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 ABSTRACT 

 When studying how species will respond to climatic change, a common goal is to 
 predict how species distributions change through time. Environmental niche models 
 (ENMs) are commonly used to estimate a species’ environmental niche from observed 
 patterns of occurrence and environmental predictors. However, species distributions are 
 often shaped by non-environmental factors–including biotic interactions and dispersal 
 barriers—truncating niche estimates. Though a truncated niche estimate may accurately 
 predict present-day species distribution within the sampled area, this accuracy decreases 
 when predicting occurrence at different places and under different environmental 
 conditions. Modeling niche in a phylogenetic framework leverages a clade’s shared 
 evolutionary history to pull species estimates closer towards phylogenetic conserved 
 values and farther away from species specific biases. We propose a new Bayesian model 
 of phylogenetic niche estimation implemented in R called  BePhyNE  (Bayesian 
 environmental Phylogenetic Niche Estimation). Under our model, species ENM 
 parameters are transformed into biologically interpretable continuous parameters of 
 environmental niche optimum, breadth, and tolerance evolving as a multivariate 
 Brownian motion. Through simulation analyses, we demonstrate model accuracy and 
 precision that improve as phylogeny size increases. We also demonstrate our model on 
 eastern United States Plethodontid salamanders and recover accurate estimates of species 
 niche, even when species occurrence data is lacking and entirely informed by the 
 evolutionary model. Our model demonstrates a novel framework where niche changes 
 can be studied forwards and backwards through time to understand ancestral ranges, 
 patterns of environmental specialization, and estimate niches of data-deficient species. 
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 I. INTRODUCTION 

 1. Summary of Current Methods to Model Niche Evolution 

 The biotic and abiotic environment shapes species’ ecological niches, often 

 determining a species’ past and future chances of survival  (Losos 2008; Evans et al. 

 2009; Ogburn and Edwards 2015; Alves et al. 2017; Farallo et al. 2020)  . Understanding 

 the macroevolutionary history of niche evolution is therefore critical to understanding 

 past, current, and future biodiversity patterns. In this context, our ability to model the 

 evolution of ecological niches can have conceptual but also practical consequences, since 

 it can allow us to understand macroevolutionary constraints and patterns in the evolution 

 of these important traits, as well as predict likely biodiversity changes under future 

 environmental conditions or improve niche estimates for species for which few 

 observations are available (e.g., rare species). While several recently-developed methods 

 have tackled this challenge, researchers generally use two-stage analyses, in which 

 species’ niches are first estimated and then analyzed in a comparative framework 

 (Graham et al. 2004; Knouft et al. 2006; Warren et al. 2008; Evans et al. 2009; Heibl et 

 al. 2018; Guillory and Brown 2021; Quintero et al. 2022). While such approaches can 

 help uncover evolutionary patterns of species niche (Kozak and Wiens 2016; Kolanowska 

 et al. 2017; Farallo et al. 2020; Gaynor et al. 2020), they result in models where 

 present-day niche estimates inform evolutionary processes, but not the reverse. 

 Furthermore, this approach can exacerbate biases, as closely-related species with 

 competitive exclusion but apparently extensive access to suitable habitat may appear 

 more divergent than they actually are (Owens et al. 2013; Saupe et al. 2018). 
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 A common approach used to estimate and delimit species’ ecological niches is 

 offered by Ecological Niche Models (ENMs), which most of the time estimate niches 

 from current occurrence data and environmental (often climatic) predictors (Warren et al. 

 2008, 2010; Cooper et al. 2010; Smith et al. 2019). This method allows understanding 

 how a species abiotic (i.e., fundamental,  sensu  Hutchinson,  1957) niche and eventually 

 species ranges may change in response to environmental change (Quintero and Wiens 

 2013; Saupe et al. 2014; Ogburn and Edwards 2015; Farallo et al. 2020). However, such 

 abiotic niches -and their spatial projections- exclude by definition the effect of biotic 

 factors and dispersal barriers that can reduce ranges to a subsection of the actual extent of 

 the abiotic niche (Soberón 2007; Boulangeat et al. 2012). In such situations, these models 

 can result in biologically-unrealistic species ranges, especially under projected climate 

 scenarios (Elith and Leathwick 2009; Peterson and Soberón 2012; Huang and Frimpong 

 2015). Further, ENMs generally ignore evolutionary processes and information on the 

 niches of related species (Franklin and Miller 2009; Blank and Blaustein 2012; Oke et al. 

 2014), which can also affect the quality of the estimates and their reflection of the natural 

 and evolutionary history of the species or clade in question. Finally, restricting niche 

 estimates to extant occurrence data can give a skewed view of species niches and their 

 evolutionary dynamics, especially given recent climatic and anthropogenic change. 

 Phylogenetic models of niche evolution hold potential to improve both species 

 niche estimates and our understanding of their evolution. Such methods would ideally be 

 tied to biologically-meaningful and interpretable parameters that could be connected to, 

 for example, physiological tolerances of organisms. Today, a handful of approaches allow 
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 the inclusion of phylogenetic structure in niche estimation using linear mixed modeling 

 (Hadfield and Nakagawa 2010; Ives and Helmus 2011; Morales-Castilla et al. 2017; Li et 

 al. 2020; but see Quintero et al. 2022). For example, phylogenetic information can be 

 integrated through the use of phylogenetic predictors (Morales-Castilla et al. 2017) or 

 phylogenetically-covarying random effects (Ives and Helmus 2011). However, in those 

 cases, the estimated parameters are not easily tied to meaningful and 

 biologically-interpretable evolving traits (e.g., logistic regression coefficients cannot be 

 interpreted in isolation, restricting their utility in directly modeling different aspects of 

 niche under biologically-meaningful evolutionary processes). Other approaches, such as 

 that of Hua et al. (2021), address this problem through a sophisticated event-based model 

 that fits from root to tips of the phylogeny a history of adaptation, dispersal, and 

 speciation that best explains the observed variation in niche predictors. While such 

 reconstructions can model complex mechanistic niche history into a composite of 

 repeated, predefined niche-shaping events, the resulting reconstructions are hard to 

 generalize, and largely disconnected from the large family of continuous models of 

 stochastic trait evolution that are commonly used in phylogenetic comparative methods 

 (Felsenstein 1985; Blomberg et al. 2003; Butler and King 2004; Beaulieu et al. 2012; 

 Landis et al. 2013; Drury et al. 2016). These models provide flexible hypothesis-testing 

 tools to compare evolutionary scenarios (O’Meara et al. 2006; Revell and Harmon 2008; 

 Clavel et al. 2015; Adams and Collyer 2018). Thus, although much progress has been 

 made, linking macroevolutionary models with biologically-meaningful parameters (e.g., 

 niche optimum, breadth, and tolerance) is still needed. Doing this would allow us to more 
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 explicitly model how different components of the niche respond to changing 

 environments (Condamine et al. 2013; Quintero and Wiens 2013; Qiao et al. 2016). 

