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Abstract 13 

Stimulus repetition normally causes reduced neural activity in brain regions that process that 14 

stimulus. Some theories claim that this “repetition suppression” reflects local mechanisms 15 

such as neuronal fatigue or sharpening within a region, whereas other theories claim that it 16 

results from changed connectivity between regions, following changes in synchrony or top-17 

down predictions. In this study, we applied dynamic causal modelling (DCM) on a public 18 

fMRI dataset involving repeated presentations of faces and scrambled faces to test whether 19 

repetition affected local (self-connections) and/or between-region connectivity in left and 20 

right early visual cortex (EVC), occipital face area (OFA) and fusiform face area (FFA). Face 21 

“perception” (faces versus scrambled faces) modulated nearly all connections, within and 22 

between regions, including direct connections from EVC to FFA, supporting a non-23 
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hierarchical view of face processing. Face “recognition” (familiar versus unfamiliar faces) 24 

modulated connections between EVC and OFA/FFA, particularly in the left hemisphere. 25 

Most importantly, immediate and delayed repetition of stimuli were also best captured by 26 

modulations of connections between EVC and OFA/FFA, but not self-connections of 27 

OFA/FFA, consistent with synchronization or predictive coding theories.  28 

 29 
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1 Introduction 34 

Repetition suppression (RS) refers to decreased neural responses produced by repeated 35 

exposures to stimuli. RS is observed in human studies using functional magnetic resonance 36 

imaging (fMRI; for review, see Grill-Spector et al., 2006) and has been associated with the 37 

behavioural phenomenon of “priming”, i.e., faster and/or more accurate responses to 38 

repeated stimuli. RS has also been used as a tool to infer functional characteristics of neural 39 

populations, particularly in sensory regions (also called “fMRI adaptation”, Grill-Spector & 40 

Malach, 2001; Larsson et al., 2016). For example, two regions in the ventral visual stream - 41 

the bilateral fusiform face area (FFA) and the occipital face area (OFA) - consistently show 42 

RS to repeated presentations of the same faces (Henson, 2016). 43 

1.1 Neural theories of Repetition Suppression 44 

As described below, four main theories have been developed to account for RS: Fatigue, 45 

Sharpening, Synchronization and Predictive coding (Grill-Spector et al., 2006; Wiggs & 46 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.05.498907doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498907
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Martin, 1998; Gotts et al., 2012; Henson, 2016). Although these theories have focused on 47 

different features of repetition effects, the aim of the present study was to test their 48 

predictions in terms of effective connectivity between face-responsive regions. To this end, 49 

we applied dynamic causal modeling (DCM, Friston et al., 2003) on a publically available 50 

fMRI dataset that includes initial and repeated presentations of familiar, unfamiliar and 51 

scrambled faces (Wakeman & Henson, 2015). DCM is a Bayesian framework for comparing 52 

models with specified connectivity within a network of regions of interest (ROIs). It 53 

incorporates a generative model of fMRI data, in which connections are represented by three 54 

ROI-by-ROI matrices of parameters: the A matrix represents the fixed (or endogenous) 55 

directional connections from one ROI to another; one or more B matrices represent the 56 

modulation of the corresponding endogenous connections due to one or more experimental 57 

manipulations (e.g., each type of stimulus); and the C matrix is the direct (or exogenous) 58 

input to one or more ROIs for one or more experimental manipulations. The dynamics (fMRI 59 

timeseries) of the ROIs are then modelled using 1) a parameterized differential equation that 60 

expresses the rate of change of neural activity in each ROI as a function of the level of 61 

activity in every connected ROI, triggered by the timing of each exogenous input; and 2) a 62 

haemodynamic model that transforms the predicted neural activity into the fMRI BOLD 63 

signal, with a small number of haemodynamic parameters than can vary across ROIs. When 64 

applying DCM to RS paradigms, the C matrix can code all stimuli, whereas the B matrix can 65 

code for the difference between initial and repeated presentations of stimuli (for further 66 

details about DCM, see Methods). 67 

Of the four theories of RS mentioned above, the first two emphasize changes within an 68 

ROI, which is captured in DCM by the self-connections (diagonal terms of A and B matrices). 69 

These are constrained to be negative to ensure the network dynamics are stable (i.e., activity 70 

eventually returns to zero at some time after an exogenous input). According to the Fatigue 71 
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theory (Li et al., 1993; McMahon & Olson, 2007), it is the neurons that are most selective 72 

for a stimulus (and therefore show the greatest firing to that stimulus) that show greatest 73 

reduction in firing when that stimulus is repeated. This pattern has been observed in early 74 

visual cortex (Avidan et al., 2002), and may underlie some forms of perceptual adaptation 75 

(e.g., Grill-Spector et al., 1999). The mechanism underlying the fatigue could be firing-rate 76 

adaptation or synaptic depression (Grill-Spector et al., 2006). If these mechanisms operate 77 

primarily within an ROI (see Discussion), then in the DCM framework, they would be 78 

captured by changes in the self-connections.  79 

The Sharpening theory (Wiggs & Martin, 1998) also offers a “within-region” 80 

perspective, but makes the opposite neural predictions to fatigue theory: i.e., it is the less 81 

selective neurons whose firing is reduced (as opposed to the most selective), resulting in a 82 

sparser distribution of firing. The mechanisms of sharpening might include strengthening of 83 

inhibitory, lateral connections between neurons. Consistent with the sharpening model, Jiang 84 

et al. (2006, 2007) found that perceptual training sharpens the tuning of neurons. At a 85 

population-level measured by fMRI (i.e., when averaging over many neurons within an ROI), 86 

because there tend to be more non-selective than selective neurons, the mean firing rate 87 

decreases (causing RS). This would again be apparent in DCM by changes in the self-88 

connections of the B matrix, e.g., increased self-inhibition, indistinguishable from Fatigue 89 

theory. 90 

The remaining two theories assume that RS also arises from connections between 91 

regions. The Synchronization theory of Gotts et al. (2012) proposes that repetition leads to 92 

increased synchronization of neural activity across regions, such that greater communication 93 

can be achieved despite lower mean firing rates. The reduced firing rates cause RS, while 94 

the increased synchrony causes more efficient neural processing and hence behavioural 95 

effects like priming (Ghuman et al., 2008). This increased neural synchrony is likely to be 96 
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associated with stronger effective connectivity between regions, corresponding to off-97 

diagonal elements in DCM’s B matrix. 98 

Finally, the Predictive Coding theory (Friston, 2005; Henson, 2016) suggests that RS is 99 

associated with changes in effective connectivity between regions, as well as within a region. 100 

This theory proposes that neurons at one level of a hierarchy receive predictions from higher 101 

levels, and feed forward the difference (i.e., prediction error) between these predictions and 102 

the input from levels below. When a stimulus has been processed before, the predictions are 103 

improved, and therefore the prediction error is reduced. A single ROI (as resolved by 104 

standard fMRI) is assumed to contain neurons receiving predictions from the level above, 105 

neurons receiving prediction errors from the level below, and neurons sending the resulting 106 

prediction error to the level above (even if these neurons are in different layers of cortex; 107 

Friston, 2005). However, assuming that the fMRI signal is dominated by the feedforward 108 

neurons whose firing codes prediction error (Egner et al., 2010), the mean fMRI response 109 

will be reduced by repetition. Though the mapping from neural interactions to fMRI effective 110 

connectivity is not simple (see Discussion), the improved predictions might be expected to 111 

affect backward connections in DCM (e.g., from FFA to OFA), while the reduced prediction 112 

errors fed forward might be expected to affect forward connections (e.g., from OFA to FFA).    113 

