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Abstract 

Age-related changes in immune cell composition and functionality are associated with 

multimorbidity and mortality. However, many centenarians delay the onset of aging-related 

disease suggesting the presence of elite immunity that remains highly functional at extreme old 

age. To identify immune-specific patterns of aging and extreme human longevity, we analyzed 

novel single cell profiles from the peripheral blood mononuclear cells (PBMCs) of 7 

centenarians (mean age 106) and publicly available single cell RNA-sequencing (scRNA-seq) 

datasets that included an additional 7 centenarians as well as 52 people at younger ages (20-89 

years). The analysis confirmed known shifts in the ratio of lymphocytes to myeloid cells, and 

noncytotoxic to cytotoxic cell distributions with aging, but also identified significant shifts from 

CD4+ T cell to B cell populations in centenarians suggesting a history of exposure to natural and 

environmental immunogens. Our transcriptional analysis identified cell type signatures specific 

to exceptional longevity that included genes with age-related changes (e.g., increased 

expression of STK17A, a gene known to be involved in DNA damage response) as well as 

genes expressed uniquely in centenarians’ PBMCs (e.g., S100A4, part of the S100 protein 

family studied in age-related disease and connected to longevity and metabolic regulation). 

Collectively, these data suggest that centenarians harbor unique, highly functional immune 

systems that have successfully adapted to a history of insults allowing for the achievement of 

exceptional longevity. 
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Introduction 
 

While a decline in cellular, organismic, and overall functionality is an inexorable outcome of 

aging, the rate and impact of aging is increasingly recognized to be affected by multiple factors 

including environment, genetics, and immune history 3–6. At a phenotypic level, aging leads to 

functional abnormalities and alterations in hematopoietic cell populations that prevent a proper 

immune response and lead to increased susceptibility to infections, cancers, and auto-immune 

diseases3–5. Driven by transcriptional changes and alterations in gene expression, the global 

immune cell dysfunction generally observed with aging results in distinct shifts in the 

composition of peripheral immune cell types characterized by a loss of naive B and T cells and 

an accumulation of memory effector T and B cells 5,7,8. In addition, an increase of inflammation-

promoting cell populations, such as Natural Killer and myeloid cells (e.g., monocytes) are 

observed with aging 5,7,8, in parallel with gene expression changes in these populations 8,9.  

 

At the extreme of the human aging process is extreme longevity (EL), characterized by survival 

beyond an age reached by less than 1% of a cohort 10. EL is often, but not always, associated 

with a marked delay of disability and in majority (about 60%), common aging-related diseases 
11–13. Changes in immune cells are considered one of the hallmarks of aging, with growing 

recognition that the loss of immune competence to control inflammation and rebound from 

immune stressors is central to the progression of age-limiting morbidities 14. Since centenarians 

–individuals who live to at least 100 years – appear to experience a slower pace of aging 13,15, 

characterizing the repertoire of immune cells of these elite individuals may point to important 

mechanisms that promote EL.  

 

A recent study using single cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear 

cells (PBMCs) displayed changes in the distribution of lymphocytes and myeloid cells, and a 

significant expansion of cytotoxic CD4+ T cells in individuals who live to at least 105 years 

compared to younger individuals 2. Hashimoto’s study focused on a cohort of Japanese 

individuals 2, thus it is not clear whether those results generalize to other ethnicities. 
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Furthermore, the study did not perform an extensive characterization of the transcriptional 

changes – i.e., changes in expression levels as a function of age and EL – that occur in these 

cell types.  

 

In this study, we employ a multi-modal approach that combines single-cell transcriptomics with 

cell-surface protein profiling to characterize both the composition and transcriptional profiles of 

the peripheral immune system of centenarians. We perform a harmonization of a novel single 

cell dataset of centenarians with diverse, publicly available peripheral blood scRNA-seq 

datasets of aging and longevity in an effort to understand the dynamics of circulating immune 

cell populations throughout the human lifespan, and in particular, in EL. 

 

Results  

 

The peripheral immune landscape of centenarians at single cell resolution  

 

Using the 10X Genomics platform for droplet-based Cellular Indexing of Transcriptomes and 

Epitopes sequencing (CITE-seq) 16, we simultaneously profiled the transcriptome-wide 

expression and the surface-level protein expression of 16,082 PBMCs from seven centenarians 

(100-119 years of age) and two younger individuals with no known history of familial longevity 

(20-59 years of age). All nine subjects were of European descent and from the New England 

Centenarian Study (NECS), with an average sample capture of 1,833 cells (Supplementary 

Table S1). We accounted for technical differences and integrated multiple samples using 

Harmony 17 (Supplementary Figure 1). We then performed Louvain graph-based clustering to 

group cells into populations of similar expression profiles, and used Uniform Manifold 

Approximation and Projection (UMAP)18 of cell expression profiles to visualize the single cells in 

a 2-dimensional space.  

 

The identification of major lymphocyte and myeloid cell types was based on 10 immune cell-

surface protein expression markers (Supplementary Figure 2, Supplementary Table S2), with 

subtypes subsequently characterized by transcriptional immune cell signatures previously 

characterized in human peripheral blood19 and fetal liver20 (Supplementary Figure 3-6, 

Supplementary Table S3). This approach identified 11 immune cell types that included major 

lymphocyte populations: CD4+ T cells (CD4TC) with noncytotoxic naive and memory subtypes 

(nCD4TC, mCD4TC) and cytotoxic subtype (cCD4TC), CD8+ T cells (CD8TC) with cytotoxic 

subtype (cCD8TC), B cells (BC) with naive and memory subtypes (nBC and mBC), and Natural 

Killer cells (NK) (Figure 1A, Supplementary Figure 2). In addition, we identified major myeloid 

populations: monocytes with CD14+ and CD16+ subtypes (M14 and M16) and dendritic cells 

(DC) with myeloid and plasmacytoid subtypes (mDC and pDC) (Figure 1A, Supplementary 

Figure 2).  

 

Centenarians display alterations in immune cell repertoire in comparison to younger age 

groups 
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To characterize peripheral immune cell type composition and gene expression profiles across 

the human lifespan, we integrated our data with two publicly available PBMC datasets of aging 

and longevity that include subjects of European and Japanese descent 1,2 (Figure 1B, 

Supplementary Figure 7). The integration of these datasets with our novel NECs dataset 

produced a total of 102,284 cells from 66 individuals across four age groups: 12 subjects of 

younger age (20-39 years), 26 subjects of middle age (40-59 years), 14 subjects of older age 

(60-89 years), and 14 EL subjects (100-119 years) (Supplementary Table S4-S5). Technical 

differences between datasets were accounted for using Harmony 17. This analysis identified two 

additional cell types: plasma B cells (pBC), and gamma delta T cells (gdTC) which were only 

detected in samples from the Japanese cohort, for a total of 13 cell types across the datasets 

(Figure 1B). 

