selected terms in Table 2). We observed 46 BP GO 243 

terms enriched in gene regions and 51 terms enriched in promoter regions with hypermethylated DNA in high vs. low MeHg 244 

groups (using a cutoff of combined rank among the 1000 best ranking regions, all with p≤0.01) (Supplemental Tables S3-245 

4, selected terms in Table 3). In addition, we saw 70 BP GO terms in genes and 128 BP GO terms in promoters with 246 

hypervariable DNA methylation between exposure groups, using the same cutoffs (Supplemental Tables S5-6, selected 247 
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terms in Table 4), as well as 33 terms in gene regions and 43 terms in promoter regions with hypovariable DNA methylation 248 

between exposure groups (Supplemental Tables S7-8). Most enriched GO terms were related to immune response, with 249 

a particular focus on the innate immune response/inflammation (Tables 2-4, Supplemental Tables S1-S8). 250 

 251 

LOLA enrichment in differential and differentially variable DNA methylation 252 

To complement the gene-centric GO enrichment analysis, we additionally performed Locus Overlap Analysis (LOLA) to 253 

identify regulatory regions within our dataset enriched for functional genomic and epigenomic annotations62. We observed 254 

enrichments of LOLA annotations for regions in genomic tiling regions and CpG islands only, and no enrichments for genes 255 

or promoters. Most enriched annotations were for binding sites for transcription factors involved in hematopoiesis and 256 

immune response in regions hypomethylated in high vs. low MeHg groups (Fig. 1, Supplemental Figs. 3-13). The second 257 

most common signal in our LOLA results was for general repression in regions hypomethylated in high vs. low MeHg groups 258 

(Supplemental Figs. 3-13). In particular, we observed enrichment in repressive signals in hypomethylated regions in high 259 

vs. low MeHg groups, which suggests reactivation of repressed regulatory regions (Supplemental Figs. 3-13). Signals of 260 

gene repression include repressive histone modifications (e.g., H3K27me3) and loss of methylation (indicating binding and 261 

activation) in regions associated with binding of proteins that deposit repressive histone modifications (e.g., polycomb 262 

repressive complex components EZH265 and SUZ1266) or remove activating histone modifications (e.g., SMARCA4, a 263 

component of the SWI/SNF chromatin remodeling complex67, which recruits histone deacetylase repressor complexes68). 264 

 265 

Predicted epigenetic age, cell type proportions, and mitochondrial endpoints  266 

We computed predicted epigenetic age, sometimes referred to as an “epigenetic clock” biomarker, based on age-related 267 

changes in DNA methylation in specific CpG sites69-75. Accelerated aging, as evident from a discrepancy between 268 

chronological age and computed epigenetic age, has been associated with environmental pollutants and disease risk in 269 

past studies69-75. In our data, the predicted epigenetic ages computed from DNA methylation data were consistently lower 270 

than reported chronological age (on average 11 years lower, ranging from 8 to 17 years lower) (Fig 2A). Since predicted 271 

epigenetic age was highly correlated with reported chronological age (R2=0.86) (Fig. 2A), these results indicate a systematic 272 

underestimation of age by the epigenetic age algorithm in our dataset. In addition, we did not observe any association 273 

between predicted epigenetic age and MeHg exposure (Fig. 2B). In pairwise tests of association between proportions of 274 

different immune cell types with mercury exposure, only monocyte proportion was associated with binary MeHg (Wilcoxon 275 

test p=8.7x10-5) (Fig. 2B, Supplemental Fig. 1). Neither continuous nor binary total hair mercury was associated with 276 

mtDNA damage (R2=7E-05) (Fig. 2C) or mtDNA CN (R2=0.0028) (Fig. 2D). In addition, mtDNA damage was not highly 277 
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correlated with mtDNA CN (R2=0.07) (Supplemental Fig. 1). We observed a broad distribution of both mtDNA damage and 278 

mtDNA CN biomarkers in both high and low MeHg exposure groups (Fig. 2C-D). 279 

 280 

V. Discussion 281 

In this study, we identified candidate epigenetic biomarkers of MeHg-induced toxicity and protection in Peruvian individuals 282 

with high (>10 µg/g) vs. low (<1 µg/g) total hair mercury (a proxy for methylmercury exposure), matched on age and sex.  283 