A previous study of Ewbank et al. (2013) used DCM to investigate effects of face 114 

repetition (within and across changes in the size of images), and found evidence that 115 

repetition modulated connections from right OFA to right FFA, supporting the 116 

synchronization/predictive coding account. However, the RS data in that study came from a 117 

blocked fMRI design, comparing blocks in which the same face was shown multiple times 118 

against blocks in which a new face was shown in each trial. This blocking means that 119 

participants can expect whether or not the next stimulus is a repeat, which is also known to 120 

reduce the fMRI response (Summerfield et al., 2008; also called “expectation suppression”, 121 
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Grotheer & Kovács, 2015). In the present data, initial and repeated trials were pseudo-122 

randomly intermixed, dramatically reducing the ability to accurately expect the next stimulus 123 

type. Furthermore, the repetition in the Ewbank et al.’s DCM studies was always immediate 124 

(i.e., no intervening stimulus), yet the lag between initial and repeated presentations may 125 

affect the mechanisms of RS (e.g., immediate repetition may engage fatigue to a greater 126 

extent than longer-lag repetition; see Epstein et al., 2008; Henson, 2016). In the present data, 127 

there were also delayed repetitions (with several intervening faces), which allowed testing 128 

of whether the effects of repetition on connectivity differ by repetition lag. Finally, Ewbank 129 

et al. (2013) only included 2 ROIs in their DCM: the OFA and FFA in the right hemisphere. 130 

While this allowed testing of whether repetition affects forward, backward and/or self-131 

connections, it did not allow for the possibility that repetition already affects the input to 132 

these regions, e.g., in the forward connectivity from earlier regions in a processing stream, 133 

such as early visual cortex (EVC), which limited the ability to test some specific theories of 134 

face processing (see below). Moreover, because the DCM only included ROIs in the right 135 

hemisphere, it did not allow testing of whether the same repetition effects occur in the left 136 

hemisphere. Notably, though face-related OFA and FFA activations in fMRI are often 137 

stronger/more selective in the right hemisphere, paralleling suggestions from brain lesions 138 

that the right hemisphere is specialized for face processing (Ishai et al., 2005; Rossion, 2018), 139 

similar face-related activations are found in the left hemisphere. We addressed these issues 140 

by comparing a “2-ROI” network in each hemisphere separately (as in Ewbank et al., 2013), 141 

with a “3-ROI” network that also included EVC in each hemisphere, and a “6-ROI” network 142 

that included bilateral EVC, OFA and FFA ROIs.  143 

1.2 Network theories of Face Processing 144 

Finally, though we have focused on repetition effects, our DCM models also allowed 145 
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testing of other hypotheses associated with face processing. Firstly, we have assumed above 146 

(e.g., in the discussion of forward and backward connections according to the Predictive 147 

Coding theory) that FFA sits “higher” than the OFA in a face processing hierarchy, as 148 

common in theories of face processing (Haxby et al., 2000; Fairhall & Ishai, 2007). However, 149 

Rossion and colleagues have suggested that information may flow from EVC to FFA first, 150 

and then back from FFA to OFA. This is based on neuroimaging findings from patients with 151 

OFA lesions, who still show face-related activation in FFA in the same hemisphere (Rossion 152 

et al., 2003; Gentile et al., 2017; Steeves et al., 2009). This suggests a direct connection from 153 

EVC to FFA that does not go via OFA (or else input from the contralateral FFA), meaning 154 

there is not a strict, sequential hierarchy from EVC to OFA to FFA.  155 

The first DCM study of face processing (Fairhall & Ishai, 2007) found that face 156 

perception modulated connections from OFA to FFA, favouring the conventional 157 

feedforward, hierarchical view. A more recent meta-analysis of four DCM fMRI experiments 158 

(Kessler et al., 2021) replicated the increased “forward” connectivity from OFA to FFA for 159 

faces, but also found more negative “backward” connectivity from FFA to OFA. However, 160 

neither of these studies allowed for input from EVC to both ROIs, which would allow, for 161 

example, face-related input to FFA that bypasses OFA, as suggested by the patient fMRI data 162 

of Rossion and colleagues. Nor did either study allow modulations of self-connections by 163 

faces, nor modulation of connections between the two hemispheres. A study by Frässle et al. 164 

(2016) tested DCMs that connected OFA and FFA in both hemispheres, as well as input from 165 

left and right EVC. Their findings highlighted the role of interhemispheric integration 166 

between bilateral OFA in face perception, in addition to feedforward modulations from EVC 167 

to OFA and then FFA. However, they did not allow the direct connections between EVC and 168 

FFA suggested by Rossion and colleagues (nor allow modulation of self-connections). We 169 

therefore revisited this question in the present dataset, operationalizing face “perception” by 170 
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contrasting faces with scrambled faces, and adding another “B” matrix to capture modulation 171 

of connections by face perception. By allowing the connections from EVC to be modulated 172 

by both faces and by repetition, we could test alternative hypotheses that face-related 173 

activation and RS respectively already arrive in the input to OFA and/or FFA, through altered 174 

synaptic weights from earlier visual regions. 175 

Finally, there is also debate around the role of FFA and OFA in face recognition, as 176 

operationalized in the present dataset by contrasting familiar faces (known to participants) 177 

with unfamiliar faces (see also Henson et al., 2003). While impairments of face 178 

recognition/identification, despite intact face perception, are more often associated with 179 

lesions to more anterior temporal lobe (ATL) regions (Damasio et al., 1990; Gainotti & 180 

Marra, 2011), neuroimaging studies sometimes show additional activation of FFA for 181 

familiar than unfamiliar faces (Henson et al., 2003). While this familiarity-related activation 182 

could reflect feedback from ATL, we did not include an ATL ROI in the present DCMs 183 

because no such region showed any differential activity in the whole-brain contrasts, 184 

possibly because of susceptibility-related fMRI signal dropout in this dataset. Nonetheless, 185 

we could at least test whether familiarity effects reflected local effects (self-connections), 186 

connectivity from OFA to FFA, or between left and right hemispheres for example.  187 

1.3 Methodological Advancements 188 

The previous meta-analysis by Kessler et al. (2021) made inferences about individual 189 

parameters (connections) in their DCM models of a face network. However, this parameter-190 

level inference ignores potential covariances between the posterior estimates of those 191 

parameters, which limits their reproducibility and interpretability (Rowe et al., 2010). Here, 192 

we focused on model-level inference, which accommodates covariances between all 193 

parameters. To address our hypotheses, we performed binary comparisons of two families 194 
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of models that differed in a certain type of connection, such as models with versus without 195 

modulation of self-connections by repetition, for example, or models with versus without 196 

modulation of forward connections from ECV to FFA by face perception. More specifically, 197 

we compared families in terms of the free energy approximation to their model evidences, 198 

converted to a posterior probability of one family being more likely than the other (where a 199 

probability of 95% was taken to be sufficient evidence to favour one family). 200 

Furthermore, we employed recent developments in group DCM modelling, using a 201 

Parametric Empirical Bayes (PEB) approach (Friston et al., 2015). By creating a hierarchical 202 

model, empirical priors at the group level shrink the parameter estimates for individual 203 

participants toward those associated with the global maximum of the model evidence. This 204 

finesses problems due to local minima inherent in the inversion of nonlinear and ill-posed 205 

DCM models, thereby providing more robust and efficient estimates. 206 

To summarise, the main purpose of this study was to examine critical hypotheses in 207 

terms of connectivity arising from the four theories of RS: fatigue, sharpening, 208 

synchronization and predictive coding. If repetition modulates within-region connectivity 209 