 

Figure 2A displays the observed proportions of the 13 immune cell types in the 66 subjects, 

stratified by age. Notably, the EL group was characterized by an increase in the proportion of 

myeloid cells and a reduction in the proportion of lymphocytes: The ratio of myeloid cells to 

lymphocytes was approximately 13.8/86.2% across the three younger age groups (20-89 years) 

and shifted to 25.2/74.8% in the EL group (Figure 2A, Supplementary Table S6). This shift in 

myeloid cells and lymphocytes is an expected trend in aging 21. The barplot in Figure 2A 

suggests that the distribution of proportions of the 13 immune cell types becomes more uniform 

in the EL group. To formalize this observation, we next calculated the cell type diversity statistic 

of each sample 22. This statistic is essentially an entropy-based score that we introduced to 

summarize the vector of proportions of cell types in a sample. The score is normalized between 

-1 and 0, with -1 corresponding to the case of a single cell type being present and 0 

corresponding to the case when all cell types are present in the exact same proportion and 

therefore more uniform. The analysis of the 13 immune populations showed a trend towards an 

increase of the cell type diversity statistic in EL compared to younger age groups, although this 

difference was not statistically significant (F-test, p-value = 0.7231) (Supplementary Figure 8, 

Supplementary Table S7). When nCD4TC and mCD4TC were combined as noncytotoxic CD4 

T cells, the increase of the cell type diversity statistic in EL compared to younger ages was 

statistically significant (F-test, p-value = 0.0001875) (Figure 2B). This analysis formalized the 

observation that the PBMCs of EL subjects comprise more heterogeneity in cell type 

proportions.   

 

To estimate the proportions of cell types by age and sex, we next analyzed the observed cell 

type proportions from all 66 subjects using a Bayesian multinomial logistic regression (See 

methods, Supplementary Table S9-S11). This analysis produced age and sex specific 

estimates of each of the 13 cell type proportions across the four age groups (Figure 2C-D).  

The estimates suggest that there are three main groups of immune cells based on their 

distributions at different ages and EL: 1) cell types whose proportions increase or decrease 

monotonically with age and EL (Aging-Related), 2) cell types whose proportions increase or 

decrease only in the EL group (EL-Specific), 3) cell types whose proportions increase or 

decrease with age, but these changes do not continue in the EL group (Aging-Specific). 
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We observed Aging-Related changes (i.e., change in both aging and EL) in cCD4TC, gdTC, and 

M14 populations. The estimated proportion of cCD4TC increased steadily with increasing age, 

representing 7.5% of PBMCs in males with EL and 6.0% of PBMCs in females with EL 

compared to less than 1% of the PBMCs in the younger age groups (Figure 2C-D). This 

significant change in cCD4TC  in centenarians compared to younger controls is consistent with 

previous findings2. We observed a similar aging-related change in the estimated proportions of 

gdTC and M14 (Figure 2C-D).  

 

Five lymphocyte and myeloid populations were observed to have EL-Specific changes (i.e., 

change only in EL) and include nCD4TC, mCD4TC, pBC, mDC, and pDC.  The lower frequency 

of nCD4TC and mCD4TC in EL is known 2. However, the estimated lower proportion of mDC 

that decreased to 0.9% of PBMCs in males with EL and 0.7% of PBMCs in females with EL 

compared to 1.3% in males and 1.1% in females in the younger age group has not been 

reported. Furthermore, we observed Aging-Specific changes (i.e., change in aging but not EL) in 

nBC, mBC, and M16 populations.  The estimated proportion of nBC significantly increased to 

6.2% of PBMCs in males and 11.3% of PBMCs in females in the older age group compared to 

1.5% of PBMCs in males and 2.9% of PBMCs in females in the younger age group. However, 

the estimated proportions of PBMCs that were nBC in EL were 0.9% in males and 1.7% in 

females.  

 

By examining the proportion of all 13 cell types together, we highlighted major differences in the 

overall makeup of PBMCs of EL subjects and showed a major shift from innate to adaptive cell 

types with older age. 

 

Extreme longevity displays a shift in immune resilience strategy within lymphocyte and 

myeloid populations compared to younger age groups 

 

To investigate whether the makeup within immune compartments also changed with age and EL 

and with possible effects on their biological functions and immune resiliency strategies, we next 

examined the make-up of various immune cell types within their myeloid and lymphocyte 

lineages. To this end, we generated a hierarchy of peripheral immune compartments based on 

the gene expression profiles of the immune cell types using K2Taxonomer 23, and then 

calculated the average proportions of cell types within each level of the hierarchy (see Methods) 

(Supplementary Table S13). Figure 3 displays the results of this analysis and reveals specific 

changes of the composition of myeloid and lymphocyte compartments in the EL group as 

compared to younger age groups. We discuss selected results next, with the complete analysis 

available in Supplementary Tables S12-25.  

 

The top of the hierarchy recapitulates the significantly larger proportion of myeloid cells 

(Myeloid) and smaller proportion of lymphocytes (Lymph) observed in centenarians’ PBMCs 

discussed earlier. The analysis of the Myeloid compartment (left branch of the tree in Figure 3) 

showed that centenarians’ Myeloid cells were mainly monocytes (Mono) rather than dendritic 

cells (DC) (EL Mono to DC ratio 94.58%/5.42%) compared to a lower fraction of Mono and 

higher fraction of DC observed in all other age groups (Mono to DC ratio 85.59%/14.41%). The 
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difference in the two distributions was statistically significant, (F-test of cell type diversity 

statistic, p-value = 0.0001315) (Figure 3, Supplementary Figure 9). This change in 

composition of DC has not been reported before 8,24. No additional changes were detected 

within Mono and DC. 

 

The analysis of the lymphocyte compartments (right branch of the tree in Figure 3) showed that 

more than 70% of centenarians’ lymphocytes were Cytotoxic (Cyt: 70.94% and NonCyt: 

29.06%) compared to the younger age group (Cyt: 30.30% and NonCyt: 69.70%). This 

difference in distributions was only borderline statistically significant in our analysis (F-test of cell 

type diversity statistic, p-value = 0.05032) but consistent with results reported by other 

investigators2. In addition, the hierarchy showed further sub-types of Cyt and NonCyt that had 

unique composition in centenarians. For example, centenarians’ NonCyt had a significant lower 

proportion of CD4TC (81.55%) and larger proportion of BC (8.45%) compared to all younger 

age groups (CD4TC: 90.86% and BC: 9.41%, F-test, p-value = 0.003313). In previous studies, 

both noncytotoxic CD4TC and BC have been reported to decrease in PBMCs of long-lived 

individuals 2, but this shift between CD4TC to BC has not been previously observed.  

 

The composition of CD4TC in centenarians was characterized by an expansion of mCD4T 

(65.72%) and a reduction of nCD4TC (34.28%) compared to all younger age groups (mCD4TC: 

39.46% and nCD4TC: 60.54%, F-test, p-value = 0.02852). The composition of BC in the EL 

group had a similar shift from naive (nBC: 41.06%) to memory cells (mBC: 58.94%) but the 

change did not reach statistical significance (F-test, p-value = 0.7168) (Figure 3, 

Supplementary Figure 9).  

 

In summary, using the hierarchy of peripheral immune compartments, we identified major shifts 

in the makeup of centenarian PBMCs compared to those of younger ages within the myeloid 

and lymphocyte lineages that were obscured globally in terms of all 13 cell types together.  