 To address this methodological gap, we propose an alternative modeling 

 framework in which ENMs and the evolutionary process of biologically-realistic 

 environmental niche traits are modeled jointly. Here, we jointly model (1) current 

 environmental responses of taxa in a clade from discrete occurrence observations, and (2) 

 the continuous evolutionary processes shaping these environmental responses under a 

 multivariate Brownian Motion random walk. Although we implement a multivariate 

 Brownian Motion model (Felsenstein 1985, Figure 1), our approach could be readily 

 expanded to include other models commonly used in phylogenetic comparative methods 

 (e.g. Hansen 1997; Blomberg et al. 2003; Butler and King 2004; Beaulieu et al. 2012; 

 Landis et al. 2013; Drury et al. 2016). We implement our model in the R package 

 BePhyNE  (R Core Team 2021). 
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 a)  b) 

 Figure 1: Environmental response curves at the species level and phylogenetic level are 
 jointly modeled in  BePhyNE  . a) Species level response curves for continuous 
 environmental predictors. Each species has three continuous characters describing its 
 niche: an optimum (  𝜃  ) where the species occurs at  the highest probability, a breadth (ω) 
 depicting the environmental range and limits for a species to occur at any probability 
 above given threshold (.05), and a tolerance (  t  ) indicating  the highest probability the 
 species has of occurring anywhere. b) At the phylogenetic level, macroevolutionary 
 divergence in the environmental response parameters  𝜃  , ω, and  t  evolve under a model of 
 stochastic multivariate continuous evolution as simulated over a three taxa tree 
 (evolutionary history of  𝜃  is illustrated through  time). Response curves are plotted at the 
 root, nodes, and tips of the phylogeny. 

 II: Model Description 

 1. Species-Level Niche 
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 We developed a Bayesian framework for phylogenetic niche modeling in the 

 statistical programming language R (R Core Team 2021) as an open-source package, 

 BePhyNE  (Bayesian environmental Phylogenetic Niche Estimation). We first consider the 

 Grinnellian niche for a single measured continuous environmental predictor  x  (e.g., 

 temperature, precipitation), where a species’ occurrence probability (  P  i,  for species 

 species  i  )  is a function of the environmental predictor  x  (Fig. 2a) (Grinnell 1917; Soberón 

 2007). Specifically, a quadratic logit-linked generalized linear model (GLM) fits a curve 

 (hereafter, “the response curve”) that relates the occurrence probability to the observed 

 values of the predictor (Fig. 2b) (Braak and Looman 1986; Jamil and Braak 2013; Jamil 

 et al. 2014). This GLM is then fit to binary presence/absence occurrence data for species 

 i, Y  i  ,  such that: 
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 where  is the log-odds of observing species  i  given the measured environmental predictor  𝑙 

 data,  X  i  , and the Bernoulli-distributed observations  Y  i  . The vector of estimated regression 

 coefficients,  β  ,  describes the relationship between  predictor values and the probability of 

 occurrence. Unconstrained GLM’s fit to empirical data often estimate 

 biologically-unrealistic response curves when occurrence data only cover a fraction of the 

 abiotic niche space. For example, an estimate may not have an intermediate optimum for 

 x  , but rather an intermediate valley with occurrences  having highest probability at the 

 infinite extremes of the predictor. The interdependence of the  β  coefficients in equations 
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 (1) and (2) hinders modeling the evolution of ecological niche, as it requires a complex 

 set of constraints to ensure the unimodality expected under most biologically-realistic 

 scenarios. To remedy this, we reparametrize the model to constrain the response curve as 

 a positive unimodal distribution. We define the unimodal niche response curve for 

 predictor  j  in species  i  as a set of three parameters  (Θ  ij  ={  t  ij  ,  𝜃  ij  , ω  ij  }). Each parameter has 

 a direct biological interpretation, with values upon which we can set meaningful 

 constraints: tolerance (a species highest probability of occurrence,  t  ), optimum (predictor 

 value at a species highest probability of occurrence,  𝜃  ), and breadth (range of predictor 

 values a species can occur at,  ω  ) (Figs. 1a and 2c).  These parameters are algebraically 

 transformed to the GLM (  𝞫)  coefficients, deterministically  setting the GLM response 

 curve (see Appendix I for the full derivation). The niche response curve parameters are 

 linked to the underlying GLM regression coefficients (  𝞫)  as: 

τ = β
 0 

−
β

 1 
 2 

 2 β
 2 

 (3) 
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 1 

 2 β
 2 
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 ω =
β

 1 
 2 − 4 β

 2 
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 0 
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 The parameter  k  represents a threshold cutoff probability  across which the breadth is 

 measured. The resulting set of niche parameters across all predictors and species in the 

 phylogeny is defined as Θ  niche  . 
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 Figure 2: Bayesian estimation of the phylogenetic niche model used in this study, which 
 allows for the joint estimation of species environmental response curves and their 
 evolution using an algebraic link between species’ niche parameters and GLM 
 coefficients. a) The phylogeny is used to model the joint evolution of the parameters 
 describing the niche optimum (  𝜃)  , breadth, (ω), and  tolerance (  t  ) for the b) unimodal 
 response curves under a multivariate Brownian Motion model. c) For each species, we 
 algebraically transform niche parameters into GLM coefficients (  β  ), which are used to 
 calculate the likelihood of the observed occurrence data. Throughout the Bayesian 
 MCMC, we update species-specific niche parameters, as well as parameters governing 
 the multivariate Brownian Motion model. 

 2. Phylogenetic Niche Evolution 

 We assume that each of the three niche parameters in Θ  ij  evolve over time on the 

 phylogeny under a multivariate Gaussian process. Here, we implement a simple 

 multivariate Brownian motion process (Felsenstein 1985, 2004; Revell et al. 2008) where 

 parameters randomly diffuse through trait space along the phylogeny, determined only by 

 a vector of phylogenetic root means (  A  ) and the evolutionary  rate matrix (  R  ) describing 

 the evolutionary rates and covariances of the three niche parameters (Figs. 1b and 2d). 

 We decompose  R  into a vector of standard deviations  (  σ  ) representing the evolutionary 
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 rates, and a correlation matrix (  R  COR  ) that describes the evolutionary correlation between 

 different parameters of a species’ response curve  (Caetano and Harmon 2019)  . We denote 

 the set of parameters defining the evolutionary model as  Θ  BM  = {  A  ,  R  }. 

 To simplify phylogenetic niche estimation over multiple environmental 

 predictors, we assume the environmental predictors were evolutionarily uncorrelated. We 

 assume each predictor  j  evolves under an independent  mvBM process with an 

 evolutionary rate matrix (  R  j  ) for  𝜃  j  and ω  j  of the  response curve. While  𝜃  and ω vary 

 independently across environmental predictors, the  t  parameter is necessarily linked to 

 produce a single maximum probability of occurrence across environmental predictors. 

 The biological interpretation of  t  is dependent on  the occurrence data used. When using 

 real presence-absence data,  t  is the maximum species  occurrence probability–a biological 

 trait that could reasonably be assumed to be phylogenetically heritable and potentially fit 

 a Brownian Motion process. However, generating real absences data is often 

 prohibitively labor-intensive and frequently substituted with randomly sampled 

 background points or pseudo-generated absences. With pseudo-absence data, species 

 response curves model relative suitability across environmental predictor values, 

 changing the interpretation of  t  to one removed  from  the biologically-meaningful 

 measures of occupancy or occurrence probability  (Elith  et al. 2006; Li et al. 2011; 

 Peterson and Soberón 2012)  .  To avoid biasing the more  biologically-realistic  𝜃  and ω 

 when using generated absences, we explored modeling  t  at the species level with 1) 

 species-specific priors or 2)  t  fixed across all species.  For simplicity, in our model 

 performance simulations, we fixed  t  to a single value  for all species. 
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 Our hierarchical Bayesian model estimates species niche and niche evolution 

 jointly over the array of environmental predictors X. The joint probability of the model is 

 as follows: 

 P(Θ  niche,  Θ  BM  | Y,X  ) ∝ P(Y|X, Q  niche  )P(Q  niche  | Q  mvBM  )  P(Q  mvBM  ),  (6) 

 where P(Y|X, Q  niche  ) is the probability of occurrence  for each species given the predictor 

 X and response curve parameters under the reparameterized GLM, P(Q  niche  | Q  mvBM  ) is the 

 probability of the response curve parameters given the mvBM evolutionary process 

 model, and P(Q  mvBM  ) is the prior on the parameters  of the evolutionary process. 