(self-modulations in DCM’s B matrix), this is consistent with the fatigue and sharpening 210 

models. If repetition modulates between-region connections (forward or backward 211 

modulations in DCM’s B matrix), this is consistent with synchronization and predictive 212 

coding models. Note also that these theories are not mutually exclusive - for instance, 213 

predictive coding may induce neural sharpening, causing changes both between and within 214 

regions. Furthermore, we took the opportunity to revisit questions about the functional 215 

architecture of face perception and face recognition, given that the dataset included repetition 216 

of unfamiliar faces, famous faces and scrambled faces. 217 

 218 

2 Materials and Methods 219 
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2.1 Dataset 220 

The multi-modal (MRI, EEG, MEG) human neuroimaging dataset is available on 221 

OpenfMRI (https://www.openfmri.org/dataset/ds000117/; Wakeman & Henson, 2015). It 222 

consists of 19 participants with an age range of 23–37 years (note that this is a superset of 223 

the participants available on OpenNeuro, https://openneuro.org/datasets/ds000117). 224 

Eighteen participants were included after removing one participant whose debriefing showed 225 

they did not recognize any famous faces in one run.  226 

During each of the 9 runs, participants made left-right symmetry judgments to randomly 227 

presented images of 16 unique faces from famous people, 16 unique faces from nonfamous 228 

people (unfamiliar to participant), and 16 phase-scrambled versions of the faces. Half of the 229 

stimuli repeated immediately, and the other half repeated after delays of 5-15 stimuli 230 

intervals. We used debriefing data to re-define familiarity of each face for each participant 231 

(i.e., reclassifying famous faces they did not know as “unfamiliar” and reclassifying 232 

nonfamous faces they said they knew as “familiar”, even though latter was rare). 233 

The MRI data were acquired with a 3T Siemens Tim-Trio MRI scanner (Siemens, 234 

Erlangen, Germany). The fMRI data came from a gradient echo-planar imaging (EPI) 235 

sequence, with TR of 2000 ms, TE of 30 ms and flip angle of 78°. A T1-weighted structural 236 

image of 1 × 1 × 1 mm resolution was also acquired using a MPRAGE sequence (for more 237 

details, see Wakeman & Henson, 2015).  238 

2.2 fMRI analysis and ROI selection 239 

The fMRI data were pre-processed using the SPM12 software 240 

(www.fil.ion.ucl.ac.uk/spm). The first two scans were removed from each session to allow 241 

for T1 saturation effects. The Matlab scripts used for all analyses that follow are available 242 

here: https://github.com/SMScottLee/Face_DCM_fMRI. The functional data were realigned 243 
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to correct for head motion, interpolated across time to the middle slice to correct for the 244 

different slice times, and coregistered with the structural image. The structural image was 245 

segmented and normalized to a standard MNI template, and the normalization warps were 246 

then applied to the functional images, resulting in voxel sizes of 3 × 3 × 3 mm. These were 247 

finally spatially smoothed using a Gaussian filter of 8 mm FWHM for mass univariate 248 

statistics.  249 

After preprocessing, fMRI data were analyzed in a two-stage approximation to a mixed-250 

effects model. In the first stage, neural activity was modeled by a delta function at stimulus 251 

onset. The BOLD response was modeled by a convolution of these delta functions by a 252 

canonical haemodynamic response function. The resulting time courses were downsampled 253 

at the midpoint of each scan to form regressors in a General Linear Model (GLM). The 254 

experiment crossed two factors. The first factor was repetition (initial stimulus, immediately 255 

repeated or delayed repeated) and the second factor was the type of stimulus (familiar face, 256 

unfamiliar face or scrambled face). Each test session therefore contained 9 regressors of 257 

interest: initial familiar face, immediately repeated familiar face, delayed repeated familiar 258 

face, initial unfamiliar face, immediately repeated unfamiliar face, delayed repeated 259 

unfamiliar face, initial scrambled face, immediately repeated scrambled face, and delayed 260 

repeated scrambled face. To capture face processing effects and to guide ROI selection (see 261 

below), 4 contrasts were predefined: “face perception” was operationalised by contrasting 262 

all faces versus scrambled faces; “immediate repetition” was operationalised by contrasting 263 

all initial presentations (faces and scrambled faces) versus immediate repeats; “delayed 264 

repetition” was operationalised by contrasting all initial presentations versus delayed repeats; 265 

“face recognition” was operationalised by contrasting all familiar faces versus unfamiliar 266 

faces. In addition, 5 interactions between these contrasts were tested (e.g., whether 267 

immediate repetition effects were bigger for faces than scrambled faces). 268 
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The group-level, family-wise error-corrected (p < .05) results showed greater BOLD 269 

response to faces than scrambled faces (averaged across initial and repeated presentations) 270 

in bilateral occipital face area (OFA) and fusiform face area (FFA), plus a cluster in left 271 

orbitofrontal cortex. 272 

While superior temporal sulcus (STS) is often associated with face processing (Babo-273 

Rebelo et al., 2022; Haxby et al., 2000) and has been included in some previous DCM 274 

analyses (Fairhall & Ishai, 2007; Kessler et al., 2021), we did not find it in our group-level 275 

univariate results and so did not include it in the present analysis. However it should be kept 276 

in mind that some of the present effects in OFA and/or FFA could emerge from interactions 277 

with STS (or other regions like ATL; see Introduction), which could be investigated in future 278 

studies.  279 

To allow for some individual variability in the location of OFA and FFA, and maximize 280 

their SNR, these ROIs were defined by the contrast of faces > scrambled, uncorrected p < .05, 281 

for each subject, but masked with a 10-mm sphere located at the group-result peak (right 282 

OFA [x = +39, y = -82, z = -10], left OFA [x = -36, y = -85, z = -13], right FFA [x = +42, y 283 

= -46, z = -19], left FFA [x = -39, y = -49, z = -22]) in order to constrain within anatomically-284 

similar areas (Supplementary Figure 1). Because the contrast of all trials > baseline activated 285 

most of the occipitotemporal cortex (and the stimuli straddled both visual hemifields), the 286 

present data did not enable selection of distinct clusters for EVC. Therefore, ROIs for right 287 

and left EVC were defined by the contrast of left > right and right > left hemifield input from 288 

a previous study (Henson & Mouchlianitis, 2007), and masked with subject-specific 289 

contrasts of all trials > baseline in the present data, again to maximize SNR. The number of 290 

voxels per ROI ranged across participants from 140-178 for rEVC, 47-151 for rOFA and 5-291 

157 for rFFA; 86-112 for lEVC, 12-143 for lOFA and 3-167 for lFFA.    292 

The first singular vector of the fMRI timeseries across voxels was extracted from these 293 
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ROIs, and the same GLM described above re-fitted. Planned comparisons on the resulting 294 

parameter estimates were then tested (Table 1). OFA and FFA showed face-related activation 295 

(since they were defined this way), though EVC (defined from independent data) showed 296 

de-activation, i.e., greater activation for scrambled faces. The latter might reflect low-level 297 

differences in visual complexity, despite the phase-scrambling’s preservation of the 2D 298 

spatial power spectrum, or could reflect suppression of low-level features that are predicted 299 

by a higher-level percept (Murray & Wojciulik, 2004). All six ROIs showed significant RS 300 

for both immediate and delayed repetition, and greater RS for immediate than delayed 301 

repetition. Bilateral FFA also showed significant effects of recognition (greater activation 302 

for familiar than unfamiliar faces). Left EVC and right OFA also showed recognition effects, 303 

though would be unlikely to survive correction for the multiple comparisons performed.  304 

The only interaction reaching significance was between face perception and immediate 305 

repetition in left OFA. No other interactions between perception and repetition, or between 306 

recognition and repetition, were significant in any ROI. The lack of interactions was 307 

somewhat surprising, in that we expected RS in OFA and FFA to be greater for familiar than 308 

unfamiliar faces, and for faces than for scrambled faces (Henson & Rugg, 2003), but this 309 

may be because the repetition lags were shorter than used previously (Henson, 2016).  310 