 

Centenarians display unique transcriptional profiles associated with Extreme Longevity  

 

The previous two analyses characterized the makeup of centenarian PBMCs globally and within 

their myeloid and lymphocyte lineages in terms of proportions of the various cell types. We next 

examined their expression profiles relative to younger age groups. For each cell type, we 

performed an analysis to discover genes with differential expression as a function of age and/or 

EL, which identified 99 genes with age- or EL-associated differential expression in at least one 

cell type (Figure 4, Supplementary Table S26). The number of significantly differentially 

expressed genes varied by cell types and comparison groups (Figure 4A): on average, the 

comparison of expression profiles of cell types in the middle vs. the younger age group 

produced a smaller number of differentially expressed genes (i.e., fewer differences) than the 

comparisons of the older vs. younger age and the EL vs. younger age group. Figure 4B shows 

clear differential gene expression patterns for all cell type-specific signatures across each age 

group comparison.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498968
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Examination of the age-specific expression changes identified three main patterns that are 

summarized in Figure 4C-E, and closely mirror the changes in cell type composition described 

above. These patterns include 1) genes whose expression increase or decrease monotonically 

with age and EL (Aging-Related), 2) genes whose expression increase or decrease only in the 

EL group (EL-Specific), 3) genes whose expression increase or decrease with age, but these 

changes do not continue in the EL group (Aging-Specific).  

 

We identified 32 genes with the Aging-Related pattern (i.e., change in both aging and EL) of 

differential expression across the various immune cell types. Figure 4C shows selected 

examples of genes in the first group and Supplementary Figures 10-18 include more 

examples. The set includes genes involved in DNA damage response such as serine/threonine-

protein kinase 17A (STK17A) in nCD4TC (Figure 4C). STK17A is a positive regulator of 

apoptosis and a variant near STK17A was previously reported to be associated with longevity in 

WGS analysis 25. Group 1 also included the HLA class II histocompatibility antigen genes HLA-

DPB1 in cCD8TC and the HLA-DPA1 gene in nCD4TC (Figure 4C). These major 

histocompatibility genes are involved in antigen presentation and activation of immune response 

pathways. Furthermore, two genes previously reported to increase in expression with age in 

peripheral blood were in group 125,26:   leucine-rich repeat neuronal protein 3 (LRRN3) and 

lymphoid enhancer-binding factor-1 (LEF1) in nCD4TC (Figure 4C).  

 

We identified 8 genes with an EL-Specific pattern (i.e., change only in EL) in several cell types: 

nCD4TC, cCD8TC, nBC, mBC, and M16 subpopulations (Figure 4D, Supplementary Figures 

10, 14-15, 17). Figure 4D shows examples of genes that appear to be only expressed in 

immune cells from the EL group. An example of a gene only expressed in nCD4TC of the EL 

group is S100 protein-coding gene, S100A4 (Figure 4D). S100 proteins have been implicated in 

aging-related diseases such as Alzheimer’s disease as well as longevity 27,28.  We also identified 

similar trends in genes involved in transcriptional regulation including Elongin B (ELOB, also 

known as TCEB2) in M16, and NOP53 ribosome biogenesis factor in nBC (Figure 4D) and 

cCD8TC (Supplementary Figure 12). 

  

We identified 11 genes with the Aging-Specific pattern (i.e., change in aging but not in EL), with 

expression levels that change with age but not in EL across nCD4TC, mCD4TC, nBC, mBC, 

mDC cell populations.  Figure 4E shows examples of 3 genes and additional examples are in 

Supplementary Figures 10-11, 14-15, 18.  This set includes genes that respond to oxidative 

stress including sestrin 3 (SESN3) in nCD4TC (Figure 4E) and mCD4TC (Supplementary 

Figure 11), and microtubule-associated proteins 1A/1B chain 3B (MAP1LC3B) in nBC, and 

cytochrome C oxidase assembly factor COX16 in mBC (Figure 4E). SESN3 is part of the 

sestrin family of stress-induced metabolic proteins and is stimulated in response to oxidative 

stress/damage by FOXO3, a transcription factor associated with longevity 29,30, while 

MAP1LC3B is involved in autophagy processes in mitochondria of cells and works to reduce 

oxidative stress 31.  

 

In addition to cell type specific expression profiles, we analyzed gene expression aggregated 

over different cell types (see Methods). This analysis identified a greater number of genes with 
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significantly different expression in the EL v. younger age group comparison (387 genes) 

compared to middle v. younger age group (0 genes) and older v. younger age group (3 genes) 

(Supplementary Figure 19, Supplementary Tables S27).  Among the 387 significant 

differential genes identified in EL v. younger age, we found 136 genes over-expressed and 251 

under-expressed in the EL group compared to the younger group (Supplementary Figure 19, 

Supplementary Tables S27). In addition, of the 387 significant genes identified in EL v. 

younger age, we identified 164 genes previously identified to change in expression with age 9,32 

including LEF1 and LRRN3 9,32 that we also identified at the single cell level as well as CD28 

antigen molecule 32. 

 

 

 

Discussion 

 

Overview of main results. Using a multi-modal, single cell approach, we generated cell 

composition and transcriptional profiles from the PBMCs of 7 centenarians using CITE-seq. We 

integrated this novel data set with publicly available scRNA-seq datasets of aging and longevity 

across the human lifespan to characterize cell type composition and gene expression profiles 

unique to centenarians. We observed substantial changes in the composition of immune cells 

with age, including novel changes in myeloid cell types: M14, M16, mDC, and pDC. We also 

conducted a novel analysis of a data-driven hierarchy of peripheral immune compartments, 

which revealed previously undetected changes in the composition of T cells and B cells in 

centenarians. Based on gene expression changes, we identified cell type-specific transcriptional 

signatures of extreme longevity that include aging-related changes as well as unique gene 

changes in the immune profiles of centenarians.    

 

Cell type composition profiles based on the total number of PBMC populations. The peripheral 

blood immune cell repertoire of individuals is known to change with age 7,8. Previous 

transcriptional studies have shown decreases in lymphocytes and increases in myeloid cells 

with age 21, which we also observed in the peripheral blood of centenarians (Figure 2). 

However, in addition to these common changes across aging, our analysis identified patterns of 

immune cell profiles and compositional alterations that are unique to centenarians. We 

observed expected shifts in the composition of centenarians’ PBMCs from non-cytotoxic (e.g., 

nCD4TC and mCD4TC) to cytotoxic lymphocytes (e.g., cCD4TC) that have been observed 

previously in studies of human longevity 2. Similarly, the decrease of nBC with aging and 

longevity has also been reported previously 7,8. However, we also discovered novel 

compositional patterns of extreme old age including aging-related changes (e.g. a significant 

increase of M14 in older age that continues in the EL group), EL-specific changes (e.g. mDC 

and pDC display no significant change among the three younger age groups but a unique, 

significant decrease occurs in EL), and aging-specific changes independent of EL (e.g. a 

significant increase of M16 in older age that then decreases in the EL age group) (Figure 2). 