 284 

The primary signal in our pathway enrichment data was of a clear immune phenotype in response to MeHg exposure. The 285 

human immune response comprises general innate responses as well as antigen-specific adaptive responses76. Both innate 286 

and adaptive immune responses include a humoral component (circulating chemical effectors, including cytokines and 287 

chemokines) and a cell-mediated component (including general neutrophil and macrophage77 responses and both 288 

general78,79 and antigen-specific79 B-cell and T-cell action). Most pathways that were enriched in hypomethylated regions in 289 

genes and promoters in high MeHg- vs. low MeHg-exposed Peruvians reflect innate immune response activation (Table 2, 290 

Supplemental Tables S1-2). Loss of DNA methylation in promoters and genes are generally associated with gene 291 

activation80, implying activation of these innate immune pathways in response to MeHg exposure. This innate response 292 

included classic neutrophil and macrophage activation81,82, as well as mast cell release of serotonin83 and eicosanoids like 293 

prostaglandins84 (Tables 2 and 4, Supplemental Tables S1-S2). In addition, we observed evidence of immune responses 294 

in several T- and B-cell subtypes (Tables 2 and 4, Supplemental Tables S1-S2). Both T-cells and B-cells develop effector 295 

cells in response to specific antigens, including DAMPs85. A subset of each effector cell subtype is retained as memory cells 296 

following immune response resolution86. T-cell responses are generally divided into cytotoxic (CD8+ T-cells) and helper 297 

(CD4+ T-cells) responses; CD4+ responses are further subdivided into T-helper type 1 (Th1) and T-helper type 2 (Th2) 298 

responses87. Th1 responses promote inflammation and, if uncontrolled, cause autoimmunity and tissue damage due to 299 

chronic inflammation88. Th2 responses include anti-inflammatory cytokines, as well as eosinophilic (e.g., IgE- and histamine-300 

mediated signaling), that counterbalance Th1 responses88. Here, we observed a clear CD4+ response, including both Th1 301 

(inflammatory cytokines and chemokines: interleukin-1 (IL-1), interleukin-1b (IL-1 b), interleukin-6 (IL-6), interleukin-8 (IL-8), 302 

tumor necrosis factor a (TNFa), macrophage-activating interferon g (IFN g)) (Tables 2 and 4, Supplemental Tables S1-S2 303 

and S4-S5) and Th2 (anti-inflammatory interleukin-10 (IL-10), eosinophil activation, interleukin-5 (IL-5), interleukin-13 (IL-304 

13), B-cell isotope switching) (Supplemental Tables S1-S2 and S4-S5). Importantly, the Th1 response is most evident in 305 

our GO enrichments of differential mean DNA methylation (Tables 2 and 3, Supplemental Tables S1-S4) and the Th2 306 

signal is clearest in GO enrichments of hypervariable DNA methylation (Table 4, Supplemental Tables S4-S5). These 307 

results indicate that MeHg induces a similar Th1 response in most individuals, but that some individuals mount a stronger 308 
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balancing Th2 response than others. This result suggests a mechanism by which MeHg-exposed individuals who exhibit 309 

Th1-dominant signaling with little Th2 counterbalance may be at higher risk of developing autoimmunity. Therefore, DNA 310 

methylation at genes and gene promoters associated with Th2 signaling in our dataset are strong candidate epigenetic 311 

biomarkers of individual risk of autoimmune response to MeHg. 312 

 313 

We observed two additional signals related to the development of autoimmunity. First, our data are consistent with 314 

expansion of autoreactive T cells. Autoreactive helper T cell subsets can form in response to self-antigen; T helper type 17 315 

(Th17) cells are most likely to be autoreactive, followed by Th1 cells89. Th17 cells are stimulated to differentiate from naïve 316 

CD4+ T cells by IL-6 and transforming growth factor-b (TGF-b), which stimulate downstream STAT3 signaling89. Our data 317 

show increases in all three of these signals (Tables 2 and 4, Supplemental Tables S1-S4), indicating an environment 318 

conducive to increased Th17 cell production. Regulatory T (Treg) cells provide negative regulation of Th17 cells and 319 

suppress autoimmune responses and disease development90,91. Treg cells are derived from naïve CD4+ T cells when IL-6 320 

and TGF-b levels decrease during resolution of an inflammatory response89. In addition, interleukin-7 (IL-7) signaling 321 

promotes expansion of the Treg pool90,91. The increased IL-6 and TGF-b signaling in response to MeHg, as well as 322 

decreased IL-7 signaling (Table 3, Supplemental Tables S3-S4), are consistent with an expanded pool of autoreactive 323 