  311 
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  Original data  

rEVC  -3.08* 3.87* 3.75* 0.83 3.40* -1.31 -0.27 -1.35 0.44 

lEVC  -2.02 5.02* 5.43* 2.47* 4.37* -1.47 -0.22 0.57 0.59 

rOFA  13.38* 4.06* 3.22* 2.60* 3.11* 0.70 -0.43 -0.84 0.43 

lOFA  13.25* 3.77* 4.04* 1.83 3.98* 2.58* 0.29 0.70 1.69 

rFFA  10.94* 6.32* 4.54* 5.34* 5.04* 1.38 0.05 -0.44 0.46 

lFFA  11.47* 4.93* 3.04* 5.04* 3.76* 1.71 -0.08 -0.65 0.53 

  2-ROI network of right hemisphere 

rOFA  (29%) 9.69* 4.22* 2.85* 2.52* 3.33* 0.46 2.12*a -0.84 0.60 

rFFA  (20%) 9.23* 6.51* 5.29* 3.68* 6.30* 2.94*a 4.12*a -0.80 -1.16 

  3-ROI network of right hemisphere 

rEVC  (17%) -0.75a 2.97* 5.86* 0.90 3.71* 1.20 0.65 -0.30 -1.13 

rOFA  (35%) 8.30* 4.90* 3.51* 4.22* 3.93* 0.50 1.05 -0.28 0.87 

rFFA  (28%) 8.46* 5.08* 4.31* 3.90* 4.43* 0.69 0.85 -1.41 0.03 

  6-ROI network of bilateral hemispheres 

rEVC  (16%) 0.83a 4.70* 4.23* 2.34*a 4.19* 0.49 -1.51 -0.55 1.01 

lEVC  (18%) 0.02 5.62* 4.97* 1.42a 5.13* 0.77 -1.13 -0.42 1.26 

rOFA  (34%) 8.03* 5.19* 3.41* 4.67* 4.05* 0.40 -0.15 -0.49 0.83 

lOFA  (29%) 8.72* 5.37* 3.43* 4.87*a 3.92* 0.42a -0.17 -0.33 1.21 

rFFA  (25%) 8.05* 5.77* 4.42* 4.30* 4.70* 0.50 -0.11 -0.42 1.23 

lFFA  (22%) 7.75* 5.84* 4.20* 4.40* 4.40* -0.52 -0.56 -0.73 1.54 

 312 
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Table 1. T-values for the effects of face perception, immediate repetition (Imm Rep), delayed 313 

repetition (Del Rep), face recognition, and their interactions on original data from 6 ROIs 314 

and on fitted data in 2-, 3- and 6-ROI networks. Note that the T-values for the “Perception” 315 

effect in OFA and FFA are biased by prior selection of the voxels in a whole-brain search; 316 

the remaining effects are unbiased since orthogonal contrasts. Positive T-values mean 317 

greater activation for faces than scrambled for the perception contrast (i.e, negative T-values 318 

mean in EVC greater activation for scrambled than intact faces), greater activation for 319 

initial than repeated presentations for the repetition contrasts (i.e, RS) and greater activation 320 

for familiar than unfamiliar faces for the recognition contrast. Second column shows mean 321 

percentage across participants of variance in fMRI timeseries explained by DCM in each 322 

ROI. *p < .05, two-tailed t-test. 323 

 324 

Given the lack of interactions, for the DCM B matrices, we only modelled the four 325 

experimental effects that significantly modulated activation in at least two ROIs. These were 326 

the main effects of “face perception” (contrast vector = [1 1 1 1 1 1 0 0 0], where order of 327 

conditions as above), “immediate repetition” (contrast vector = [0 1 0 0 1 0 0 1 0]), “delayed 328 

repetition” (contrast vector = [0 0 1 0 0 1 0 0 1]) and “face recognition” (of familiar faces; 329 

contrast vector = [1 1 1 0 0 0 0 0 0]). For the driving input in the DCM C matrix, we used 330 

the common effect of all stimuli versus inter-stimulus baseline (“all stimuli”, contrast vector 331 

= [1 1 1 1 1 1 1 1 1]). 332 

2.3 Dynamic Causal Modelling (DCM) 333 

The neural dynamics in DCM for fMRI data are represented by the first-order 334 

differential equation (Friston et al., 2003): 335 
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𝑑𝑧
𝑑𝑡

𝐴 𝑢 𝑡 𝐵 𝑧 𝑡 𝐶𝑢 𝑡  336 

The vector z(t) represents the neural activity in each of the n ROIs at time t. The n × n 337 

matrices A and B(j) are directional connectivity matrices, where the value in row r and 338 

column c represents the connection strength from ROI c to ROI r (where 0 = no connection 339 

present). The A matrix captures the fixed (or endogenous) connections, whereas B(j) is a 340 

modulation on one or more of these connections due to the jth experimental manipulation. 341 

Each B matrix is multiplied by experimental input uj(t) relating to experimental effects 342 

j=1..m (i.e, one of the four contrasts described above). The n × p C matrix is the influence 343 

of one or more of those experimental inputs to one or more ROIs in the network (here p=1, 344 

corresponding to all stimuli versus baseline; as above). All inputs were mean-centred, so the 345 

parameters in the A matrix represent the average effective connectivity across conditions. 346 

All connection parameters in A, B, C are rate constants with units of Hz. The diagonal 347 

elements of the A and B matrices (self-connections and modulations on self-connections 348 

respectively) are always negative (inhibitory), so that the dynamics of the system settles back 349 

to baseline after stimulation. These self-connections are log scaling parameters that scale the 350 

default value of -0.5 Hz, i.e. total self-connection = -0.5 × exp(Aii + Bii). DCM includes 351 

“shrinkage” priors on all connections, so their expected value is 0 unless the data requires 352 

otherwise. 353 

The neural activity in each ROI is then transformed into the modelled fMRI BOLD 354 

signal using a nonlinear haemodynamic model with three main parameters (for more details, 355 

see Stephan et al., 2007). These parameters have tight empirical priors, but can differ 356 

between ROIs in order to capture different neurovascular coupling across the brain and 357 

across individuals. The combined neural and haemodynamic parameters are estimated by 358 

fitting the fMRI data from all ROIs using an iterative scheme that maximizes the free energy 359 
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bound on the Bayesian model evidence, which offers a balance between explaining the data 360 

and minimizing model complexity. 361 

In more detail, we used a recent extension of DCM to fit multi-subject data using 362 

Parametric Empirical Bayes (PEB). PEB introduced a general linear model (GLM) that 363 

encodes between-participant effects on the DCM parameters (Zeidman et al., 2019). 364 

Together, the within-participant DCMs and the group-level GLM form a Bayesian 365 

hierarchical model. This can be used in an iterative fashion to “rescue” subjects who fall into 366 

local optima, by estimating the group-average connectivity parameters, then using these 367 

parameters to form empirical priors for the within-participant DCMs. The DCMs are then 368 

re-estimated with these empirical priors, and the process repeats (Friston et al., 2015). We 369 

used this iterative fitting, applied to the A and B connections only, with a single covariance 370 

component to quantify between-participant variability, since preliminary analyses showed 371 

that this produced the highest free-energy approximation to the model evidence (except for 372 

the 2 ROI model, where we also applied PEB to the C connection, so as to be able to test 373 

models differing in the input ROI). We estimated the “full” PEB model (with all possible 374 

connections of interest), before applying Bayesian Model Comparison (BMC) to make 375 

inferences about sets of parameters (e.g., “self” vs “between-region”, or “forward” vs 376 