The extent to which these patterns are the drivers or covariates of phenotypic markers of 

extreme old age remains an open question. 
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Cell type composition profiles within peripheral cell compartments. Utilizing the traditional 

method for characterizing cell type composition profiles based on the total number of PBMC 

populations, we identified novel compositional changes of extreme old age (Figure 2). However, 

this analysis provides limited insight into immune cell type change within the lymphocyte and 

myeloid compartments. We used a novel data-driven approach to create a hierarchy of 

peripheral immune compartments. The analysis summarized in Figure 3 shows, for example, 

that the proportion of lymphocytes in the PBMCs of centenarians decreases compared to 

younger age groups, but a significant change in composition also occurs. Specifically, 

centenarians’ lymphocytes are characterized by an almost 50% decrease of NonCyt, which 

become enriched for BC that are themselves enriched for mBC. Notably, CD4TC and BC have 

a significant role in the immune system’s response to infection 33. BC are associated with the 

antibody-mediated immune response that triggers a quick response against pathogens, while T 

lymphocytes such as CD4TC are associated with cell-mediated immunity that develops at a 

slower rate. Studies have also found crosstalk between BC and CD4TC, showing their co-

dependence in protective immune response 33. The shift from CD4TC to BC suggests that 

centenarians develop a more immediate immune response to infections. We also observed a 

significant shift from naive to memory subtypes within CD4 TC and, to an extent, within BC 

suggesting that centenarians did not escape infection but experienced a greater exposure to 

infections and were able to develop robust responses to them. Previous studies have also 

shown associations between the capacity to control inflammation and preserving 

immunocompetence with longevity as an immune resilience phenotype 34–36. It is possible that 

the unique make up of immune cells we observed in centenarians may represent an adaptation 

of their immune system or a compensatory mechanism to the loss of key immune cell types. 

Interestingly, in almost all compartments displayed in Figure 3, the EL group was characterized 

by a lesser skewed distribution of cell types compared to younger age groups. A more 

heterogeneous distribution of immune cells may be the driver of their immune resiliency. 

Compositional heterogeneity may reflect immunocompetence as a dynamic balance or 

homeostasis 36. Reciprocally, immune imbalance is often characteristic of suboptimal responses 

to infections (e.g., COVID-19 37) or compensation by less effective or exhausted cell mediators 

(e.g., NK cells 38) that compromise health span.  

 

Gene expression profiles. Our analysis identified three patterns of age-related changes:      

monotonic changes across the lifespan, age-related changes that are absent in the EL group, 

and changes that are unique to centenarians. Interestingly, we noticed similar patterns in the 

serum proteome of centenarians 39. By comparing the serum proteome of centenarians to 

septuagenarians, we discovered aging related protein signatures as well as a protein signature 

that was unique to centenarians. We also discovered an age-specific protein signature that was 

not extended as expected in centenarians. Some of the genes with differential expression in the 

EL group have been linked to aging and longevity studies. For example, the expression of a 

variant of STK17A that we found associated with age in nCD4T (Figure 4C) was higher in 

centenarians 25. STK17A is involved in DNA damage response, positive regulation of apoptosis, 

and mitochondrial and metabolic regulation of reactive oxygen species (ROS). This association 

is consistent with results from previous studies that correlated DNA damage repair mechanisms 

to aging and longevity  25,40,41. S100A4, part of the S100 family of calcium-binding proteins, 
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showed an EL specific change in naive CD4 T cells (Figure 4D). S100 proteins such as 

S100A13 have been implicated in their role in longevity, including an association with APOE 

genotypes in centenarians 28. In addition, the S100 family of proteins are associated with 

inflammatory pathways in the brain connected to aging-related diseases such as Alzheimer's 

disease 27. A recent study discovered an S100 protein to be a critical regulator of hematopoietic 

stem cell renewal through mitochondrial metabolic regulation and function 42. In rats, 

recombinant S100A4 demonstrates an anti-apoptotic function in response to oxidative stress 

injury 43. Other transcriptional signatures that we identified in our analysis, such as SESN3 and 

MAP1LC3B (Figure 4E), are involved in DNA damage response and mitochondrial and 

metabolic regulation activated in response to oxidative stress 29,30. Sestrins such as SESN3 are 

highly conserved stress inducible proteins that protect the immune system in response to DNA 

damage and oxidative stress 30. More specifically, the induction of SESN3 in response to 

oxidative damage is activated by FOXO3 30, a transcription factor associated with longevity 29.  

MAP1LC3B is involved in autophagy processes in mitochondria of cells and works to reduce 

oxidative stress 31. In the immune system, mitochondrial regulation plays a role in immune cell 

transcription and activation 44,45 and may promote longevity 46. In addition, the decline of 

mitochondrial quality and activity is associated with aging and senescence  44,45. The connection 

to mitochondrial and metabolic regulation suggests that centenarians may have changes that 

occur in mitochondrial and metabolic regulation and function and should be further investigated. 

We note that our signatures of aging derived from “pseudo-bulk” data closely match previously 

published signatures of aging derived from bulk data 9,32. The difference between the bulk and 

single-cell signatures on the other hand, point to the fact that much of the observed differential 

expression is driven by differences in cell composition rather than by differences in within-cell 

type expression. 

 

Limitations and Future Directions. This study has several limitations, particularly the cross-

sectional nature of the data and the small sample size. We integrated our data with multiple 

single cell datasets to increase sample size, but we intentionally adopted a conservative 

approach to identify cell type specific signatures across age groups. Larger studies of 

centenarians will be needed to detect robust transcriptional changes that characterize EL. 

Although we identified a small set of transcriptional signatures, we were still able to identify 

patterns of EL that have been discovered in previous studies including EL specific changes. In 

addition, the compositional and gene expression changes that we observed in centenarians 

displayed not only EL specific changes but also age-related changes. How EL differs from 

regular aging remains unclear, and more investigation and future studies will be required to 

elucidate this difference and investigate the mechanisms behind the patterns observed in 

extreme old age. Access to the peripheral blood of centenarian offspring and studying 

longitudinal changes in PBMC populations may help to better define immunocompetence causal 

drivers of the beneficial health outcome observed in EL. 

 

Conclusion. Overall, these findings display age-related changes in composition and transcription 

in both lymphocyte and myeloid cell types that collectively reflect immunocompetent profiles that 

may in part account for centenarians’ ability to reach extreme ages. The extent to which some of 

the unique compositional and transcriptional patterns we identified in centenarians’ PBMCs are 
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the drivers or markers of extreme old age remains an open question. To our knowledge, this is 

the first study to define cell compositional and transcriptional signatures of EL across immune 

cell types in peripheral blood. This study provides a foundation and resource to explore immune 

resilience mechanisms engaged in exceptional longevity.  

 

 

Methods 

 

Experimental Procedure 

 

Human blood samples.  

Centenarians were enrolled in North America in 2019. The study was approved by the Boston 

Medical Center and Boston University Medical Campus IRB and all participants provided written 

informed consent.  