Th17 cells and a diminished population of Treg cells that suppress autoreactivity in individuals with high MeHg exposure. 324 

Second, we observed that hypomethylated regions in high MeHg-exposed were enriched for gene promoters involved in 325 

marginal zone B cell differentiation (Table 2), which is consistent with activation of the target genes of these promoters. 326 

Marginal zone B cells can become autoreactive when co-stimulated by self-antigens and DAMPs92, and autoreactive 327 

marginal zone B cells can also activate autoreactive T cells92. Therefore, in addition to DNA methylation linked to Th2 328 

signaling, hypomethylated enhancers and promoters associated with decreased IL-7 signaling and increased marginal zone 329 

B cell differentiation are strong candidates for epigenetic biomarkers that report on inter-individual differences in 330 

autoimmune response to MeHg. The hypervariable DNA methylation in multiple inflammatory pathways is strong evidence 331 

of population distribution in immune response to MeHg in our dataset, including both high and low responders that carry 332 

differential DNA methylation signatures of response (Supplemental Tables S5-S6).  333 

 334 

The transcription factor signal that we observed in our LOLA enrichments is consistent with the immune phenotype reflected 335 

in our GO enrichment data. Specifically, we observed hypomethylation of tiling regions (likely enhancers) and promoters 336 

containing binding sites for transcription factors that control differentiation of the macrophages, neutrophils, T-cells and B-337 

cells (Fig. 1A-B, Supplemental Figs. S3-S13). Broadly, hematopoiesis generates a range of blood cell types, including red 338 

(erythrocytes) and white (lymphocytes) cells93. Lymphocytes are derived from either myeloid or lymphoid lineages; myeloid 339 
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precursors differentiate into neutrophils and monocytes/macrophages and lymphoid precursors develop into B-cells and T-340 

cells93. Spi1/PU.1 is a master regulator of hematopoiesis that directs differentiation within both myeloid and lymphoid 341 

lineages through varying concentration (e.g., low in multipotent precursors, high in mature B-cells and macrophages) and 342 

co-activator partners94. During early hematopoiesis, Spi1/PU.1 interacts with factors GATA-2, CEBPa/b and c-Jun to drive 343 

white blood cell differentiation94,95. In the presence of STAT3 (Fig. 1A) and interleukin-3 signaling (Supplemental Table 344 

S1), cells further develop into neutrophils and macrophages96. In contrast, RUNX197,98, RUNX397,98, TCF399, and TCF1299 345 

(Fig. 1A) promote T cell lineage commitment. We observed evidence of signaling through additional hematopoietic 346 

transcription factors, including LMO2, which is a scaffold protein that enables formation of protein complexes that include 347 

components TAL1, LYL1, GATA-2 that act at varying stages of hematopoiesis, primarily early stages100-103. These results 348 

are supported by an increase in monocyte cell proportion (on average, 6% in high MeHg vs. 4% monocytes in low MeHg 349 

p=8.7x10-5) in individuals with high MeHg exposure (Fig. 2B, Supplemental Fig. S2). In addition to directing development 350 

of specific immune cell types, the transcription factors identified in our dataset have relevant roles in innate immune 351 

response that we observed in our GO enrichments. For example, the transcription factor c-Fos is a component of the master 352 

factor activator protein 1 (AP1) that activates downstream innate immunity104. STAT3 mediates cytokine signaling, partly by 353 

upregulating c-Fos104. BATF is another member of the AP-1 family that dimerizes with Jun proteins and provides negative 354 

feedback to AP1 transcription105. Last, some of the proteins with binding sites enriched in high vs. low MeHg-exposed 355 

individuals regulate chromatin remodeling and transcription. For example, SMARCA4 is a component of the SWI/SNF 356 

chromatin remodeling complex106.  357 

 358 

Some of our results are particularly relevant to our study population. Specifically, our data point to a potential mechanistic 359 

link between MeHg exposure and type 2 diabetes (T2D). T2D is characterized by persistently high blood glucose levels due 360 

to impaired insulin secretion from pancreatic b cells, insensitivity to insulin in peripheral tissues, and increased glucose 361 

production in the liver107. Several well-established genetic risk factors for T2D are variants in the transcription factor 7-like 362 

