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Abstract  

 Measures of human movement dynamics can predict outcomes like injury risk or 

musculoskeletal disease progression. However, these measures are rarely quantified in clinical 

practice due to the prohibitive cost, time, and expertise required. Here we present and validate 

OpenCap, an open-source platform for computing movement dynamics using videos captured 

from smartphones. OpenCap’s web application enables users to collect synchronous videos and 

visualize movement data that is automatically processed in the cloud, thereby eliminating the 

need for specialized hardware, software, and expertise. We show that OpenCap accurately 

predicts dynamic measures, like muscle activations, joint loads, and joint moments, which can be 

used to screen for disease risk, evaluate intervention efficacy, assess between-group movement 

differences, and inform rehabilitation decisions. Additionally, we demonstrate OpenCap’s 

practical utility through a 100-subject field study, where a clinician using OpenCap estimated 

movement dynamics 25 times faster than a laboratory-based approach at less than 1% of the cost. 

By democratizing access to human movement analysis, OpenCap can accelerate the 

incorporation of biomechanical metrics into large-scale research studies, clinical trials, and 

clinical practice.  
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Introduction 

Evaluating the dynamics of human movement is important for understanding and 

managing musculoskeletal and neuromuscular diseases. For example, the loading of 

osteoarthritic joints predicts osteoarthritis progression1, the distribution of moments generated by 

muscles about lower-extremity joints when rising from a chair relates to falling in older adults2–4, 

and the between-limb asymmetry of muscle and ground reaction forces while performing 

demanding tasks relates to functional outcomes after joint surgery5–7. Despite their utility, 

metrics of movement dynamics are rarely measured in clinical practice. Instead, visual 

movement evaluations or general functional tests that require basic instruments, like a stopwatch 

or goniometer, are used to inform clinical decisions and as outcomes for clinical trials. 

The quantitative analysis of movement dynamics can provide deeper and more 

reproducible insights than visual evaluations and simple functional tests; however, this analysis 

is resource intensive, which has impeded its use in large-scale studies and clinical practice. 

Traditionally, motion analysis requires a fixed lab space with more than $150,000 of equipment 

(Figure 1, top row). Kinematics (e.g., joint angles) are measured with a marker-based motion 

capture system that uses eight or more specialized cameras to capture the three-dimensional (3D) 

trajectories of markers placed on a subject. Joint-level kinetics (e.g., joint moments and powers) 

can be estimated with the additional measurement of ground reaction forces from force plates 

mounted beneath the floor. Musculoskeletal modeling and simulation tools8–10 combine measures 

of kinematics, kinetics, and muscle activation from electromyography to enable deeper 

investigations of motor control and musculoskeletal loading (e.g., muscle coordination and joint 

forces). This comprehensive analysis of movement is infrequently used outside of small-scale 
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research studies because collecting data on a single participant, processing it, and, optionally, 

generating dynamic musculoskeletal simulations typically takes several days for a trained expert. 

Studies of movement dynamics with hundreds of participants have elucidated 

biomechanical markers that predict injury risk or surgical outcomes11–13. However, studies of this 

scale are expensive and rare—the median number of subjects included in biomechanics studies is 

between 12 and 2114,15. There is a need for inexpensive, scalable, and accurate tools for 

estimating movement dynamics on orders of magnitude more individuals in their natural 

environments. Modern data science techniques could then leverage these large datasets to 

explore the role of movement in health and disease, facilitating the identification and clinical 

translation of quantitative movement biomarkers.  

Mobile tools for estimating kinematics have been developed, but most are still too 

expensive and time consuming for large-scale research studies and clinical translation, and none 

enable full-body analysis of movement dynamics. Inertial measurement units, the most widely 

used of these tools, can accurately estimate kinematics16, but commercially available sensors 

remain expensive, time-consuming to don and doff, and utilize proprietary algorithms. Recent 

advances in physics-based simulation of the musculoskeletal system have estimated kinetics 

from inertial-measurement-unit-based motion capture17,18, but these algorithms are not publicly 

available and have not been translated beyond small-scale feasibility studies.  