 

Processing of blood samples 

 

For each centenarian and control individual involved in this study, 8 mLs of peripheral blood was 

drawn into each of two BD Vacutainer Cell Preparation Tubes with sodium citrate (BD 

Biosciences catalog #362760). The tubes were centrifuged at 1,800 x g for 30 minutes at room 

temperature (RT). The buffy coat containing peripheral blood mononuclear cells (PBMCs) was 

isolated and transferred into a sterile 15 mL conical centrifuge tube. The PBMC sample was 

brought to 10 mLs with sterile Dulbecco’s phosphate buffered saline (DPBS, Invitrogen catalog 

#14190-144) and centrifuged at 300 x g for 15 min at RT. The supernatant was aspirated and 

the pellet resuspended in 10 mL sterile DPBS and a cell count performed via hemocytometer. 

The sample was centrifuged at 300 x g for 10 min at RT and the supernatant aspirated. The 

pellet was resuspended in chilled (4℃) resuspension medium (40% fetal bovine serum (FBS) 

hyclone defined, Cytiva catalog #SH30070.03 in Iscove’s Modified Dulbecco’s Medium (IMDM), 

catalog #12440053) to achieve a cell concentration of 4 x 10^6 cells/ mL. An equal amount of 

chilled 2X freezing medium (30% Dimethyl Sulfoxide (DMSO), Sigma catalog #D2650 in IMDM/ 

40% FBS) was added to achieve a cell concentration of 2 x 10^6 cells / mL. This mixture was 

then aliquoted into 1.2 mL cryovials (Corning catalog #430487) at 1 mL / vial. These vials were 

then brought to -80℃ before being transferred to a -150℃ deep freezer.  

 

scRNA-seq of PBMCs of centenarians 

 

PBMC samples (2 x 10^6 cells/sample) from the centenarian cohort were thawed rapidly and 

mixed with 15 mL StemSpan medium (CAT#) with L-glutamine (1:1000 conc...). These samples 

were then brought to 50 mL with sort buffer (2% Bovine Serum Albumin (BSA), Millipore Sigma 

catalog #EM-2930 in DPBS) and centrifuged for 5 min at 400 x g at RT. The supernatant was 

aspirated, and the pellet of PBMCs resuspended in 30 mL sort buffer and centrifuged for 5 min 

at 400 x g at RT. The pellet was resuspended in 2 mL StemSpan medium (+L-glutamine) and 

filtered through a 40 uM filter. The samples were then incubated in this medium for 1 hour at 

37℃/5% CO2. Following this incubation, the samples were centrifuged for 5 min at 400 rcf at RT 
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and the supernatant aspirated. Each pellet was then resuspended in 50 uL labeling buffer (1% 

BSA in PBS) and 5 uL Human TruStain FcX() was added. The samples were incubated at 4℃ 

for 10 minutes. During this incubation, the TotalSeq-C antibody pool containing 1 ug of each 

antibody was prepared and centrifuged for 10 min at 14,000 x g at 4℃. The supernatant was 

then transferred and used as the antibody mix for each sample. 20 uL of the antibody mix was 

added to each sample and the samples were brought to 100 uL with labeling buffer. The 

samples were incubated for 30 minutes at 4℃. Following this incubation, the samples were 

washed with 1.3 mL labeling buffer and centrifuged at 400 x g for 5 minutes at RT. This washing 

step was repeated for a total of 3 washes. The pellets were then resuspended in 500 uL labeling 

buffer with calcein blue AM(1:1000) Fisher Scientific, catalog #C1429). 1 x 10^5 calcein blue 

positive cells (live cells) were then sorted per sample. The sorted samples were centrifuged for 

5 min at 400 rcf at room temperature and resuspended in 120 uL resuspension buffer (0.04% 

BSA in DPBS). The samples were counted via hemocytometer and diluted to 600 cells/uL with 

resuspension buffer.  

 

 

Single cell analysis 

New England Centenarian dataset: 

 

CITE-seq and CellRanger Preprocessing 

 

Cellular Indexing and epitopes sequencing (CITE-seq) was performed on the 7 centenarians 

and 2 younger age controls using a commercial droplet-based platform (10x Chromium). We 

constructed 5’ gene expression libraries (GEX), as well as surface protein libraries (antibody 

derived tags, ADT) following the manufacturer’s user guide. These libraries were sequenced on 

two runs of an Illumina NextSeq 2000 instrument generating 438 and 535 million reads 

respectively. 

 

Raw sequencing files were converted to fastq and demultiplexed using bcl2fastq v.2.20 and 

Cellranger v.3.0.2. Counts for the expression and antibody capture libraries were derived by 

simultaneously mapping the respective fastq files to the human genome (GRCh38) and to the 

feature reference of the TotalSeq-C antibodies used using the corresponding parameters in 

cellranger count (v.3.0.2). This pipeline includes the alignment, barcode and UMI counting. 

 

Filtering, PCA Analysis, Batch Correction, and Clustering 

 

After processing the samples through CellRanger, we performed filtering, normalization, and 

principal component analysis using Seurat v.3 47.  First, we performed quality control steps 

based on the number of genes and UMIs detected per cell, and percent of mitochondrial genes 

expressed per cell. To remove poor quality cells with low RNA content, we removed cells with 

less than 200 genes detected. To filter out outlier cells and doublets, we filtered out cells with 

greater than 3,000 detected genes, as well as cells with greater than 15,000 UMIs. To account 

for cells that are damaged or dying, we removed cells with greater than 15 percent 

mitochondrial counts expressed.  After filtering, we normalized the RNA-level expression data 
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for each cell to compare gene expression between sample cells; Gene counts for each cell were 

normalized by total expression, multiplied by a scale factor of 10,000 and transformed to a log2 

scale. We normalized the protein-level expression data by applying a centered log ratio (CLR) 

transformation for each cell to account for differences in total protein ADT counts that make up 

each cell.  

 

Further downstream analyses were performed on the RNA-level expression data. PCA based 

on the top 2000 highly variable genes was performed for dimensionality reduction, and the top 

20 significant PCs were selected that explain the most variability in the data. The top significant 

PCs were used as an input for clustering the cells and for nonlinear dimension methods 

mentioned below to identify populations of cells with similar expression profiles.  

 

To account for technical variations between samples from different experimental batches, we 

corrected the PCA embeddings using the Harmony algorithm 17, a method that iteratively 

clusters and corrects the PC coordinates to adjust for batch specific effects. We assessed the 

integration of these datasets by employing PCA visualizations of batches of cells and calculating 

the average silhouette width (ASW) score 48,49 for each cell type population based on the top 20 

principal components before correction and the top 20 harmony components after batch 

correction reported with T-statistic and p-value significance threshold of 0.05.  

We clustered cells based on graph-based methods (SNN and Louvain community detection 

method) using the top 20 Harmony-adjusted components and used the Unifold Manifold 

Approximation and Projection (UMAP) algorithm18 to visualize clusters of cells and other known 

annotations.  

 

 

Identification and classification of cell types 

 

We used a multi-modal approach to identify immune subpopulations in the NECS dataset. First, 

we used the 10 cell-surface protein immune cell marker panel of expression to identify main 

immune cell types. We then further partitioned the main immune cell types into immune 

subtypes using graph-based clustering and based on the expression of immune cell type 

signatures from literature 19,20. The average expression score of each signature was calculated 

for a single cell by calculating the average scaled expression of all genes within a signature, 

with the scaling based on the expression of a control set of genes (AddModuleScore function in 

Seurat 47), and by taking the absolute value of the average scaled expression to compare 

scores across signatures within a cell population. 