“backward” connections), by grouping PEB models into two ‘families’ (for a given 377 

hypothesis) and pooling evidence within each family. 378 

2.4 DCM networks 379 

Three sets of networks were estimated (see Figure 1), starting from a simple 2-ROI 380 

OFA + FFA network in the right hemisphere, to mimic prior analysis by Ewbank et al. (2013), 381 

and given prior evidence that the right hemisphere is particularly involved in face processing 382 

(Ishai et al., 2005; Rossion, 2018). We then added a third ROI (right EVC) to form a 3-ROI 383 
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network, to allow for the important possibility that effects of repetition, face perception 384 

and/or face recognition already arise in the inputs to OFA and FFA (see Introduction). Finally, 385 

we modelled a bilateral network with 3 ROIs per hemisphere, and connections between 386 

homologous OFA and FFA, to allow for possible inter-hemisphere modulations, as proposed 387 

by Frässle et al. (2016). The 2-ROI and 3-ROI networks in the left hemisphere were also 388 

estimated and shown as supplementary results, to allow comparison with the results from 389 

the right hemisphere. 390 

2.4.1 2-ROI network 391 

In the 2-ROI network, all possible connections were included, i.e., four endogenous 392 

connections (in a 2 × 2 A matrix) representing the average connectivity for OFA-self, FFA-393 

self, OFA-to-FFA, and FFA-to-OFA. All four of these connections were allowed to be 394 

modulated by each of the four experimental effects (the four, 2 × 2 B matrices), i.e., face 395 

perception, immediate repetition, delayed repetition and face recognition. Importantly 396 

(compared to 3-ROI network below), the driving input (C matrix) for all stimuli entered into 397 

both OFA and FFA. After fitting this model to all participants using PEB, we tested a priori 398 

hypotheses using BMC. 399 

Foremost, we tested for each of the four modulatory effects: 1) whether self-400 

modulations are needed, by grouping all 16 models into two families based on whether a 401 

model has an OFA-self and/or an FFA-self modulation, and 2) whether any between-region 402 

modulation was needed, depending on whether the OFA-to-FFA and/or FFA-to-OFA 403 

connection was present. If evidence was found for modulation of self- or between-region 404 

modulation, further binary BMC was used to test individual self-connections and individual 405 

directions of between-region connections (e.g., OFA to FFA, or FFA to OFA). 406 

Secondly, we tested whether the input was needed to one or both of OFA and FFA. In a 407 

strict version of the standard hierarchical model, input enters the OFA before being passed 408 
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on to FFA. However, given Rossion et al’s work (Rossion, 2008; Rossion et al., 2003; see 409 

Introduction), we compared this model to models in which input was to FFA instead, or both 410 

OFA and FFA. 411 

2.4.2 3-ROI network 412 

In the 3-ROI network, all possible nine connections were also included in the A and B 413 

matrices, but now the driving input (C matrix) was restricted to only enter through the EVC 414 

ROI, to capture the expected flow of visual information from early to later visual regions. In 415 

principle, this allowed DCM to drop (set to zero) connections from EVC to OFA or FFA, 416 

depending on whether information passes serially through OFA before reaching FFA, or 417 

whether it passes through FFA before OFA (see Introduction), or whether there are direct 418 

routes from EVC to both OFA and FFA. For the family BMC, we conducted 4 family 419 

comparisons: (1) whether self-modulation (self-OFA and/or self-FFA) was needed, (2) 420 

whether modulation between OFA and FFA (OFA-to-FFA and/or FFA-to-OFA) was needed, 421 

(3) whether “forward” modulation (EVC-to-OFA and/or EVC-to-FFA) was needed, and (4) 422 

whether “backward” modulation (OFA-to-EVC and/or FFA-to-EVC) was needed. If any 423 

modulation was found (e.g., between OFA and FFA), we further tested which direction of 424 

connectivity was modulated (e.g., OFA to FFA, or FFA to OFA). 425 

2.4.3 6-ROI network 426 

In the 6-ROI network, the 3-ROI network for the right hemisphere was connected to 427 

the 3-ROI network for the left hemisphere, in order to account for any interhemispheric 428 

integration of face perception (Frässle et al., 2016). More specifically, homologous 429 

connections between left and right OFA and left and right FFA were modelled (no direct 430 

connections between left and right EVC were included). All connections had experimental 431 

modulations. We performed the same family-wise BMC as in the 2- and 3-ROI networks 432 
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above, as well as a further family BMC to test whether interhemispheric modulation (OFA-433 

to-OFA and FFA-to-FFA) was needed. Again, if BMC showed at least one of these 434 

connection types was needed (e.g., between left and right FFA), we went further to test which 435 

direction of connectivity was modulated (e.g., left FFA to right FFA, or vice versa). 436 

 437 

 438 

Figure 1. The “full” DCM structures of 2-ROI (top left), 3-ROI (top right) and 6-ROI 439 

(bottom) models. Black arrows represent endogenous (i.e., task-independent) connections 440 
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(DCM “A” matrix). Colored dots represent reliable modulations (DCM “B” matrix) inferred 441 

from model comparison (see Results). Brown arrows represent driving inputs (DCM “C” 442 

matrix). 443 

 444 

3 Results 445 

3.1 Univariate Results and Validation of DCM fit 446 

Before reviewing the DCM connectivity parameters, we first validated whether the 447 

various DCMs captured significant effects in the data. First, we examined the proportion of 448 

variance in the original fMRI timeseries explained in each ROI. Averaged across participants, 449 

this ranged from 16% to 35% across ROIs (Table 1), which is generally good for DCM, 450 

given the typical amount of noise in fMRI data (though tended to be lower in EVC, most 451 

likely because this ROI was defined independent of the current data). 452 

However, DCM could fit a reasonable percentage of the variance in the fMRI timeseries 453 

by assuming that every stimulus produced an evoked response (versus interstimulus baseline) 454 

of equal amplitude, i.e., without necessarily reproducing the significant differences between 455 

conditions (stimulus-types) that was found in the data. To check the latter, we extracted the 456 

timeseries predicted by DCM, fit the same GLM that was applied to the data timeseries (i.e., 457 

with a separate regressor for each of the nine conditions) and performed the same T-contrasts 458 

on the resulting parameter estimates that were performed in Table 1. Note that these 459 

parameter estimates are not a perfect reflection of DCM’s predictions, because they assume 460 

a fixed HRF (the canonical HRF used in the GLM), whereas DCM allows the HRF to differ 461 

across participants and ROIs, but the results should be similar nonetheless.  462 

Figure 2 presents the parameter estimates from the GLM fit to the original data, and 463 

from the same GLM fit to the timeseries generated by DCM for each of the 2-, 3- and 6-ROI 464 
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networks; Table 1 lists the T-values of planned comparisons on these parameters from the 465 

DCM fit (cf. the T-values of original data, see the top part of Table 1). In general, the relative 466 

pattern of significant differences across conditions was reproduced in left and right OFA and 467 

FFA by all models, i.e., effects of perception, recognition, immediate repetition, delayed 468 

repetition, and difference between immediate and delayed repetition. However, the 3-ROI 469 

and 6-ROI networks did not reproduce the greater activation for scrambled than intact faces 470 

in right EVC (despite the presence of backward connections from OFA/FFA to EVC). Also, 471 

the effects of perception, immediate repetition, delayed repetition, and difference between 472 

immediate and delayed repetition, were reproduced in all ROIs in left-hemisphere networks, 473 

but a significant effect of recognition was also produced in lOFA (Supplementary Table 1).  474 