2 (TCF7L2) gene108-110 that drive expression of functional splice isoforms of this gene109,111. The protein product of this gene 363 

is the high mobility group box-containing transcription factor TCF7L2 which activates Wnt signaling with tissue-specific 364 

outcomes108,112-114. In pancreatic b cells, human TCF7L2 variants impair normal insulin production and secretion in response 365 

to glucose115,116; impaired insulin response could lead to T2D, which is supported by the positive correlation between 366 

TCF7L2 variant frequency and population T2D risk117. In enteroendocrine cells, TCF7L2 may influence T2D susceptibility 367 

through its transcriptional regulation of proglucagon, which is the precursor of the insulinotropic peptide hormone glucagon-368 

like peptide 1 (GLP-1)108. Together with insulin, GLP-1 regulates blood glucose homeostasis111. Our data show that DNA 369 

binding sites for TCF7L2 are enriched in tiling regions (likely enhancers) and in gene promoters that are hypomethylated in 370 
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Peruvians with high vs. low MeHg exposure (Fig 1A, Supplemental Fig. 3). Loss of DNA methylation in these regions likely 371 

reflects binding of TCF7L2 to regulatory binding sites and activation of downstream signaling. If MeHg triggers aberrant 372 

TCF7L2 signaling in pancreatic b cells or enteroendocrine cells, in addition to the leukocyte signal observed in this study, 373 

then hypomethylation of TCF7L2 enhancers in blood cells may serve as a surrogate tissue biomarker of early MeHg-related 374 

T2D risk. MeHg exposure is toxic to pancreatic b cells118. However, MeHg is related to T2D risk in some but not all 375 

epidemiological studies (reviewed in 119). Most notably, cross-sectional analyses in the population-representative National 376 

Health and Nutrition Examination Surveys (NHANES) in the United States120 and Taiwan121 show positive associations 377 

between T2D and MeHg exposure. A large prospective human study confirmed this positive association122. In contrast, 378 

several cross-sectional and prospective human studies report no association123-125, or even an inverse association126 379 

(attributed to higher consumption of protective dietary nutrients in high exposed groups126), between MeHg and T2D risk. 380 

These equivocal results suggest population-specific risk profiles. American Indians in the U.S. have higher diabetes risk 381 

than do other ethnic groups, which suggests a higher baseline genetic risk in indigenous Peruvians  that may be exacerbated 382 

by diet and environment127. Individuals carrying TCF7L2 risk alleles that develop impaired glucose tolerance show increased 383 

conversion of this pre-diabetic state to full T2D onset, as compared to glucose-intolerant non-carriers128. These data suggest 384 

that MeHg-induced TCF7L2 signaling may pose a greater disease risk in a population with a higher baseline risk for disease.  385 

 386 

Some of our results may be more generalizable to health outcomes of MeHg in Western populations. Importantly, our results 387 

inform potential biological mechanisms that have not been resolvable in Western epigenetic datasets, possibly due to lower 388 

variance in exposure. For example, DNA binding sites for glucocorticoid receptor (GR), encoded by the NR3C1 gene, are 389 

enriched in gene promoters that are hypomethylated in individuals with high vs. low MeHg exposure (Fig. 1B, Supplemental 390 

Fig. S5) and the GO term “response to dexamethasone” (GO:0071548), which reflects GR activation by dexamethasone, 391 

is enriched in hypomethylated genes (in high vs. low MeHg-exposed individuals) (Supplemental Table S1). In leukocytes, 392 

GR signaling is important for dampening and resolving inflammatory responses129. Importantly, in the hippocampus, MeHg 393 

exerts neurotoxicity through GR signaling130. MeHg binds GR directly and attenuates GR activation by endogenous ligands, 394 

leading to decreased GR signaling that contributes to developmental neurotoxicity of MeHg130. In addition, rats exposed 395 

during development to a complex environmental contaminant mixture containing MeHg showed a dampened ability to 396 

reduce serum corticosterone levels following an experimental acute stress event131; because GR is responsible for returning 397 

corticosterone levels to homeostatic levels in healthy animals, these data provide functional evidence of GR signaling 398 

disruption in MeHg-exposed animals131. A prior study provides initial evidence that an epigenetic biomarker of MeHg GR 399 

inhibition in blood may reflect signaling in brain; specifically, in utero mercury exposure to child participants in the Seychelles 400 