 3. mvBM Priors 

 Prior knowledge on species niche evolution is likely to vary greatly depending on 

 the study system. Therefore, we implemented both informative and uninformative prior 

 distributions on model parameters. For our informative priors, we implemented 

 log-normal distributions for continuous parameters bounded by zero, including mvBM 

 parameters:  A  ω  , and  σ  . Because  A  𝜃  is continuous  and unbounded, we implemented a 

 normal distribution prior. For the  R  COR  sub matrix,  we implement an inverse-Wishart prior 

 centered on a diagonal correlation matrix, where one can specify how strongly the prior is 

 centered on a specified matrix by setting the degrees of freedom. For the inverse-Wishart 

 distribution, an increase in the degrees of freedom will correspondingly result in a 

 narrower distribution around the centered matrix. We specified weakly-informative 

 diagonal matrices that assume no prior information on the direction of covariation, for 

 example, between  𝜃  and ω. 
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 4. MCMC Proposal Distributions 

 We estimated parameters of the model in the R statistical environment using 

 Markov-Chain Monte-Carlo (MCMC) with a Metropolis-Hastings algorithm that 

 stochastically explores parameter space (Chib and Greenberg 1995). We used efficient 

 proposal and likelihood functions for the mvBM model of niche evolution from the 

 package  ratematrix  (Caetano and Harmon 2017).  ratematrix  implements a separation 

 strategy when proposing on  R  , where the matrix is  decomposed into  σ  , and  R  COR  , with 

 separate proposal and prior distributions for each (Barnard et al. 2000; Zhang et al. 2006; 

 Liu et al. 2016). Species niche parameters and  σ  parameters  are updated using both 

 multiplier and sliding-window proposal distributions, while  A  are updated only using a 

 sliding-window proposal. To limit proposals to biologically-realistic response curves, 

 breadth is log-transformed to be constrained to positive trait space, while  t  is transformed 

 to be on a 0.05-1.00 scale through a logit transformation to reflect the range of possible 

 maximum occurrence probabilities for a species. The acceptance ratio for parameter 

 proposals is :

 𝑎 =  1 ,    
 𝑃  𝑌  |     𝑋 ,    𝚯 

 𝑛𝑖𝑐ℎ𝑒  ' ( )    𝑃  𝚯 
 𝑚𝑣𝐵𝑀  ' 

   ( ) 𝑃  𝚯 
 𝑚𝑣𝐵𝑀  ' ( )   

 𝑃  𝑌  |     𝑋 ,    𝚯 
 𝑛𝑖𝑐ℎ𝑒    ( )    𝑃  𝚯 

 𝑚𝑣𝐵𝑀    
   ( ) 𝑃  𝚯 

 𝑚𝑣𝐵𝑀       ( )    ×     𝐻𝑎𝑠𝑡𝑖𝑛𝑔𝑠     𝑅𝑎𝑡𝑖𝑜 
⎰
⎱

⎱
⎰    (7) 

 Terms in the numerator denote the probability under the proposal while terms in the 

 denominator denote the probability under the current MCMC parameters.  𝑃  𝑌  |     𝑋 ,     𝚯 
 𝑛𝑖𝑐ℎ𝑒 ( )   

 is the probability of occurrence given environmental predictor X and niche response 

 curve parameters,  is the probability of the niche response curve across all  𝑃  𝚯 
 𝑚𝑣𝐵𝑀    

   ( )
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 species given the evolutionary process.  is the joint prior on the mvBM  𝑃  𝚯 
 𝑚𝑣𝐵𝑀       ( )   

 process parameters. Proposals are balanced by the Hastings ratios. 

 III. Materials and Methods 

 1. Simulation Testing 

 We tested the accuracy, precision, and consistency of  BePhyNE  by simulating 500 

 datasets under the model and recovering the data-generating parameters (see 

 Supplementary Materials 2 for description of additional test from Cook (2006)). We 

 simulated and estimated parameters over 500 datasets sampled from the prior using 1 

 million generation MCMC at 10% burnin. We plotted the “true” parameters used to 

 generate each simulated dataset against the posterior medians of the MCMC estimating 

 over the same dataset. First, we sampled mvBM parameters from the prior distributions, 

 to simulate response curve parameters (  𝜃  and  ω  ) over  a phylogeny simulated from a pure 

 birth process using the R package  phytools  (Revell  2012)  . Niche tolerance  t  was fixed to 

 0.87 for all species for all predictors. Next, we transformed the response curve parameters 

 for each tip to GLM coefficients,  β  , which were applied  across a simulated grid of virtual 

 environmental predictor values to generate the occurrence probability (using Eq. (1)) at 

 each grid cell. Given the cell’s occurrence probability, we sampled from a Bernoulli 

 distribution to categorize the cell as a presence or absence. Finally, we fit our model to 

 the simulated data to recover the “true” data generating parameters. We compared the 

 simulated parameter values to MCMC posterior medians. We expect there to be a 1:1 

 linear relationship between the “true” and posterior median values. We assessed model 

 consistency by testing if the accuracy and precision of model parameter estimates 
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 improved over datasets simulated from phylogenies with more tips. To do so, we repeated 

 our larger simulation analyses over three treatments of 50 datasets simulated from prior 

 distributions with 20, 50 and 100 phylogenetic tips, and compared accuracy and precision 

 in parameter estimation across treatments. 

 2. Empirical Application: Eastern North American Plethodontidae 

 We fit  BePhyNE  to empirical occurrence data available for 82 species from the 

 family Plethodontidae used in previous studies (Kozak and Wiens 2010b; Fisher  -  Reid et 

 al. 2012). We matched the data to a larger 516-species time-calibrated phylogeny 

 estimated by Bonett and Blair (2017) and pruned out data for missing species. We 

 collected Plethodontidae occurrence data from online databases using a pipeline script 

 coded in R. We used the R package  rgbif  (Chamberlain et al. 2014) to download 

 occurrence data from the Global Biodiversity Information Facility (GBIF, (April 2021; 

 ww.gbif.org)) into the R environment. We filtered out occurrences with missing or 

 inaccurate spatial information using the package  CoordinateCleaner  (Zizka et al. 2019). 

 Using the R package  dismo  (Hijmans et al. 2020), we generated target group 

 pseudo-absences for each species from the presence data of other species. We 

 downsampled occurrences so that presence/absence prevalences within a species expert 

 range (as identified by IUCN expert range maps) were 50%  (Mateo et al. 2010; 

 Barbet-Massin et al. 2012)  . We added additional target absences equal to the number of 

 absences within the expert range outside of it to include sampling across a wider abiotic 

 range. For all occurrence and background points, we collected climatic data from the 

 Worldclim v2.0 database on mean annual precipitation (mm) and mean annual 
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 temperature (  °C  ) (Fick and Hijmans 2017). We divided our occurrence dataset in half to 

 create a training set to estimate parameters on, and a validation set to predict species 

 ranges from our parameter estimates.We chose empirical priors for  A  and  σ  in scaled 

 parameter space based on the ranges of values of predictors from occurrence data and 

 exploratory performance across a range of simulation analyses (Table 1). For example, 

 the prior for  A  𝜃  was set to a normal distribution with mean and standard deviation equal 

 to the environmental averages and variation over the entire sampled area (including 

 presences and absences). Evolutionary rate priors generate a range of response curves 

 ranging from nearly complete stasis to complete saturation of the scaled space. .  For 

 evolutionary correlations, we used an inverse-Wishart prior on  R  COR  centered on a 

 diagonal (uncorrelated) matrix with degrees of freedom equal to the diagonal matrix row 

 length plus one—3.0. 