 

Publicly available datasets: 

 

Data collection, filtering, PCA analysis, and clustering 

 

We downloaded the raw UMI matrix for the scRNA-seq dataset of PBMCs from 45 younger age 

controls of European descent 1, which we will refer to as NATGEN. We also downloaded the 

raw UMI matrix for the scRNA-seq dataset of PBMCS from 7 supercentenarians and 5 younger 
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age controls of Japanese descent 2, which we will refer to as PNAS. For both PBMC datasets, 

we performed all downstream processing including filtering, normalization, and scaling of data 

using the Seurat v.3 47. For both datasets, we performed quality control steps based on the 

number of genes and UMIs detected per cell, and percent of mitochondrial genes expressed per 

cell. For the NATGEN dataset, we filtered cells based on similar thresholds from the original 

manuscript 1 with the exception of filtering the number of UMIs per cell greater than 3,500 to 

remove outlier and doublet cells and filtering the percent of mitochondrial genes expressed 

greater than 5 percent to remove damaged or dying cells. After filtering, the dataset included 

UMI counts for 25,000 cells. For the PNAS dataset, we filtered cells as previously published 2. 

After filtering the datasets, we normalized the expression levels of each cell to compare gene 

expression between sample cells; gene counts for each cell were normalized by total 

expression, multiplied by a scale factor of 10,000 and transformed to a log2 scale. We then 

performed PCA analysis based on the top 2,000 highly variable genes detected and clustered 

cells based on graph-based methods (SNN and Louvain community detection method) 47 based 

on the top significant PCs for each data set implemented in Seurat. We used the UMAP 

algorithm 18 to visualize the clusters of single cells and other known annotations.  

 

Subpopulation Identification and Harmonization 

 

To define the set of consensus immune cell types across regular aging and longevity, we first 

identified subpopulations of each cell type using immune cell type signatures from literature 19,20. 

The average expression score of each signature was calculated for each single cell across 

datasets as described for the NECS dataset using Seurat. In addition, we compared the 

expression of canonical gene markers of the immune populations identified for comparison 50. 

After identifying subpopulations in each dataset, we then integrated these scRNA-seq datasets 

of PBMCs by correcting the PCA embeddings using the Harmony algorthim17 and assessed 

batch correction using average silhouette width (ASW) score 48,49 for each cell type population 

based on the top 20 principal components before correction and the top 20 harmony 

components after batch correction reported with T-statistic and p-value significance threshold of 

0.05.  

 

Overall cell type composition analysis 

 

We compared the overall cell type composition differences across samples and age groups by 

calculating the cell type diversity statistic for each sample, a normalized entropy-based method 

borrowed from the analyses of microbiota data 22. The cell type diversity statistic Es is 

represented as the measure of entropy based on the cell type proportions p i for the sample s 

normalized based on the total number of cell types k: 

𝐸𝑠  =  
− ∑ 𝑝𝑖𝑠

𝑘
𝑖=1 𝑙𝑜𝑔(𝑝𝑖𝑠

)

𝑙𝑜𝑔(𝑘)
 −  1 

 

A sample with more uniformity in cell type abundances/proportions will result in having a higher 

cell type diversity statistic compared to a sample with cell type abundances/proportions that are 
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skewed towards specific cell types will have a lower diversity statistic. We performed ANOVA 

with p-value of 0.05 to assess differences between age groups. 

 
Cell type specific composition analysis 

 

To investigate cell type specific differences across age groups, we applied a Bayesian 

multinomial logistic regression model to the cell type abundances: 

 

𝑌𝑖,1:𝐽  ~  𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖,1:𝐽  , 𝑁. 𝑡𝑜𝑡𝑎𝑙𝑖) 

𝑙𝑜𝑔(𝑞𝑖,𝑗)  =  𝛼𝑗  + 𝛽𝑎𝑔𝑒.𝑔𝑟𝑜𝑢𝑝𝑖 ,𝑗  + 𝛾𝑠𝑒𝑥𝑖,𝑗   

𝑝𝑖,𝑗  =  
𝑞𝑖,𝑗

∑ 𝑞𝑖,𝑘
𝑁.𝑐𝑡
𝑘 = 1

 

 

𝛼𝑗 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) 

𝛽𝑎𝑔𝑒.𝑔𝑟𝑜𝑢𝑝𝑖 ,𝑗 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) 

𝛾𝑠𝑒𝑥𝑖,𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) 

 

where 𝑌𝑖,1:𝐽 represents the abundances of cell type 1: 𝐽 for sample 𝑖 that are modeled using a 

Multinomial distribution with probabilities 𝑝𝑖,1:𝐽  ∑ 𝑌𝑖,𝑗
𝐽
𝑗 = 1  =  𝑁. 𝑡𝑜𝑡𝑎𝑙𝑖  for all sample 𝑖 and 

∑ 𝑝𝑖,𝑗
𝐽
𝑗 = 1  =  1. The probabilities 𝑝𝑖,1:𝐽 depend on age and sex through the function  𝑙𝑜𝑔(𝑞𝑖,𝑗). We 

chose a reference for each age group (younger age) and sex (male). 

 

The model was estimated using Markov Chain Monte Carlo (MCMC) sampling using rjags, the 

R package for JAGS 51. We ran parameter inference for all coefficients for group level 

probabilities of composition (𝑝𝑖,𝑗) and the age group and sex effect coefficients (𝛽, 𝛾) using 

1,000 iterations with 500 iterations for burn-in. 

 

We obtained the group level composition probabilities and 95 percent credible interval for males 

and female subjects for younger, middle, older, and EL age groups across all immune cell 

types. In addition, to assess the significance of the effect of age and sex in each cell type, we 

calculated the z-score (Z) for parameters  𝛽 and 𝛾 based on the mean estimate and standard 

error of the posterior distribution. we subsequently calculated the two-sided p-value based on 

the standard normal distribution: 2Φ(−|Z|)) where Φ is the standard normal cumulative 

distribution function. We calculated the adjusted p-value based on the Benjamin and Hochberg 

correction for multiple testing across all coefficients tested. 

 

Analysis of the hierarchy of peripheral immune compartments 

 

We investigated differences in immune cell composition between age groups across multiple 

molecularly derived cell type subgroups comprising peripheral immune compartments. To 

estimate this hierarchy, we utilized K2Taxonomer (v1.0.5) 23 , which performs top-down 

partitioning of cell types based on the relative similarity of their transcriptomic profiles. Prior to 

running K2Taxonomer, we performed several further data processing steps. First, plasma cells 
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were removed from this analysis because they were present in fewer than 10 subjects. Next, for 

each subject we aggregated single-cell profiles of each cell type into a “pseudo-bulk” profile by 

summing the counts of each gene, followed by normalization to log2(counts-per-million). The 

resulting data set included 515 total profiles across 66 subjects and 12 cell types. The number 

of subjects for which each of these 12 cell types were identified in each of the four batches is 

given in Supplementary Table S12. Next, we removed lowly expressed genes, which failed to 

reach 2 counts-per-million in at least 2 profiles across all batches, which left 12,354 remaining 

genes. Finally, we performed batch correction on these data using ComBat (v3.40.0) 52.  