Child Development Study predicted leukocyte DNA methylation of the NR3C1 gene132. Future work should focus on whether 401 
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DNA methylation of NR3C1 gene in blood reflects similar epigenetic profiles at this gene in hippocampus in rodents exposed 402 

to environmentally relevant levels of MeHg. If confirmed, DNA methylation at this gene in blood may serve as an actionable 403 

and accessible surrogate epigenetic biomarker of MeHg-induced neurotoxicity. 404 

 405 

Another important finding from our results suggests an epigenetic biomarker for a protective biological response to fish 406 

consumption. DNA binding sites for the transcription factors retinoid X receptor (RXR) and retinoic acid receptor a (RARa) 407 

are enriched in tiling regions (likely enhancers) that are hypomethylated in Peruvians with high vs. low MeHg exposure (Fig 408 

1A, Supplemental Figs. S3 and S5). PUFA found in large, fatty fish, including docosoehexaenoic acid (DHA), activates 409 

RXR signaling133,134that triggers downstream antioxidant signaling which protects against MeHg-induced neurotoxicity135,136. 410 

RXR can form heterodimers with RARa135; RXR-RARa signaling is critical for the hippocampus-dependent learning and 411 

memory137, as well as DHA-augmented fetal neurodevelopment135, that is disrupted by early life MeHg exposure10. The 412 

enrichment for DNA binding sites for transcription factor PML (Fig 1A, Supplemental Figs. S3 and S5) in our data likely 413 

reflects RXR-RARa signaling, providing further support for activation of this pathway; this signal likely reflects binding sites 414 

within the queried database of a cancer fusion gene of PML and RARa that heterodimerizes with RXR and binds to RXR-415 

RARa DNA binding sites138. Since human MeHg exposure in MDD occurs primarily through fish consumption, individuals 416 

with the highest MeHg exposure also have the highest fish consumption2. Birth cohort data from the high fish- and seafood-417 

consuming populations in the Republic of Seychelles and the Faroe Islands highlight the importance of considering the 418 

health benefits of fish consumption, which may outweigh the harms of MeHg exposure in some exposure settings9,10. Future 419 

work should explore whether epigenetic biomarkers of RXR-RARa activation by fish consumption reflect RXR-RARa in 420 

hippocampus, which is the primary target of MeHg neurotoxicity.  Validation of a biomarker that reports on how protective 421 

fish consumption is for a particular individual is a critical step in providing individualized health recommendations to 422 

individuals, particularly those at high risk for harm, like pregnant women and small children.  423 

 424 

In addition to differential DNA methylation, we investigated three additional biomarkers that may inform MeHg response in 425 

our study participants: epigenetic age and two mitochondrial biomarkers, mtDNA damage and mtDNA CN. We observed 426 

that a commonly used epigenetic age algorithm (which predicts age based on tissue DNA methylation) systematically 427 

underestimated chronological age in our study (Fig. 2A). This result indicates that current algorithms, which have been 428 

trained and tested on datasets from European individuals, are not generalizable to non-European populations. For 429 

algorithms to be more generalizable tools, they should be trained and tested on more diverse datasets. In addition, we 430 

observed no relationship between either mitochondrial biomarker and MeHg exposure (Fig. 2C-D), as well as promoter 431 
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hypermethylation of the RIG-1 signaling pathway (Supplemental Table S4) through which DAMPs trigger innate immune 432 

responses139. Although prior papers have not reported clear associations between mitochondrial biomarkers and MeHg 433 

exposure, it was unclear whether this lack of signal was statistical or biological140,141. The clear signal in immune signaling 434 

pathways in our data, coupled with the lack of association between mitochondrial biomarkers and MeHg, indicates that the 435 

biological role of mitochondria in the response to MeHg is more complex than previously thought. For example, 436 

mitochondrial DAMPs may serve as a signal of self-damage that triggers endogenous suppression of inflammation to 437 

promote healing142. The high variance in both mitochondrial markers in both high and low exposure groups (Fig. 2C-D), as 438 

well as hypervariable promoter DNA methylation in pathways involved in ROS production and response (Table 4), strongly 439 

implies unmeasured source(s) of variation in our population that require study before these biomarkers can be fully realized 440 

in population health settings.  441 

 442 

It is worth discussing why the primary transcription factors in our LOLA enrichments function during cellular differentiation, 443 

even though our study profiled mature, circulating white blood cells. There are two possible explanations for this finding. 444 