 We ran 10 chains for 5 million generations with 20% burnin to assess 

 convergence. We adjusted tuning parameters to approximate parameter acceptance ratios 

 of 20%-40%. Using the validation dataset, we assessed the predictive performance of our 

 species response curve estimates. We predicted the probability of occurrence for each 

 species at each site in the validation dataset. We compared predicted occurrence 

 probabilities to the real observed state of the site using a receiving operator characteristic 

 (ROC) curve, a performance measure for binary classifiers. The ROC curve is a plot of 

 true positive rates over false positive rates in predicted occurrence probabilities at 

 probability thresholds ranging from 0 to 1 (Jiménez-Valverde 2012). Accurate response 

 curve estimates display high true and low false positivity rates ratios, with the highest 
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 ratio approaching a threshold of 0.5. The area under the ROC curve (AUC) is a measure 

 of the discriminatory power of a binary classifier and ranges from 0 to 100 (0 to 1 

 multiplied by 100). SDM predictions with AUC scores <50 have relatively equivalent 

 true and false positive rates and fail as a classifier. AUC scores >50 indicate classifiers 

 that more frequently predict occurrence accurately, but scores above 90 identify a strong 

 classifier (Fielding and Bell 1997; Lobo et al. 2008). 

 To identify how evolutionary processes inform species environmental response, 

 we compared response curve estimates for each species when estimated in  BePhyNE  with 

 and without occurrence data using a leave-one-out approach in two steps. First, we fitted 

 BePhyNE  to the training dataset 1000 times, leaving out the occurrence data from one 

 species each time. The recovered response curve parameter estimates for each 

 data-dropped species were only informed by the occurrence of other species through the 

 mvBM process. Second, we predicted occurrence patterns over the validation dataset and 

 calculated AUC scores for data-dropped species range predictions. For each species, we 

 compared these data-dropped AUC scores to the full data AUC scores calculated earlier. 

 Because we were particularly interested in  understanding  evaluating  whether 

 phylogenetic information was influencing estimates of ecological niches, we sought to 

 compare the ecological niche estimates obtained from the evolutionary process and those 

 using each species, even when occurrence data for that species is lacking. To evaluate this 

 we measured the Mahalanobis distance of the optima and breadth for temperature and 

 precipitation between the missing data posterior and each posterior sample from the 

 data-informed posterior iteratively for each species. Thus, for each species we obtained a 
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 distribution of Mahalanobis distances between the data-informed posterior and the 

 missing data posterior distribution. The missing data posteriors varied in their specificity  , 

 with some broad and others narrow  , depending on phylogenetic position and the amount 

 of data from related species. Thus, we repeated the Mahalanobis distance calculation, but 

 measured it between the target species’ missing  -  data posterior and every other 

 Plethodontid species’ data-informed posterior distribution. We then pooled the resulting 

 distribution to identify the distance between the target species’ missing-data posterior and 

 that from all other salamander species, thereby generating a null distribution. We expect 

 the distances between the target species and the missing- data posterior to be on average 

 closer to the target species than other salamander species randomly sampled across the 

 phylogeny. We therefore measured the quantiles of the target species distances (  P  target  ) 

 within the null distribution, and tested for deviations from uniformity with a KS-test. 

 While predictions are expected to overall be improved by phylogeny, some taxa and 

 clades may deviate from Brownian Motion  niche  evolution  of the niche  . For example, our 

 model assumptions may be broken in clades that speciate by ecological speciation and 

 character displacement (or in clades with an abundance of cryptic species). Thus, 

 prediction accuracy may itself be distributed phylogenetically. We therefore estimated the 

 phylogenetic signal in the median values of  P  target  using Blomberg’s  K  , and tested for 

 statistical significance using a randomization test as implemented in the function  phylosig 

 in the R package  phytools  . We interpreted significant  phylogenetic signal in this statistic 

 as an indicator of phylogenetic structure in the deviations from our Brownian Motion 

 assumptions of evolution. 
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 IV. Results 

 1. Simulation Tests 

 Our simulations suggest that we can reliably recover parameter estimates under 

 model assumptions, but not without some biases (Supplementary Fig. S1). Though true 

 parameters roughly resembled a uniform distribution across MCMC posteriors, they did 

 not fit closely enough to pass the Cook (2006) test. Despite biases in the estimation, 

 MCMC posterior medians frequently recovered the data-generating true values for all 

 parameters with high accuracy and precision (Fig. 3). Posterior medians for niche 

 response curve parameters were the most accurate and unbiased, with  𝜃  being the most 

 accurate. Overall, MCMC posterior medians for most mvBM parameters were less 

 accurate than species response curves.  A  ω  and  σ  ω  were  slightly overestimated at low true 

 values and underestimated at high true values.  R  COR  estimation bias shared the same 

 direction but greater magnitude and lower accuracy than other model parameters. Though 

 σ  and  R  COR  estimation accuracy was lowest, they improved  in accuracy as the size of the 

 dataset increased (Fig. 4). Evolutionary parameters increased in precision with increasing 

 phylogenetic sample size, while tip parameters were not affected, as these are primarily 

 affected by the size of the species-level occurrence data. 
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 Figure 3. Estimated parameter performance. Estimated parameters (x-axis) are measured 
 against “true” data generated parameters (y-axis) for two simulated environmental 
 parameters (denoted 1 and 2). For tip parameters (  𝜃  and ω), plots show data for all 
 species with each point indicating a single tip niche estimate  of niche  . 
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 Figure 4. Parameter estimation accuracy, precision, and bias change with different tree 
 sizes (20, 50, and 200 tips).  Here, an overlap with 0 indicates higher accuracy. 

 2. Empirical Results: Eastern North American Plethodontidae 

 When fitted to the full dataset, we recovered similar estimates between  BePhyNE, 

 GLM and  BePhyNE  with dropped occurrence data. Closely-related taxa had more similar 

 estimates in  BePhyNE  than in the GLM-only. For the mvBM model estimates (Table 1), 

 posterior medians for  A  𝜃  were 137.24 mm (95% HPD:  120.16–154.85 mm  ) for annual 

 precipitation and  12.2  ℃  (95% HPD: 9.63–14.76  ℃)  for  annual temperature. For  A  ω  , 

 posterior medians were 9.94 mm for annual precipitation (95% HPD: 6.82–13.81mm  ) 

 and 1.70  ℃  for annual temperature (95% HPD: 1.17–2.35  ℃)  .  For  σ  𝜃  posterior medians 

 were 29.47 mm per million  for annual precipitation  (95% HPD: 26.82–32.20     𝑦𝑒𝑎𝑟𝑠 
 1 
 2 

 mm  ) and  3.47℃ per million  for annual temperature (95% HPD: 3.17–3.78  ℃)  .  𝑦𝑒𝑎𝑟𝑠 
 1 
 2 
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 For  σ  ω  , posterior medians were 17.94 mm per million  for annual precipitation  𝑦𝑒𝑎𝑟𝑠 
 1 
 2 

 (95% HPD: 15.33–20.67  mm)  and  2.94℃ per million  for annual temperature  𝑦𝑒𝑎𝑟𝑠 
 1 
 2 

 (95% HPD: 2.59–3.33  ℃)  . The posterior distribution  for annual precipitation correlation 

 between  𝜃  and  ω  was largely above 0, with a posterior  median of 0.10 mm (95% HPD: 

 -0.01–0.21 mm). Conversely, the posterior distribution for the same correlation for annual 

 temperature was negative and below zero, with a posterior median of -0.15  ℃  (95% HPD: 

 -0.25 – -0.05  ℃  ). Tip response curve estimates are  clustered approximately by genus, with 

 larger  ω  estimates in  Desmognathus  and  Eurycea  (Fig.  5). 