 475 

 476 
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 477 

Figure 2. Mean GLM parameter estimates from original timeseries (blue) and from 478 

timeseries reconstructed by DCM for 2ROI, 3ROI and 6ROI networks (red shades), for 479 

each ROI (panel) and condition (groups on x-axis). To allow for different scaling factors, 480 

the parameter estimates were re-scaled to have same mean over all conditions. The nine 481 

conditions are initial familiar face (IniFF), immediately repeated familiar face (ImmFF), 482 

delayed repeated familiar face (DelFF), initial unfamiliar face (IniNF), immediately 483 
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repeated unfamiliar face (ImmNF), delayed repeated unfamiliar face (DelNF), initial 484 

scrambled face (IniSF), immediately repeated scrambled face (ImmSF), and delayed 485 

repeated scrambled face (DelSF). 486 

 487 

3.2 Connectivity Results 488 

3.2.1 2-ROI network 489 

To address the theories in the Introduction about whether specific types of modulatory 490 

connection were affected by face perception, repetition and recognition, BMC was 491 

performed on pairs of model families with versus without certain connection-types.  492 

There was strong evidence (> 95% probability) that face perception modulated both 493 

self-connections of rOFA and/or rFFA, and between-region connections between rOFA and 494 

rFFA (Table 2). Indeed, follow-up tests showed that modulations by faces was needed for 495 

the rOFA self-connection and the connection from rOFA to rFFA. 496 

There was strong evidence that immediate and delayed repetition modulated self-497 

connections of rOFA and/or rFFA, with follow-up tests showing that modulation of rFFA 498 

was critical. There was also evidence that the two types of repetition modulated between-499 

region connections differently, with immediate repetition modulating the connection from 500 

rFFA to rOFA, and delayed repetition modulating the connection from rOFA to rFFA.  501 

There was insufficient evidence to identify which specific connections were modulated 502 

by face recognition in this right hemisphere network. 503 

 504 

 Perception Imm Rep Del Rep Recognition 

OFA/FFA-self 1.00 1.00 1.00 0.68 

OFA<->FFA 1.00 1.00 0.94 0.85 
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OFA-self 1.00 0.94 0.17 0.81 

FFA-self 0.86 1.00 1.00 0.32 

OFA->FFA 1.00 0.22 0.97 0.85 

OFA<-FFA 0.14 1.00 0.14 0.62 

Table 2. Posterior probabilities for BMC of two families with versus without various types 505 

of connection (rows) for each experimental effect (columns) for the 2-ROI, right hemisphere 506 

network. Values greater than 0.95 are taken as strong evidence (shown in bold emphasis).  507 

 508 

The results for the left hemisphere DCM were similar (Supplementary Table 2), in that 509 

face perception affected the lOFA self-connection and the lOFA->lFFA connection, that 510 

repetition affected the lFFA self-connection, and that delayed repetition modulated the lOFA-511 

>lFFA connection (though modulation by immediate repetition could no longer be attributed 512 

to the lFFA->lOFA connection). Unlike the right hemisphere DCM, face recognition now 513 

modulated the lOFA->lFFA connection (suggesting that recognition effects were stronger in 514 

left hemisphere – see later). 515 

We also tested whether inputs were needed to just one or both ROIs (C parameters). 516 

There was compelling evidence (posterior probability close to 1.00) that stimulus-dependent 517 

input (regardless of stimulus type) was needed to both ROIs, consistent with Rossion et al. 518 

(2008), and further justifying consideration of the 3-ROI network below. 519 

 The above results suggest that repetition primarily affects both self-connections and 520 

between-region connections. However, this assumes that the input to both ROIs not already 521 

modulated by repetition. Thus in the next model, we added a third ROI, EVC, connected to 522 

both OFA and FFA, which allowed us to ask whether repetition (and perception/recognition) 523 

modulated input from EVC to OFA and/or FFA.  524 

 525 
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3.2.2 3-ROI network 526 

  There was evidence that all the connections were modulated by face perception, except 527 

from rOFA to rFFA (Table 3).1 This included a direct connection from rEVC to rFFA (as 528 

well as from rEVC to rOFA), consistent with Rossion’s non-hierarchical view. The 529 

modulations of connections from rOFA and rFFA back to rEVC were probably needed to 530 

explain the greater activation for scrambled vs intact faces in rEVC (see Univariate Results).  531 

 532 

 Perception Imm Rep Del Rep Recognition 

OFA/FFA-self 1.00 0.39 0.49 0.59 

OFA<->FFA 1.00 0.51 0.30 0.44 

EVC->OFA/FFA 1.00 1.00 0.19 0.32 

EVC<-OFA/FFA 1.00 1.00 0.18 0.20 

OFA-self 0.99 0.52 0.55 0.35 

FFA-self 1.00 0.35 0.36 0.69 

OFA->FFA 0.70 0.25 0.25 0.26 

OFA<-FFA 1.00 0.68 0.41 0.59 

 EVC->OFA 1.00 0.99 0.23 0.41 

 EVC->FFA 1.00 1.00 0.23 0.31 

 OFA->EVC 1.00 1.00 0.22 0.26 

 FFA->EVC 1.00 1.00 0.22 0.23 

Table 3. Posterior probabilities for BMC of two families with versus without various types 533 

of connection (rows) for each experimental effect (columns) for the 3-ROI, right hemisphere 534 

                                                 
1 Because we were only interested in the univariate results for OFA and FFA, we did not distinguish families 

by self-connections for EVC, even though the DCM model allowed modulation of EVC self-connections. 
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network. Values greater than 0.95 are taken as strong evidence (shown in bold emphasis). 535 

 536 

For immediate repetition however, modulations could no longer be attributed to self-537 

connections of rOFA and rFFA, nor the direct connection between them. Rather, it was the 538 

connections from, and to, EVC that showed evidence of modulation. For delayed repetition, 539 

on the other hand, there were no longer evidence that could uniquely identify the source of 540 

modulation. Like for the 2-ROI right hemisphere network, there was not sufficient evidence 541 

to localise modulations by face recognition either. 542 

The results for the left hemisphere DCM (Supplementary Table 3) showed similar 543 

modulations by face perception, except that the lOFA self-connection and lEVC->lFFA 544 

connection no longer showed sufficient evidence. However, family comparison could not 545 

uniquely localise modulation by immediate or delayed repetition. There was however 546 

evidence that face recognition modulated the lOFA self-connection and lFFA->lEVC 547 

connection, again suggesting left lateralisation of this connectivity changes associated with 548 

face recognition. 549 

 In summary, the effects of face perception on self-connections and connections 550 

between rOFA and rFFA in the 3-ROI network are consistent with the 2-ROI network, but 551 

additionally suggest that faces already start to differ from scrambled faces in the input to 552 

OFA and FFA (a scenario that was not possible to test in the 2-ROI network). This pattern is 553 

more consistent with a non-hierarchical view, where face information is present in a direct 554 

input to FFA (at least in the right hemisphere), rather than conventional hierarchical view in 555 

which face information in FFA only comes via the OFA. 556 

 On the other hand, the effects of repetition, at least immediate repetition, are different 557 

from the 2-ROI network, in that whereas immediate repetition modulated both self-558 

connections and between-region connections in the 2-ROI network, it now modulated only 559 
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the connections between EVC-OFA and EVC-FFA in the 3-ROI network (at least in the right 560 

hemisphere). This is again because the 2-ROI network does not have the capability to explain 561 

repetition effects as arising earlier in the visual pathway. This result from the 3-ROI network 562 

instead favours theories that entail changes in between-region connectivity (e.g., 563 

synchronization or predictive coding) rather than local changes within a region RS (e.g., 564 

fatigue or sharpening). Further implications of these results are considered in the Discussion, 565 

after comparing with results from the final 6-ROI network. 566 

 567 

3.2.3 6-ROI network 568 

The 6-ROI network combines the right and left 3-ROI networks, with additional “inter-569 

hemispheric” connections between rOFA and lOFA, and rFFA and lFFA (but not EVC).  570 