The first is that mature cells may carry persistent DNA methylation signatures of past differentiation programs; this possibility 445 

is supported by past evidence of similar DNA methylation memories143. The second possibility is that these differentiation 446 

programs may be reactivated in mature cells to enable dedifferentiation and phenotypic switching between cell types by 447 

changing epigenetic programs144-146. This possibility is supported by enrichment in our dataset for the GO term “cell 448 

dedifferentiation involving in phenotypic switching” (GO:0090678) (Supplemental Tables S5-S6). 449 

 450 

This study has several important limitations. First, our study participants are from a region where residents commonly live 451 

in the same villages or towns in which they are born2. Therefore, individuals with high adult exposures may have had high 452 

developmental exposures, as well. Our results may reflect acute epigenetic responses to MeHg or they may reflect 453 

persistent effects of developmental MeHg exposure or a combination of both effects. Second, most study participants in the 454 

high MeHg group reside in indigenous communities in the Madre de Dios region (Table 1), because the highest MeHg 455 

exposures accrue to high fish-consuming residents of these native communities2. Therefore, we are unable to separate 456 

definitively DNA methylation changes due to genetic differences between indigenous and non-indigenous study participants 457 

from environmental effects on DNA methylation due to MeHg exposure. However, the differential DNA methylation signal 458 

that we observed here largely reflect known biology in MeHg toxicity, which supports a primarily environmental effect, even 459 

in the presence of known genetic variation. Third, because this study is cross-sectional, there are several limits to results 460 

interpretability. For example, our MeHg exposure biomarker reflects only 2-3 months’ prior exposure, which may reflect 461 

transient exposure or, alternatively, relatively constant chronic exposure. Therefore, we are unable to assess whether these 462 
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epigenetic changes reflect responses to short or long exposure durations. In addition, we are unable to assess the 463 

persistence, if any, of our observed epigenetic markers. These questions should be assessed in future cohorts with time-464 

resolved exposures and epigenetic outcomes. 465 

 466 

Here, we identify a set of candidate epigenetic biomarkers for assessing individualized risk of autoimmune response and 467 

protection against neurotoxicity due to MeHg exposure. In addition, our results may inform surrogate tissue biomarkers of 468 

early MeHg-related neurotoxicity and T2D risk. This set of candidate epigenetic biomarkers represents an important step 469 

towards personalized health recommendations for MeHg-contaminated fish consumption. 470 

 471 
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 508 
 509 

 510 
Table 1. Descriptive statistics of age- and sex-matched study participants with either high (>10 µg/g) or low (<1 µg/g) 
total hair mercury (THg). THg is a proxy for methylmercury (MeHg) exposure. The “%Native” column reports on the 
number of group participants living in an indigenous community (as outlined in Weinhouse et al 20212). 
 
High MeHg (N=16)   
 Age Median 32 years (24-40 years) 
 Sex 8 female, 8 male 
 Continuous hair THg Median 12.4 µg/g (10-22.7 µg/g) 
 %Native  12/16 (75%) 
Low MeHg (N=16)   
   
 Age Median 32 years (24-42 years) 
 Sex 9 female, 7 male 
 Continuous hair THg Median 0.52 µg/g (0.29-1.1 µg/g) 
 %Native  1/16 (0.06%) 

 511 

 512 
 513 

Table 2. Selected Biological Process terms from the top 1000 ranked terms in the Gene Ontology (GO) database 
enriched in genes and promoters hypomethylated in Peruvians with high vs. low MeHg exposure. The full list of enriched 
GO terms can be found in Supplemental Tables S1 and S2.  
 