 Table 1  .  BePhyNE  mvBM parameter priors and estimates for Plethodontid  salamanders. 
 A:  parameters for the root means;  σ:  evolutionary  rate parameters for each continuous 
 trait indicated by the subscript (either niche optimum  𝜃  for or niche breadth  ω  );  R  COR  : 
 correlations between  𝜃  and  ω  for each environmental  predictor. 

 Parameter  Prior 
 Distribution 

 Prior 
 Distribution 
 Parameters 
 unscaled 

 Prior 
 Distribution 
 Parameters 

 scaled 

 Posterior 
 Median 

 95% Highest 
 Posterior 
 Density 

 mean annual 
 precipitation 

 A  𝜃  (mm) 
 normal  mean=126.6 

 sd=13.1 
 mean=0 
 sd=0.5  137.24  120.16–154.8 

 5 

 mean annual 
 precipitation 

 A  ω  (mm) 
 log-normal  log-mean=7.9 

 sd=5.2 
 log-mean=0.3 

 sd=0.2  9.94  6.82–13.81 

 mean annual 
 precipitation 

 σ  𝜃  ( 
 )  𝑚𝑚 

 𝑚𝑖𝑙𝑙𝑖𝑜𝑛     𝑦𝑒𝑎𝑟𝑠 
 1 
 2 

 log-normal  log-mean=5.3 
 sd=29.1 

 log-mean=0.2 
 sd=0.46  29.47  26.82–32.20 

 mean annual 
 precipitation 

 σ  ω  ( 
 )  𝑚𝑚 

 𝑚𝑖𝑙𝑙𝑖𝑜𝑛     𝑦𝑒𝑎𝑟𝑠 
 1 
 2 

 log-normal 
 log-mean=12. 

 0 
 sd=29.1 

 log-mean=0.2 
 sd=1  17.94  15.33–20.67 
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 mean annual 
 precipitation 

 R  COR 

 Inverse-Wisha 
 rt 

 df=3 
 centered 

 matrix=diago 
 nal matrix 

 –  0.10  -0.01–0.21 

 mean annual 
 temperature 

 A  𝜃  (℃) 
 normal  mean=11.7 

 sd=1.79 
 mean=0 
 sd=0.5  12.2  9.63–14.7 

 mean annual 
 temperature 

 A  ω  (℃) 
 log-normal  log-mean=1.1 

 sd=0.7 
 log-mean=0.3 

 sd=0.2  1.70  1.17–2.35 

 mean annual 
 temperature 

 σ  𝜃  ( 
 )  ℃ 

 𝑚𝑖𝑙𝑙𝑖𝑜𝑛     𝑦𝑒𝑎𝑟𝑠 
 1 
 2 

 log-normal  log-mean=0.7 
 sd=9.0 

 log-mean=0.2 
 sd=0.46  3.47  3.17–3.78 

 mean annual 
 temperature 

 σ  ω  ( 
 )  ℃ 

 𝑚𝑖𝑙𝑙𝑖𝑜𝑛     𝑦𝑒𝑎𝑟𝑠 
 1 
 2 

 log-normal  log-mean=1.6 
 sd=4.0 

 log-mean=0.2 
 sd=1  2.94  2.59–3.33 

 mean annual 
 temperature 

 R  COR 

 Inverse-Wisha 
 rt 

 df=3 
 centered 

 matrix=diago 
 nal matrix 

 –  -0.15  -0.25 – -0.05 

 Cross-validation supported the results of  BePhyNE  estimates for species niche 

 response curves. AUC scores for prediction over the validation dataset varied across the 

 family from 85-99 (Fig. 6). Predictions from  BePhyNE  no data  generated slightly lower 

 AUC scores for all species (82-99). 
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 Figure 5. Response curve estimates mapped to phylogeny for the two climatic predictors, 
 and for each of the three set-ups:  BePhyNE  (solid lines)  ,  BePhyNE no data  (estimation 
 using the evolutionary model only; pink shadow), and traditional  GLM  (non-phylogenetic 
 estimation of niche; dashed line). 
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 Figure 6. AUC scores for species niche estimates using  BePhyNE  (blue)  and  BePhyNE  no data (yellow) setups for all 
 Plethodontid species in the phylogeny 
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 Figure 7. Relationship between posterior median estimates obtained using  BePhyNE  with 
 species occurrence data (x) and  BePhyNE  no data (y),  for A) precipitation  θ  , B) temperature  θ  , 
 C) precipitation  ω  , and D) temperature  ω  . Red line indicates best-fitting linear models, dotted 
 gray lines indicate the expected pattern of a perfect correlation. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.06.499056doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.499056
http://creativecommons.org/licenses/by-nc/4.0/


 Figure 8.  BePhyNE's phylogenetic information improves  ecological niche estimation in 
 data-deficient species A) Posterior quantiles of the Mahalanobis distances between the 
 target species' missing data posterior and the data-informed posterior within the randomized 
 null distribution. Values skewed to the left indicate that the target species has a smaller 
 distance to the missing-data posterior than species randomly sampled across the phylogeny. 
 Vertical line indicates the average distance per species and its position in relation to the null 
 distribution (0.22 quantile). This demonstrates that. B) Species median value for 
 distance-quantile (  P  target  ) mapped on the phylogeny.  Colors indicate distance between niches 
 estimated using occurrence-rich and occurrence-poor setups. Blue: small distance; magenta: 
 large distance. Significant Blomberg's K indicates phylogenetic signal (K = 0.28, p < 0.01). 

 Results from our leave-one out cross-validation analysis demonstrate that the 

 phylogeny does indeed inform estimates of ecological niche, even when species have no 
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 occurrences. In other words,  BePhyNE  can broadly inform estimates of a species’ 

 ecological niche by leveraging information from related species and the evolutionary 

 model. Posterior estimates of optima and breadth for temperature and precipitation 

 estimated for species without data are all significantly associated with the posterior 

 medians estimated with species occurrence data (Fig. 7). Furthermore, Mahalanobis 

 distances between the multivariate niche from  BePhyNE  estimates lacking occurrence 

 data and those with full occurrence data are much shorter than expected (Fig. 8). This is 

 as evident by the significant left skew toward  P  target  values near 0, which indicates that the 

 distances are smaller than those measured against other randomly-sampled species of 

 salamanders (Fig. 8). In addition, optimum (  Θ  ) and  breadth (  ⍵  ) for both precipitation and 

 temperature response curves show phylogenetic signal in their distance from the 

 data-informed posterior distribution (  P  target  has  significant phylogenetic signal, 

 Blomberg’s K = 0.28, p < 0.01; Figure 8). This indicates that there is phylogenetic signal 

 in the prediction accuracy of salamander niches and may suggest 

 phylogenetically-structured deviations from the Brownian Motion model of evolution. 

 We further examined phylogenetic signal separately for temperature and precipitation 

 response curves, and only found it in temperature curves (K = 0.31, p = 0.001) but not 

 precipitation (K= 0.09, p = 0.95). This suggests that deviations from multivariate 

 Brownian Motion may be more common in temperature, as might be expected if 

 ecological speciation across temperature gradients drives divergence and results in 

 significant displacements in the thermal niche relative to background rates, resulting in 
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 poor prediction from related species. Alternatively, these deviations may indicate portions 

 of the tree with phylogenetic error and/or cryptic species. 