For face perception, there was evidence that all connections were modulated, except for 571 

the OFA->FFA connections, in both directions (Table 5), like for the 3-ROI networks above. 572 

There was also evidence that faces modulated inter-hemispheric connections for OFA and 573 

FFA in both directions. 574 

 575 

 Perception Imm Rep Del Rep Recognition 

OFA/FFA-self, l/r 1.00 0.26 0.54 0.09 

OFA<->FFA, l/r 0.98 0.13 0.59 0.04 

EVC->OFA/FFA, l/r 1.00 1.00 1.00 1.00 

EVC<-OFA/FFA, l/r 1.00 1.00 1.00 0.90 

l<->r, OFA/FFA  1.00 0.03 0.04 0.06 

 OFA-self, l/r 1.00 0.44 0.75 0.15 

FFA-self, l/r 1.00 0.09 0.11 0.11 
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EVC->OFA, l/r 1.00 1.00 1.00 1.00 

EVC->FFA, l/r 1.00 1.00 1.00 0.98 

 OFA->EVC, l/r 1.00 1.00 1.00 0.96 

 FFA->EVC, l/r 1.00 1.00 1.00 0.04 

 OFA->FFA, l/r 0.19 0.02 0.03 0.06 

 FFA->OFA, l/r 0.99 0.29 0.81 0.06 

 r->l, OFA/FFA 1.00 0.07 0.02 0.10 

 l->r, OFA/FFA 1.00 0.20 0.10 0.05 

Table 5. Posterior probabilities for BMC of two families with versus without various types 576 

of connection (rows) for each experimental effect (columns) for the 6-ROI, bilateral network. 577 

Values greater than 0.95 are taken as strong evidence (shown in bold emphasis). 578 

 579 

For immediate repetition, there was again compelling evidence for modulation of 580 

connections from, and to, EVC, but no evidence of modulation of self-connections and direct 581 

connections between rOFA and rFFA, as in the 3-ROI, right hemisphere network. There was 582 

no evidence of modulation of inter-hemispheric connections. Unlike the 3-ROI, right 583 

hemisphere network, there was also evidence that delayed repetition modulated the same 584 

connections as immediate repetition, i.e., from EVC to OFA/FFA and vice versa. This might 585 

reflect the doubling in the amount of data being fit.  586 

Finally, for face recognition, there was evidence for modulation of EVC-to-OFA and 587 

EVC-to-FFA modulations, as well as OFA-to-EVC. This pattern is unlike the 3-ROI 588 

networks, but may reflect the pooling across both hemispheres (see supplementary Table 3). 589 

 590 

4 Discussion 591 
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 In this study, we applied Dynamical Causal Modelling (DCM) with Parametric 592 

Empirical Bayes (PEB) on a publically available fMRI dataset in order to estimate the 593 

effective connectivity within networks including the left and/or right face-sensitive regions 594 

of occipital face area (OFA) and fusiform face area (FFA), plus input from early visual cortex 595 

(EVC), in response to initial and repeated presentations of familiar faces, unfamiliar faces 596 

and scrambled faces. We applied DCM to unilateral 2-ROI and 3-ROI networks, as well as 597 

a bilateral 6-ROI network, but focus on those effects that were consistent across these 598 

networks. 599 

4.1 Face repetition effects 600 

 Our main interest concerned the effects of immediate and delayed repetition of stimuli, 601 

specifically whether the well-documented repetition suppression (RS) in OFA and FFA is 602 

best explained by local changes (self-connections in DCM), as predicted by fatigue and 603 

sharpening theories, or by between-ROI connections, as predicted by synchronization and 604 

predictive coding theories (see Introduction). When using a simple 2-ROI network of right 605 

OFA and right FFA, as in Ewbank et al. (2013), we found evidence that both immediate and 606 

delayed repetition modulated the FFA self-connection and connections between OFA and 607 

FFA (and similarly for the two homologous regions in the left hemisphere). This is not 608 

consistent with the findings of Ewbank et al., who found that repetition affected only the 609 

connection from OFA to FFA (when the face image was the same size, as here). This 610 

discrepancy could reflect several factors, including the present use of a randomized rather 611 

than blocked design, where a randomized design reduces the influence of expectation of 612 

repetition (Henson, 2016).  613 

 More importantly however, the 2-ROI network does not allow repetition to modulate 614 

the input to OFA and/or FFA. In other words, the 2-ROI model considered by Ewbank et al 615 
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(2013) does not allow RS to arise earlier in the visual processing pathway, i.e., in the inputs 616 

to OFA and/or FFA. To accommodate this, we also fit a 3-ROI network in which a third ROI, 617 

early visual cortex (EVC), was connected to both OFA and FFA. For the right hemisphere, 618 

we now found that immediate repetition modulated both “forward” and “backward” 619 

connections between rEVC and rOFA/FFA, but there was no longer evidence that it 620 

modulated the direct connections between rOFA and rFFA, or the self-connections of rFFA 621 

(or rOFA). Thus contrary to the 2-ROI architecture, the 3-ROI architecture, by allowing 622 

repetition to modulate the input to OFA and FFA, instead favoured synchronization or 623 

predictive coding accounts of RS, at least for immediate repetition.  624 

  Our last step was to test the modulation of repetition in the 6-ROI network, which 625 

allowed additional interhemispheric modulation. Like for the 3-ROI, right hemisphere 626 

network, we found that immediate repetition modulated the connections between EVC and 627 

OFA/FFA, but not direct connections between OFA and FFA, nor self-connections of 628 

OFA/FFA. The same pattern was now also found for delayed repetition. Thus, the consistent 629 

findings of between-region modulations across 2-, 3- and 6-ROI networks suggests that RS 630 

is caused by interactions between regions, as predicted by synchronization and predictive 631 

coding models. It should be noted however that synaptic depression (one possible neural 632 

mechanism of fatigue model) could explain reduced effective connectivity between regions 633 

if it is the synapses from EVC to OFA/FFA that are depressed by prior processing – i.e., 634 

mapping of Fatigue to local effects not simple.  635 

 Finally, note that these repetition effects were averaged across familiar, unfamiliar and 636 

scrambled faces, because we did not find significant interactions between repetition and 637 

stimulus-type in the univariate activation of the six ROIs (except in lOFA, but this would not 638 

survive correction for multiple comparisons across ROIs). For example, one might have 639 

expected greater RS in OFA and FFA for faces than scrambled faces. This lack of interactions 640 
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was true for both immediate and delayed repetition, despite the greater RS overall for 641 

immediate repetition (Table 1). The lack of interactions was surprising, because we have 642 

found such interactions in previous work (e.g., Henson et al., 2000), though these tended to 643 

use larger lags between initial and repeated presentations, and lag may modulate repetition 644 

effects (Henson, 2016). 645 

4.2 Face perception effects 646 

 When we compared whether the input was to one or both ROIs in the 2-ROI network, 647 

we found strong evidence that input to both ROIs was needed. This is consistent with 648 

imaging evidence from patients with OFA lesions reported by Rossion et al. (2008), who still 649 

showed FFA activation. The 3-ROI network provided further support for this, with evidence 650 

that connections from EVC to both OFA and FFA were modulated by faces. This suggests 651 

that face information is already extracted in the transformations from EVC to OFA and FFA, 652 

contrary to the “standard” hierarchical model that assumes that input to FFA only arises from 653 

OFA. 654 

 Several previous DCM studies have examined the face modulations among EVC, OFA 655 

and FFA. Consistent with our results, Lohse et al. (2016) found face modulation on “forward” 656 

connections from rEVC to rOFA and to rFFA, while Furl et al. (2015) found face modulation 657 

on the connection from rEVC to rOFA only. Frässle et al.’s (2016) study was the only one to 658 

include bilateral EVC, OFA and FFA. Their results revealed face modulation on connections 659 

from EVC to OFA, and between right and left OFA, like in our 6-ROI network, but also from 660 