Genes   
 GO:0002758 Innate immune response-activating signal transduction 
 GO:0045089 Positive regulation of innate immune response 
 GO:0006954 Inflammatory response 
 GO:1903555 Regulation of tumor necrosis factor superfamily cytokine production 
 GO:1901224 Positive regulation of NIK/NFkB signaling 
 GO:0032651 Regulation of interleukin-1b production 
 GO:0032733 Positive regulation of interleukin-10 production 
 GO:0032612 Interleukin-1 production 
 GO:0050725 Positive regulation of interleukin-1b biosynthetic process 
 GO:0032755 Positive regulation of interleukin-6 production 
 GO:0032729 Positive regulation of interferon g production 
 GO:0042119 Neutrophil activation 
 GO:0002275 Myeloid cell activation involved in immune response 
 GO:0002444 Myeloid leukocyte-mediated immunity 
 GO:0034241 Positive regulation of macrophage fusion 
 GO:0002351 Serotonin production involved in inflammatory response 
 GO:0060585 Positive regulation of prostaglandin-endoperoxide synthase activity 
 GO:0070101 Positive regulation of chemokine-mediated signaling pathway 
 GO:0002371 Dendritic cell cytokine production 
 GO:2000516 Positive regulation of CD4+, ab T cell activation 
 GO:0046641 Positive regulation of ab T cell proliferation 
 GO:0046637 Regulation of ab T cell differentiation 
 GO:0042088 T-helper 1 type immune response 
 GO:0038156 Interleukin-3 mediated signaling pathway 
Promoters   
 GO:0050830 Defense response to Gram-positive bacterium 
 GO:0050829 Defense response to Gram-negative bacterium 
 GO:0043303 Mast cell degranulation 
 GO:0032762 Mast cell cytokine production 
 GO:0002548 Monocyte chemotaxis 
 GO:0002315 Marginal zone B cell differentiation 
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 524 
 525 
 526 

Table 3. Selected Biological Process terms from the top 1000 ranked terms in the Gene Ontology database enriched in 
genes and promoters hypermethylated in Peruvians with high vs. low MeHg exposure.  The full list of enriched GO terms 
can be found in Supplemental Tables S3 and S4.  
 
Genes   
 GO:0002227 Innate immune response in mucosa 
 GO:0050830 Defense response to Gram-positive bacterium 
 GO:0061844 Antimicrobial humoral immune response mediated by antimicrobial 

peptide 
 GO:0002548 Monocyte chemotaxis 
 GO:2001201 Regulation of TGF-b secretion 
 GO:0038111 Interleukin-7-mediated signaling pathway 
 GO:0098760 Response to interleukin-7 
Promoters   
 GO:1900246 Positive regulation of RIG-1 signaling pathway 
 GO:0038111 Interleukin-7-mediated signaling pathway 
 GO:0098760 Response to interleukin-7 

Table 4. Selected Biological Process terms from the top 1000 ranked terms in the Gene Ontology database enriched in 
genes and promoters with hypervariable DNA methylation in Peruvians with high vs. low MeHg exposure.  The full list of 
enriched GO terms can be found in Supplemental Tables S5 and S6.  
 
Genes   
 GO:0090678 Cell dedifferentiation involved in phenotypic switching 
 GO:0032714 Negative regulation of interleukin-5 production 
 GO:0045416 Positive regulation of interleukin-8 biosynthetic process 
 GO:0032696 Negative regulation of interleukin-13 production 
 GO:0033003 Regulation of mast cell activation 
Promoters   
 GO:2000379 Positive regulation of reactive oxygen species metabolic process 
 GO:1900239 Regulation of phenotypic switching 
 GO:0090678 Cell dedifferentiation involved in phenotypic switching 
 GO:1903426 Regulation of reactive oxygen species biosynthetic process 
 GO:0032675 Regulation of interleukin-6 production 
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Figure 1. Transcription factor binding site enrichments in genomic regions hypomethylated in individuals with high methylmercury exposure. Scatterplot for 
differentially methylated (A) genomic tiling regions and (B) promoter regions. Color transparency corresponds to point density; the 1% of points in the sparsest population 
plot regions are drawn explicitly. Red colored points represent the 1000 best ranking regions; the linked barplots represent enrichments within these top ranked data 
points. Barplots showing selected log-odds ratios (p<0.01) from LOLA enrichment analysis for (A) genomic tiling and (B) promoter regions that are hypomethylated in 
Peruvian study participants with high (>10 µg/g) vs. low (<1 µg/g) total hair mercury, a proxy for methylmercury exposure.  
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Figure 2. Tests of association for epigenetic age, cell type proportions and mitochondrial DNA biomarkers with methylmercury exposure in Peruvian 
individuals. (A) Association between predicted epigenetic age and reported chronological age. (B) Pair-wise associations between covariates, including white blood 
cell type proportions (as estimated by DNA methylation profiles), and methylmercury exposure (estimated by total hair mercury). (C) Association between 
mitochondrial DNA damage and total hair mercury levels. (D) Association between mitochondrial DNA copy number and total hair mercury levels. 
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