 V. Discussion 

 Here, we propose a novel method of phylogenetic niche estimation,  BePhyNE  , 

 that jointly estimates species niches and the evolutionary process of niche evolution over 

 the phylogeny. Previously, niche evolution was generally modeled using a two-step 

 process where evolutionary models are fit to measured environmental means, or species 

 specific ENMs (Lawing and Polly 2011; Lawing et al. 2016; Guillory and Brown 2021). 

 However, such two-step estimates often carry considerable uncertainty from the original 

 dataset and lack the ability to allow reciprocal information, with estimates of the 

 evolutionary process model informing niche parameters for an individual species and 

 vice-versa. Our approach further establishes a modeling framework to ask numerous 

 questions of interest to evolutionary ecologists, such as: how is niche response  𝜃  and ω 

 correlated along the phylogeny?, how will species evolve in response to climate change?, 

 what is the environmental niche of rare and under-sampled species? By demonstrating the 

 feasibility of joint modeling and parameter estimation,  BePhyNE  establishes a 

 proof-of-concept modeling framework that demonstrates key improvements over the 

 traditional two-step processes. 

 1. Joint Estimation of Species Niche and Evolutionary Process 

 BePhyNE  is the first method to jointly estimate contemporary  environmental 

 response and BM processes in a Bayesian hierarchical framework. Our simulations 

 showed that  BePhyNE  accurately estimates data-generating model parameters in most 
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 cases, but with some biases in posterior distributions, particularly for the evolution rate 

 matrix parameters (  σ  and  R  COR  ). However, even when  posterior distributions were biased, 

 posterior medians still closely approximated the data-generating model parameters. Our 

 simulations also demonstrated model consistency, with larger phylogeny size improving 

 model fits. Model performance may differ from our simulations under extreme 

 evolutionary scenarios not included in the prior, including extreme instances of niche 

 conservatism or heavily truncated realized niches across the clade. Our assumption of a 

 random walk evolutionary process constrains niche divergence, resulting in more similar 

 niche estimates in  BePhyNE  for closely related species  than in GLM-only models (Fig. 

 5). This model behavior may lessen the impact of species-specific sampling biases in 

 clades where the climatic niche is strongly shaped by macroevolutionary processes. We 

 see this as being particularly useful for studying clades with large evolutionary 

 divergences in niche due to abiotic dispersal barriers, as we expect closely-related species 

 may have more similar fundamental environmental niches than expected from simply 

 sampling realized occurrence patterns. 

 2. Practical Applications of  BePhyNE 

 BePhyNE  is unique among niche modeling approaches  in that it can generate a 

 model of environmental response over phylogeny that predicts distributions of 

 poorly-understood species with limited to no occurrence data. Furthermore, the same 

 model can be used to hind- and forecast spatial ranges. Using leave-one-out 

 cross-validation, we demonstrated that many species in our empirical salamander 

 example can have reasonable niche estimates even without occurrence data (Figs. 6-8). 
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 Although very effective,  BePhyNE  can underperform in several conditions. First, 

 this may be the case when the species that lack data are wide-ranging geographic 

 generalists (e.g.,  Eurycea bislineata  ,  Plethodon cinereus  ,  and  Plethodon glutinosus  ). 

 Without occurrence data, generalists response curves tend to be pulled toward 

 unrealistically narrower breadths to resemble the range restricted specialists to which 

 they are often related. This said, climatic generalists are often the ones for which 

 abundant data is available, meaning that this situation is less likely to occur in realistic 

 conditions. Second, the ability to predict species’ niches using  BePhyNE  without 

 occurrence data may vary across the phylogeny due to clade-specific shifts in 

 evolutionary history, as suggested from the phylogenetic signal in the distance quantiles 

 (Fig. 8). Such information may be leveraged to understand processes of niche divergence 

 and diversification across the phylogeny. For example,  our model had the lowest 

 predictive power for genera  Desmognathus  and  Eurycea  .  Because both genera are 

 stream-adjacent specialists, they may be more buffered from macro-climatic change than 

 terrestrial taxa due to their more thermally stable microhabitats in fast-moving streams 

 (Steel et al. 2017; Shah et al. 2020)  , thus increasing  the lag between macro-climatic 

 change and niche evolution  (Farallo et al. 2020)  .  To account for variation in micro- and 

 macro-climatic tracking, it is likely that using micro-climatic data whenever available 

 will improve connection to physiological tolerances, as well as using macro-climatic 

 characters that better characterize climate, including degree days and temperature ranges 

 (Title and Bemmels 2018)  . Finally, because it relies on the phylogenetic relationships, the 

 quality of the phylogeny may also impact the quality of the inferences. In our case, the 
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 taxonomic relationships of many Plethodontids (Camp and Wooten 2016;  Pyron et al. 

 2022)  are poorly understood and may bias our model  and reduce predictive power. 

 Resolving the biodiversity in the clade could potentially impact both species niche and 

 distribution predictions and niche evolution estimates  (Molbo et al. 2003; Gill et al. 

 2016)  . 

 Given the high proportion of species whose conservation status is listed as data 

 deficient across the tree of life (IUCN 2021), our approach may allow for leveraging 

 available phylogenetic information to predict distributions and understanding the niches 

 of poorly-sampled species of conservation concern. Currently, few reliable methods exist 

 for estimating niches of species without occurrence data, except through inference with 

 sister taxa  (Kozak and Wiens 2006; Eaton et al. 2008;  Warren et al. 2008; Anciães and 

 Peterson 2009)  . Cross-validation support for species  response estimates with missing data 

 suggests our model can recover estimates for data-deficient clades with 

 phylogenetically-conserved niches. However, we also note that there is substantial room 

 for improvement and expansion of the  BePhyNE  modeling  framework. MCMC mixing 

 for tips with missing data was slow for tips with fewer occurrence points. Future work to 

 expand on proposal mechanisms to improve mixing will also facilitate niche estimation. 

 3. Inferring Environmental Response Through Time 

 In addition to estimating ranges for poorly-sampled taxa, our approach builds on 

 previous methods used for estimation of niche evolutionary history and ancestral 

 distributions (Pelletier et al. 2015; Guillory and Brown 2021). Often, models of ancestral 

 distribution are generated by fitting paleoclimatic data to extant species niches, or 
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 two-step estimated response curves estimated on extant species and occurrence data. 

 BePhyNE’  s model of environmental response enables  an ancestral range to be predicted 

 over phylogeny directly from response curves. Given a time calibrated phylogeny, 

 ancestral niche estimates can be approximated to specific periods with available 

 paleoclimate to assess range shifts for species and clades through time. Though 

 individual ancestral states estimates are unreliable  (Schluter et al. 1997; Oakley and 

 Cunningham 2000; Ekman et al. 2008)  , general patterns  across ancestral states may still 

 be informative and comparable – especially when considered with uncertainty across the 

 full posterior distribution of reconstructed response curves. Although not tested here, 

 expansion of this approach may facilitate the identification of historic processes shaping 

 range. 

 Given our approach models a continuous process of niche evolution, we can play 

 the evolutionary “tape” forward just as we can play it backwards (Gould 1990). The 

 mvBM estimates of evolutionary rate in niche, as captured by  R  , can be used to generate 

 possible stochastic future niches that could be expected for a species. Niche evolution 

 may occur rapidly (Evans et al. 2009; Ogburn and Edwards 2015), enough so that 

 forecasting under future climate models can identify scenarios where species may persist 

 or go extinct. 