OFA to FFA, unlike in our 3- and 6-ROI networks. However, the latter is most likely because 661 

they did not allow any direct connections (and hence modulations) between EVC and FFA. 662 

In addition, none of these studies allowed modulations on self-connections. Our study 663 

estimated all possible DCM connections and modulations among EVC, OFA and FFA, and 664 
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showed that “forward” (EVC to OFA), “backward” (OFA to EVC) and inter-hemispheric 665 

modulations were needed for face perception in our data, but not direct connections between 666 

OFA and FFA. 667 

While our 6-ROI results were generally comparable with our 3-ROI results, the striking 668 

differences between our 2-ROI and 3-ROI results highlight the importance of the model 669 

architecture when testing hypotheses with DCM. While our results show that the addition of 670 

an EVC region has important effects on the conclusions one draws, it is possible that the 671 

results would change again if other regions were added, like anterior temporal lobes, 672 

amygdala (Xiu et al., 2015), or in particular superior temporal sulcus (STS), which is well-673 

known to have face-responsive neurons (Furl et al., 2015; Kessler et al., 2021; Lohse et al., 674 

2016). Indeed, using an exhaustive data-driven approach called “Group Iterative Multiple 675 

Model Estimation” (Gates & Molenaar, 2012), Elbich et al. (2019) found that connections 676 

from STS to OFA/FFA were also modulated by faces. Though STS did not show significant 677 

face-related activation that surpassed our corrected threshold, which is why we did not 678 

include it here, future work could add STS to DCM networks like the ones here. 679 

There are other differences between prior studies that may also affect which 680 

connections are modulated by face processing, such as the specific stimuli contrasted with 681 

faces (e.g., phase-scrambled faces, as here, versus non-face stimuli like objects or cars, Furl 682 

et al., 2015; Lohse et al., 2016) or the type of design (e.g., randomized versus blocked, 683 

Frässle et al., 2016; Furl et al., 2015; Lohse et al., 2016), which can affect top-down 684 

expectancies for a certain type of stimulus. The role of these factors could be explicitly tested 685 

in future empirical studies. 686 

4.3 Face recognition effects 687 

When analysing the right hemisphere networks, we were not able to uniquely attribute 688 
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face recognition effects to specific connection-types. Note that this does not mean that DCM 689 

could not reproduce the greater activations to familiar faces that was found in many of the 690 

ROIs (including right hemisphere; Figure 2); it just means that the timeseries related to 691 

familiar faces did not allow inference about which type of connection would uniquely 692 

reproduce the distinct parts of that timeseries (compared to other stimulus types). In other 693 

words, it is possible that changes in self, forward or backward connections could equally 694 

well explain the distinct part of the ROI timeseries related to face recognition. When 695 

analysing the left hemisphere networks, on the other hand, it appeared that the lOFA self-696 

connection was modulated by face recognition.  697 

However, when analysing the bilateral 6-ROI network, a different result emerged, with 698 

face recognition modulating forward connections from EVC to OFA and FFA (averaged 699 

across hemispheres), as well as from OFA to EVC. Given these quite different results across 700 

the various networks, we remain cautious about interpreting connectivity changes associated 701 

with recognition of familiar faces, particularly since such recognition may also involve 702 

interactions with more anterior regions like anterior temporal lobes (ATL) and orbitofrontal 703 

cortex (OFC) (Fairhall & Ishai, 2007), and possibly even left lateral prefrontal regions 704 

associated with covert naming of known faces. Future DCM models could investigate 705 

whether the greater activation to familiar faces in the present ROIs reflect top-down feedback 706 

from regions “higher” on the visual processing pathway (e.g., using better matched stimuli, 707 

cognitive tasks that explicitly require face identification, and fMRI sequences optimised to 708 

handle signal drop-out in OFC and ATL). 709 

4.4 Hemispheric Differences 710 

Most studies examined connectivity among regions in the right hemisphere because of 711 

the hypothesized specialization of right hemisphere for face processing (Kanwisher et al., 712 
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1997). However, Frässle et al. (2016) included OFA and FFA in both hemispheres, and 713 

claimed that the right lateralization of the activation pattern was due to an interhemispheric 714 

modulation from left to right OFA. Furthermore, because their face images were presented 715 

in either the right or left visual field, they found evidence of modulation of connections from 716 

EVC to OFA in both hemispheres by both the visual field and the presence of faces. Though 717 

faces were presented centrally in our data, our 6-ROI network also found modulation by 718 

faces on both interhemispheric connections and EVC-to-OFA connections in both 719 

hemispheres, supporting the claim that face processing is not specific to the right hemisphere. 720 

4.5 Limitations and future directions 721 

 There are several methodological limitations of this study. First, any DCM analysis 722 

evaluates models defined within a certain architecture (determined by the number of ROIs 723 

and connections allowed between them). This means there may be other more probable 724 

models comprising different regions and connections. In this study, we focused on two 725 

regions showing significant experimental effects of face and repetition, OFA and FFA, and 726 

their likely input region, EVC, and allowed for some variations in architecture by focusing 727 

on results that were consistent across 3 different networks (2-ROI, 3-ROI and 6-ROI 728 

networks). More generally, one could use lots of ROIs and evaluate whether a method like 729 

Bayesian model reduction (BMR) or Group Iterative Multiple Model Estimation will reveal 730 

the most parsimonious set of connections between them. However, when we tried BMR here, 731 

the results were difficult to interpret, at least when more than two ROIs, most likely because 732 

of the high co-dependency between connection parameters in such fully-connected and 733 

recurrent networks, and so we resorted to more hypothesis-driven BMC to focus on specific 734 

connection types. 735 

 The second limitation is that, while both synchronization and predictive coding models 736 
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are consistent with the general concept of repetition affecting connectivity between regions, 737 

the direction of this effective connectivity remains unclear. In predictive coding for example, 738 

repetition both improves top-down predictions and reduces bottom-up prediction errors, and 739 

it is unclear how either of these relate precisely to forward and backward fMRI connectivity. 740 

One way to address this issue is to apply DCM to EEG and/or MEG data. The much richer 741 

dynamics in EEG/MEG evoked responses allows fitting of more complex 742 

neurophysiological models, e.g., “canonical microcircuit” model (Bastos et al., 2012), in 743 

which forward and backward connections operate with different timescales. Furthermore, 744 

predictive coding does not rule out within-region (self-connection) modulation too, 745 

particularly in more complex implementations that allow for interactions between cells 746 

within different layers of cortex within the same ROI. Future high-resolution fMRI, e.g., at 747 

7T, might allow separate modelling of cortical layers. Predictive coding theory would predict 748 

that repetition causes reduced activity in superficial pyramidal cells in the supragranular 749 

layer, and changes in its connectivity with inhibitory interneurons in other layers.  750 

4.6 Conclusion 751 

 To conclude, we used DCM to examine the effective connectivity among face-selective 752 

regions during face repetition, face perception and face recognition. The simplest conclusion 753 

about repetition suppression is that it reflects more than local changes within a region, so 754 

fatigue or sharpening models are not sufficient; rather, the repetition-related modulation of 755 

between-region connections is consistent with synchronization and/or predictive coding 756 

models of repetition suppression (Ewbank & Henson, 2012). While the effective 757 

connectivity associated with recognition remains unclear, a consistent finding regarding face 758 

perception is that it includes modulation of connections direct from EVC to FFA, without 759 

needing modulation from OFA to FFA, which supports recent suggestions for a non-760 
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hierarchical view of the “core” face network in the posterior ventral stream.  761 
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