 

To compare the cell composition between age groups, we performed cell type diversity statistic-

based analyses, independently, for each subset of cell types comprising peripheral immune 

compartments estimated by K2Taxonomer. Statistically significant differences in mean cell type 

diversity statistics were assessed using ANOVA with p-value threshold of 0.05.  

 

 

Cell type specific differential gene expression analysis 

 

To investigate the cell type specific differences across age groups, we created and applied a 

Bayesian normally distributed mixed effects model with the rjags R package 51 to compare gene 

expression changes between middle, older, and EL age groups in reference to the younger age 

group.  For each cell type, we first filtered genes to keep genes with expression in at least fifty 

percent of the smallest cell type population. We then performed differential gene expression 

analysis across the four age groups (younger, middle, older age groups) using the Bayesian 

mixed effects model where for each cell (i): 

 

𝐺𝑒𝑛𝑒𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖  , 𝜏) 

𝜇𝑖  =  𝛽𝑆,𝑠𝑎𝑚𝑝𝑙𝑒  +  𝛽1𝑀𝑖𝑑𝑑𝑙𝑒𝑖  +  𝛽2𝑂𝑙𝑑𝑒𝑟𝑖  + 𝛽3𝐸𝐿𝑖  + 𝛽4𝑆𝑒𝑥𝑖  + 𝛽5𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦𝑖 + 𝛽6𝐵𝑎𝑡𝑐ℎ𝑖 

+ 𝛽6𝐵𝑎𝑡𝑐ℎ𝑖  

 

𝛽𝑆,𝑠𝑎𝑚𝑝𝑙𝑒  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛽0 , 𝜏𝑠) 

𝛽𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.0001) ∀ 𝑘 ∈  [0, . . . ,6] 

𝜏 ~ 𝐺𝑎𝑚𝑚𝑎(0.0001, 0.0001) 

𝜏𝑠  ~ 𝐺𝑎𝑚𝑚𝑎(0.00001, 0.00001) 

 

where 𝐺𝑒𝑛𝑒𝑖 is the log-normalized expression of a gene for each cell 𝑖 in the cell type; 

𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽0 are model parameters. The model is adjusted by fixed covariates sex, 

batch, and ethnicity, as well as a random effect based on samples to account for differences in 

cell abundances between samples within groups. Using this model, we monitored the age-

dependent coefficients (β1, β2, β3) across 10,000 MCMC iterations with 2,500 burn-in iterations 

to obtain the log fold change (logFC) based on age group. Then, we calculated the z-score (Z) 

for the age-dependent parameter based on the mean estimate and standard error of the 

posterior distribution. We subsequently calculated the two-sided p-value based on the standard 

normal distribution: 2*Φ(-|Z|)) where Φ is the standard normal cumulative distribution function. 

We calculated the FDR based on the Benjamin and Hochberg correction for multiple testing 
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across all genes tested. Significant differential genes were selected based on a significance of 

FDR < 0.05 and fold change cutoff of 10 percent (logFC < |log2(1.1)|). 

 

Bulk level differential gene expression analysis 

 

We performed differential gene expression analysis at the bulk level between age groups using 

DESeq2 53.  We filtered genes in the single cell data to keep genes with expression in at least 

50% of the smallest cell type population. We then aggregated the raw counts per sample and 

ran DESeq2 to perform normalization and fit a negative binomial generalized linear model with 

covariates age group, sex, batch, and ethnicity. A Wald test was subsequently performed on 

each age group coefficient (i.e., Middle, Older, and EL v. Younger age) with log fold changes, 

Wald p-values, and adjusted p-values (FDR) reported. Differentially expressed genes at the bulk 

level were evaluated according to log fold change greater than log2(1.5) and FDR  < 0.05. 

 

 

References 
 
1. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-

eQTLs and co-expression QTLs. Nature Genetics 50, 493–497 (2018). 

2. Hashimoto, K. et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in 

supercentenarians. PNAS 116, 24242–24251 (2019). 

3. Aw, D., Silva, A. B. & Palmer, D. B. Immunosenescence: emerging challenges for an ageing 

population. Immunology 120, 435–446 (2007). 

4. Deleidi, M., Jäggle, M. & Rubino, G. Immune aging, dysmetabolism, and inflammation in 

neurological diseases. Front. Neurosci. 9, (2015). 

5. Aiello, A. et al. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? 

A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 10, (2019). 

6. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new 

immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14, 576–590 

(2018). 

7. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional 

longitudinal monitoring. Nature Medicine 25, 487–495 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498968
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

8. Zheng, Y. et al. A human circulating immune cell landscape in aging and COVID-19. Protein 

Cell 11, 740–770 (2020). 

9. Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nature 

Communications 6, 8570 (2015). 

10. Sebastiani, P. & Perls, T. T. The Genetics of Extreme Longevity: Lessons from the New 

England Centenarian Study. Front Genet 3, (2012). 

11. Hitt, R., Young-Xu, Y., Silver, M. & Perls, T. Centenarians: the older you get, the healthier 

you have been. The Lancet 354, 652 (1999). 

12. Terry, D. F., Sebastiani, P., Andersen, S. L. & Perls, T. T. Disentangling the roles of 

disability and morbidity in survival to exceptional old age. Arch Intern Med 168, 277–283 

(2008). 

13. Andersen, S. L., Sebastiani, P., Dworkis, D. A., Feldman, L. & Perls, T. T. Health span 

approximates life span among many supercentenarians: compression of morbidity at the 

approximate limit of life span. J Gerontol A Biol Sci Med Sci 67, 395–405 (2012). 

14. Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks 

multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging 1, 598–615 

(2021). 

15. Ferrucci, L. et al. Measuring biological aging in humans: A quest. Aging Cell 19, e13080 

(2020). 

16. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. 

Nature Methods 14, 865–868 (2017). 

17. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. 

Nature Methods 16, 1289–1296 (2019). 

18. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection 

for Dimension Reduction. arXiv:1802.03426 [cs, stat] (2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498968
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

19. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor 

infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711, 243–259 (2018). 

20. Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 

(2019). 

21. Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. 

Nat Rev Immunol 13, 376–389 (2013). 

22. Karagiannis, T. T., Monti, S. & Sebastiani, P. Cell Type Diversity Statistic: An Entropy-

Based Metric to Compare Overall Cell Type Composition Across Samples. Frontiers in 

Genetics 13, (2022). 

23. Reed, E. R. & Monti, S. Multi-resolution characterization of molecular taxonomies in bulk 

and single-cell transcriptomics data. Nucleic Acids Res 49, e98 (2021). 

24. Agrawal, A. & Gupta, S. Impact of aging on dendritic cell functions in humans. Ageing Res 

Rev 10, 336–345 (2011). 