 4. Expanding the  BePhyNE  modeling framework 

 While a random walk is an inherently simplistic model of evolution for complex 

 niche histories, by connecting niche estimation directly to the large family of continuous 

 trait evolutionary models, we enable a wide range of possible modifications to  BePhyNE 
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 that are straightforward to implement. For example, the  BePhyNE  modeling framework 

 could be expanded to Ornstein-Uhlenbeck models that capture adaptation toward an 

 optimal state (Kozak et al. 2005, 2006; Camp and Wooten 2016; Weaver et al. 2020), 

 adaptive shifts (Butler and King 2004), relaxation and canalization of niche constraints 

 (Beaulieu et al. 2012), competition (Drury et al. 2016), accelerating or decelerating niche 

 evolution (Blomberg et al. 2003), and Levy Process models that allow for large “jumps” 

 in niche evolution (Landis et al. 2013; Uyeda and Harmon 2014). Furthermore, the 

 Bayesian implementation of  BePhyNE  enables the use  of informative priors. Besides root 

 estimates and evolutionary rates, fossil occurrences can be integrated as node priors for 

 continuous trait evolution, improving estimation by calibrating responses based on 

 paleontological data (Slater et al. 2012, Lawing et al. 2016, Rivera et al. 2020). 

 BePhyNE  ’s response curves could also be connected  to species-level estimates of 

 environmental tolerances, such as the thermal performance curves estimates in many 

 physiological studies (Angilletta and Angilletta 2009; Drake 2015; Jiménez et al. 2019; 

 Soberón and Peterson 2020; Jiménez and Soberón 2022). Exactly how our estimates, 

 which incorporate abiotic and biotic impacts on niche width and optimum, are connected 

 to the physiological tolerances of species is an open question. Such performance curves 

 may often deviate from our symmetric gaussian curves, showing skewness (Austin et al. 

 1994; Austin 2002; Lawesson and Oksanen 2002), and some curves may be unbounded 

 directional preferences (Bio et al. 1998; Lambert et al. 2011). Further incorporating these 

 possibilities into our framework and connecting them with physiological data may 
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 provide new insights into the connection between micro-scale physiological tolerances 

 and macroecological niche evolution. 

 5. Plethodontid Salamander Niche Evolution 

 We applied  BePhyNE  to a radiation of Plethodontid  salamanders and evaluated its 

 performance with AUC and leave-one-out cross-validation. This clade is of particular 

 interest due to its dynamic niche evolutionary history and conservation relevance (Kozak 

 and Wiens 2006, 2010a, 2010b; Milanovich et al. 2010; Kozak 2017). Plethodontidae 

 salamanders are lungless and respire through their skin, thus requiring wet and cool 

 conditions to survive. Across their Eastern North American range, Plethodontidae are 

 largely divided between widely-distributed lowland species and range-restricted species 

 endemic to high-elevation localities in the south Appalachian Mountains. Though not 

 fully understood, historic patterns of climate change and niche specialization to cool and 

 wet habitats likely resulted in current day Plethodontidae ranges (Kozak 2017). 

 Increasingly drier and warmer conditions restricted the range of climatic specialists to 

 high elevation zones where lineages then accumulated (Kozak and Wiens 2006, 2010b; 

 Shen et al. 2016). Temperature particularly, is likely to constrain the distributions of 

 many of the high elevation endemics, especially on their lower elevational limits within 

 the warmer Southeastern U.S.A.  (Kozak and Wiens 2006;  Arif et al. 2007; Gifford and 

 Kozak 2012)  . Agreeing with this biogeographic scenario,  our phylogenetic niche model 

 supports a pattern of greater thermal constraint, with wider relative  ω  in precipitation 

 than temperature across most species. This is of conservation relevance, since with rising 

 temperatures due to climate change, many montane specialist species will be trapped in a 
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 shrinking habitat, with predicted ranges shifting to higher elevations until their climatic 

 optima disappear and the species becomes extirpated (Vieites et al. 2009; Milanovich et 

 al. 2010; Gifford and Kozak 2012; Moskwik 2014). 

 We also identify negative evolutionary correlations in thermal  ω  and  θ  ,  and 

 positive correlations in precipitation  ω  and  θ  , suggesting  species that occur within the 

 warmest and driest parts of Eastern North America have the narrowest niche breadths. 

 This pattern between precipitation and thermal niche breadth is supported by several 

 previous studies across Amphibia  (Bonetti and Wiens  2014)  , and some lizard clades 

 (Wiens et al. 2013; Lin and Wiens 2017; Mengchao et al. 2019)  , suggesting a more 

 general macroecological pattern of niche specialization in niche evolution  (Sexton et al. 

 2017; Carscadden et al. 2020)  . However, variation  in Plethodontid evolutionary patterns 

 is possible, as subclades differ in habitat and natural history (Kozak et al. 2005, 2006; 

 Camp and Wooten 2016; Weaver et al. 2020). Indeed, several species with the most 

 aquatic habitats, including  Desmognathus  and  Eurycea  have the widest  ω  estimates for 

 both predictors  .  There are many potential reasons  for these patterns, including greater 

 resilience to ambient air temperatures compared to the more terrestrial species (Myers 

 and Adams 2008). Though a small sample in our study, this pattern of wide niches in 

 semi-aquatic salamanders is also notable in  Pseudotriton  ,  a largely semi-aquatic genus of 

 salamander with nearly the widest niches (Bruce 1975; Marvin 2003). 

 The differential histories of many Plethodontid subclades may explain the 

 differences in niche breadth and optimum estimates between  BePhyNE  and the 

 GLM-only model (Fig. 5). The cryptic and putatively “non-adaptive radiation”  (Kozak et 
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 al. 2006)  of  Plethodon glutinosus  exhibits the most divergent response curve patterns 

 between models.  BePhyNE  niche breadth estimates were  wider, resembling 

 closely-related taxa more than the narrower GLM-only niche breadth estimates. This 

 pattern supports previous research suggesting that species within the complex are 

 ecologically similar. Over a history of climatic shifts driving range expansions and 

 contractions (Webb III and Bartlein 1992; Jansson and Dynesius 2002), the clade 

 diverged allopatrically and rapidly accumulated ecologically-conserved lineages 

 geographically constrained to a subset of their realized distribution by competition (Losos 

 and Glor 2003; Kozak et al. 2006). This is in contrast to the similar niche curves 

 recovered by  BePhyNE  and the GLM-only model in  Desmognathus  .  Many 

 Desmognathus  species diverged early in the clades'  history to adapt to numerous 

 microhabitats, stably co-occurred through multiple climatic cycles to the present (Kozak 

 et al. 2005). This historic pattern of community assembly has been maintained through 

 interspecific competition and predation (Krzysik 1979; Hairston 1980; Keen 1982; 

 Hairston, 1986). The overlapping niche estimates among species is expected, as 

 biotically-structured and sympatric clades should exhibit little divergence in 

 macroclimatic response (Ackerly et al. 2006; Li et al. 2018). We also observe similar 

 niche curves recovered by  BePhyNE  and GLM-only models  for the  Plethodon cinereus 

 complex, a clade of wide-ranging generalists and hyper-endemics. Many southern 

 hyper-endemic specialists are range-restricted due to a history of environmental shifts 

 restricting the availability of ideal microhabitats to specific mid-elevational bands. While 

 some species may be climatically-restricted from other ideal habitats (Shen et al. 2016; 
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 Kozak 2017), others may be outcompeted by more widespread generalists  (Jaeger 1971, 

 1972, 1974; Myers and Adams 2008; Lyons et al. 2016)  . 

 Though our phylogenetic niche model pulls species response away from realized 

 occurrences and towards a more phylogenetically-conserved value, we emphasize we are 

 not directly modeling the fundamental niche. Our model can reveal which species in a 

 clade have particularly truncated niches relative to other members of a clade, but it would 

 be unsurprising if some Plethodontid clades have conserved truncations due to prevalent 

 dispersal or biotic interactions  (Soberon and Peterson  2005; Soberon and Nakamura 

 2009)  . In such cases, we would not expect responses  to differ between  BePhyNE  and 

 non-phylogenetically informed SDMs. One way to reduce the risk of clade-wide niche 

 truncation is utilizing physiological experiments, such as critical thermal maximum and 

 minimum trials, to inform species  𝜃  and ω when possible.  Integrating this information 

 into the  niche priors could allow testing the extent to which species responses estimated 

 from occurrence data are pulled toward the fundamental niches of 

 phylogenetically-related species. 

 6. Conclusions 

 We developed, implemented and tested a novel model for estimating ecological 

 niches jointly for all species across a phylogeny by linking GLM estimation with an 

 evolutionary process model for the underlying species response curves. We demonstrate 

 effective estimation of niche and evolutionary parameters from simulated and empirical 

 datasets. In addition, our framework provides a proof-of-concept for a new class of 
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 approaches for studying niche evolution, including improved methods for estimating 

 niche for data-deficient species, historical reconstructions, future predictions under 

 climate change, and evaluation of niche evolutionary processes across the tree of life. Our 

 approach establishes a framework for leveraging the rapidly growing availability of 

 biodiversity data and molecular phylogenies to make robust eco-evolutionary predictions 

 and assessments of species’ niche and distributions in a rapidly-changing world. 
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 Supplement 1: Algebraic  transformation of beta coefficients to niche 

 characters 

 We consider the GLM equation used in phylogenetic niche modeling of measured 

 predictor variables  , such as temperature or precipitation,  for a set of presence/absence  𝑋 

 observations  for species  . A GLM can be  used to estimate the relationship between the  𝑌 
 𝑖 

 𝑖 

 predictor and the probability of occurrence  such that:  𝑃 
 𝑖 

 𝑙𝑜𝑔 (
 𝑃 

 𝑖 

 1 − 𝑃 
 𝑖 
) = β

 0 , 𝑖 
+ β

 1 , 𝑖 
 𝑋 

 𝑖 
+ β

 2 , 𝑖 
 𝑋 

 𝑖 
 2 

 The observations  are Bernoulli distributed  with probability  . However, it is  𝑌 
 𝑖 

 𝑃 
 𝑖 

 easy to choose parameters for  values that result  in a preference/tolerance curve β

 (hereafter, simply the preference curve) that is biologically unrealistic (for example, a 

 species may not have an intermediate optimum for  , but rather an intermediate valley).  𝑋 

 Furthermore, the interdependence of these parameters in the equation means that they are 

 difficult to interpret. To remedy this, we reparameterize the model and constrain the 

 preference curve to correspond to a unimodal distribution around an intermediate 

 optimum  . The width of this curve around the optimum  is given by  , and the height of θ ω

 the curve at the optimum is given by  . These have  biologically interpretable values upon τ

 which we can set meaningful constraints. 

 To solve for  in terms of  values, we take the derivative  after solving θ β  𝑑𝑃  /  𝑑𝑋 

 Eq.    [eq1]  for  , and find the value of  where  (i.e. the maximum). We will,  𝑃 
 𝑖 

 𝑋  𝑑𝑃  /  𝑑𝑋 =  0 

 for now, drop the  subscripts designating species  . Rearranging Eq.    [eq1]  :  𝑖  𝑖 
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 Thus, we find the optimum as: 
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 The height of the curve,  , is simply Eq.    [eq1]  evaluated at  . τ θ
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 The width of the curve corresponds to half the distance between the two points on 

 the curve where the probability of occurrence falls below a certain fixed value  . In other ν

 words, 

 𝑙𝑜𝑔 ( ν
 1 −ν ) =  𝑘 = β

 0 
+ β

 1 
 𝑋 + β

 2 
 𝑋  2 

 The width as we have defined it can be determined by taking half the distance 

 between the two solutions to the quadratic formula, which is: 
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 In our equation, this results in: 

 𝑎 = β
 2 
;  𝑏 = β

 1 
;  𝑐 = β

 0 
−  𝑘    

ω =
β

 1 
 2 − 4 β

 2 
(β

 0 
− 𝑘 )

 2 β
 2 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.06.499056doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.499056
http://creativecommons.org/licenses/by-nc/4.0/


 This model is of course subject to a number of constraints that we will impose. 

 For example,  , meaning that the occurrence probability  at the optimum must be τ > ν

 greater than the cutoff for measuring the width. Furthermore,  ,  , and β
 1 

>  0 β
 2 

<  0 

 (not sure if these are exact). β
 0 

<  0 

 Back transformation 

 To obtain values of  from  , we solve the system of  β = [β
 0 
, β

 1 
, β

 2 
]  Θ = [θ, ω, τ]

 equations Eqs.    [theta]  ,    [tau]  ,    [omega]  , and obtain: 

β
 0 

= θ 2 

ω 2 +  𝐻 ( θ 2 

ω 2 −  1 ),

β
 1 

= − 2 θ

ω 2 ( 𝐻 +  𝑘 ),

β
 2 

=  1 

ω 2 ( 𝐻 +  𝑘 ),

 where  and  𝐻 =  𝑙𝑜𝑔 (  1 
τ −  1 )  𝑘 =  𝐿𝑛 ( ν

 1 −ν )

 Supplement 2: Cook (2006) test 

 Under the Cook (2006) test, if our model is accurate and precise, the true values 

 will be uniformly distributed in the quantiles of the estimated posterior distributions 

 (Cook et al. 2006). To test this, we measured the quantiles of the simulated parameter 

 values from the empirical cumulative distribution (ECD) function of the MCMC 

 posteriors. We expect that over a large number of simulations (>500) the “true” parameter 

 values will be uniformly distributed over the ECD. 

 Our results show that our model does not pass the Cook (2006) test. The most 

 uniformly-distributed parameters were the niche response optima  𝜃.  However, the 
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 MCMC posteriors did not recover the true parameters more often than expected, creating 

 a sharp U-shape at the tails of the distribution. Tip response curve breadths  ω  MCMC 

 posteriors did not contain the true values in the upper tail of the distribution as often as 

 expected.  R  COR  matrix MCMC posteriors were approximately  uniformly distributed. The 

 MCMC posteriors for the mvBM evolutionary rates  σ  were the most difficult to recover, 

 with  σ  𝜃  skewed towards underestimation, and  σ  ω  skewed  towards overestimation. 

 Figure 1: Empirical cumulative distribution plots for all parameters estimated in 
 simulation analyses. We simulated and estimated parameters from 500 datasets sampled 
 from the prior using 1 million generation MCMC at 10% burnin. For each dataset, we 
 identified where “true” data generating parameter values fit on the empirical cumulative 
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 distributions, and plotted all 500 fits for each parameter as a histogram. Distributions 
 should follow a uniform distribution if the model estimates parameters without bias and if 
 model convergence is achieved. Our results indicate some parameters either have 
 difficulty achieving convergence, or are subject to estimation bias. Particularly, the  σ 
 values for the multivariate Brownian Motion process are underestimated for the niche  𝜃  , 
 and overestimated for niche ω. 
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