25. Garagnani, P. et al. Whole-genome sequencing analysis of semi-supercentenarians. eLife 

10, e57849 (2021). 

26. Harries, L. W. et al. Human aging is characterized by focused changes in gene expression 

and deregulation of alternative splicing. Aging Cell 10, 868–878 (2011). 

27. Cristóvão, J. S. & Gomes, C. M. S100 Proteins in Alzheimer’s Disease. Front. Neurosci. 0, 

(2019). 

28. Sebastiani, P. et al. A serum protein signature of APOE genotypes in centenarians. Aging 

Cell 18, e13023 (2019). 

29. Morris, B. J., Willcox, D. C., Donlon, T. A. & Willcox, B. J. FOXO3 – A Major Gene for 

Human Longevity. Gerontology 61, 515 (2015). 

30. Chen, Y. et al. The functions and roles of sestrins in regulating human diseases. Cellular & 

Molecular Biology Letters 27, (2022). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498968
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

31. Nastasi, C., Mannarino, L. & D’Incalci, M. DNA Damage Response and Immune Defense. 

International Journal of Molecular Sciences 21, (2020). 

32. Vo, T. K. D. et al. Transcriptomic biomarkers of human ageing in peripheral blood 

mononuclear cell total RNA. Exp Gerontol 45, 188–194 (2010). 

33. Petersone, L. et al. T Cell/B Cell Collaboration and Autoimmunity: An Intimate Relationship. 

Frontiers in Immunology 9, (2018). 

34. Fulop, T. et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: 

Friends or Foes? Frontiers in Immunology 8, (2018). 

35. Lee, G. C. et al. Immunologic resilience and COVID-19 survival advantage. J Allergy Clin 

Immunol 148, 1176–1191 (2021). 

36. Marconi, V. C., Krishnan, V., Ely, E. W. & Montano, M. Immune health grades: Finding 

resilience in the COVID-19 pandemic and beyond. J Allergy Clin Immunol 149, 565–568 

(2022). 

37. Blanco-Melo, D. et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of 

COVID-19. Cell 181, 1036-1045.e9 (2020). 

38. Schafer, J. L., Li, H., Evans, T. I., Estes, J. D. & Reeves, R. K. Accumulation of Cytotoxic 

CD16+ NK Cells in Simian Immunodeficiency Virus-Infected Lymph Nodes Associated with 

In Situ Differentiation and Functional Anergy. J Virol 89, 6887–6894 (2015). 

39. Sebastiani, P. et al. Protein signatures of centenarians and their offspring suggest 

centenarians age slower than other humans. Aging Cell 20, e13290 (2021). 

40. Gorbunova, V., Seluanov, A., Mao, Z. & Hine, C. Changes in DNA repair during aging. 

Nucleic Acids Res 35, 7466–7474 (2007). 

41. Kowalczyk, A., Partha, R., Clark, N. L. & Chikina, M. Pan-mammalian analysis of molecular 

constraints underlying extended lifespan. eLife 9, e51089 (2020). 

42. Grahn, T. H. M. et al. S100A6 is a critical regulator of hematopoietic stem cells. Leukemia 

34, 3323–3337 (2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498968
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

43. Meng, X. et al. Protective effect and mechanism of rat recombinant S100 calcium-binding 

protein A4 on oxidative stress injury of rat vascular endothelial cells. Oncol Lett 16, 3614–

3622 (2018). 

44. Sun, N., Youle, R. J. & Finkel, T. The Mitochondrial Basis of Aging. Mol Cell 61, 654–666 

(2016). 

45. Angajala, A. et al. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into 

Immuno-Metabolism. Front. Immunol. 9, (2018). 

46. Gureev, A. P., Shaforostova, E. A. & Popov, V. N. Regulation of Mitochondrial Biogenesis 

as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling 

Pathways. Front. Genet. 10, (2019). 

47. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 

(2019). 

48. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA 

sequencing data. Genome Biology 21, 12 (2020). 

49. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster 

analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987). 

50. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell 

transcriptomic data across different conditions, technologies, and species. Nature 

Biotechnology 36, 411–420 (2018). 

51. Plummer, M. Penalized loss functions for Bayesian model comparison. Biostatistics 9, 523–

539 (2008). 

52. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data 

using empirical Bayes methods. Biostatistics 8, 118–127 (2007). 

53. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biology 15, 550 (2014). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498968
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498968
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Figure Legend 
 
Figure 1. The immune landscape of peripheral blood cells from subjects with extreme 

longevity at single cell resolution. A. UMAP embedding of PBMCs collected from 7 EL 

individuals from the NECS and 2 younger age controls from the novel CITE-seq dataset, 

labelled by the identified immune cell subtypes. B. UMAP embedding of PBMCs from all 66 

subjects representative of the human lifespan from the integrated scRNA-seq datasets (NECS, 

PNAS, and NATGEN), labelled by immune cell subtypes.  

 

Figure 2. Extreme longevity demonstrates shifts in immune cell repertoire compared to 

younger control groups. A. Bar chart of the relative proportions of the lymphocyte and myeloid 

immune cell subtypes for each sample across the integrated scRNA-seq datasets : Younger 

Age, Middle age, Older age, and EL. B. Boxplot of cell type diversity statistic calculated on the 

immune cell subtypes per sample and grouped across age groups, with increased cell type 

diversity in EL compared to younger age groups although not found to be statistically significant 

(F-test, p-value = ) C. Bar chart of the multinomial estimated proportions of the lymphocyte and 

myeloid immune cell subtypes in each age group, grouped separately for males and females. D. 

Heatmap of the age coefficient comparing Middle, Older, and EL age groups to the Younger age 

group (right) and heatmap of the sex coefficient for each cell type comparing Females 

compared to Males. We calculated the Z-statistic and p-value of significance for each 

coefficient, represented with: *p<0.05, **p<0.01, ***p<0.001.  

 

Figure 3. Shift in the immune resilience strategy within lymphocyte and myeloid 

populations in centenarians. The average immune cell type proportions across the four age 

groups of the human lifespan along the hierarchy of peripheral immune compartments: PBMC 

(Myeloid v. Lymph), Myeloid (Mono v. DC), Lymph (NonCyt v. Cyt), DC (mDC v. pDC), Mono 

(M14 v. M16), NonCyt (CD4TC v. BC), Cyt (Cyt1 v. Cyt2), Cyt1 (gdTC v. NK), Cyt2 (cCD4TC v. 

cCD8TC), and CD4TC (nCD4TC v. mCD4TC) and BC (nBC v. mBC).  

 

Figure 4. Cell type gene expression changes demonstrate three patterns across the 

human lifespan. A. Table of the number of significant differentially expressed genes across 

aging comparisons: Middle v. Younger age, Older v. Younger age, EL v. Younger age based on 

fold change threshold of minimum 10% change and FDR less than 0.05. B. Heatmap of scaled 

average expression per sample of all significant genes across all cell types grouped by age 

group. C.  Boxplots of expression levels of specific significant genes in particular cell types 

demonstrating changes in aging and EL (Aging-Related), D. changes only in EL (EL-Specific), 

and E. changes in aging not in EL (Aging-Specific). 
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