Measuring kinematics with video cameras is another promising approach made possible 

by recent advancements in human pose estimation algorithms19. Open-source, two-dimensional 

(2D) pose estimation algorithms (e.g., OpenPose20) have enabled 2D kinematic analyses21 and 

can generate inputs for machine learning models that predict kinematic and kinetic measures22,23. 
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While these machine learning models are useful for specific applications, they may not 

generalize to other measures, tasks, and populations not represented in their training data. 

Another potentially more generalizable approach is to triangulate the body keypoints (e.g., joint 

centers) identified by pose estimation algorithms on multiple videos24–29 and track these 3D 

positions with a musculoskeletal model and physics-based simulation. However, the sparse set of 

3D keypoints identified by these algorithms does not fully characterize the translations and 

rotations of all body segments; thus, it is unclear whether these keypoints are expressive and 

accurate enough to inform movement research. Commercial markerless motion capture systems 

accurately estimate kinematics30, but they typically require many wired cameras, proprietary 

software, and specialized computing resources. The ubiquity of smartphone cameras could 

enable video-based motion capture without the need to purchase specialized equipment, but it is 

unclear whether kinematics can be accurately estimated from a small number of devices that lack 

hardware synchronization. If the challenges of computing accurate kinematics and kinetics from 

smartphone video can be addressed, smartphone-based analysis of musculoskeletal dynamics has 

the potential to overcome the translational barriers faced by current movement analysis 

technologies. 

Here we introduce OpenCap, open-source, web-based software that is freely available to 

the research community for estimating the 3D kinematics and kinetics of human movement from 

videos captured with two or more smartphones (Figure 1, bottom row). OpenCap brings together 

decades of advances in computer vision and musculoskeletal simulation to make the analysis of 

movement dynamics available without specialized hardware, software, or expertise. We first 

validate kinematic and kinetic measures estimated with OpenCap against gold standard measures 

computed with marker-based motion capture and force plates. Next, we explore whether 
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OpenCap estimates kinetic measures with sufficient accuracy to be used for disease risk 

screening, evaluating intervention efficacy, studying between-group movement differences, and 

tracking rehabilitation progress. After validating these measures in the laboratory, we highlight 

how OpenCap enables clinicians to measure kinetics of large cohorts in real-world settings.  
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Results 

Setting up a data collection with OpenCap takes under five minutes and requires two iOS 

devices (iPhone, iPad, or iPod), two tripods, a calibration checkerboard (printed with a standard 

printer), and another device to run OpenCap’s web application (e.g., a laptop). After pairing the 

iOS devices to the web application, users are guided through camera calibration, data collection, 

and visualization of 3D kinematics. Kinematics are estimated from video using deep learning 

models and inverse kinematics in OpenSim8,10, and kinetics are estimated using a physics-based 

musculoskeletal simulation approach (Figure 2). OpenCap leverages cloud computing for data 

processing using a scalable server architecture. 

We validated OpenCap using two iPhones against marker-based motion capture and force 

plate analysis in a cohort of ten healthy individuals for several activities (walking, squatting, 

rising from a chair, and drop jumps). OpenCap estimated joint angles with a mean absolute error 

(MAE) of 4.5°, ground reaction forces with an MAE of 6.2% bodyweight, and joint moments 

with an MAE of 1.2% bodyweight*height (additional validation in Table 1 in Methods; 

Methods: Validation; and Tables S1–S4 and Figures S1–S12 in Supplementary Information).  

We then explored whether OpenCap is sufficiently accurate to estimate measures of joint 

loading that could be used to screen for individuals at risk of rapid progression of medial knee 

osteoarthritis and to evaluate the efficacy of a non-surgical intervention. We first evaluated how 

accurately OpenCap estimates the early-stance peak knee adduction moment, which predicts 

rapid progression of medial knee osteoarthritis1. The ten healthy individuals walked naturally 

(i.e., with a self-selected strategy) and with a trunk sway gait modification that typically reduces 

the knee adduction moment31. OpenCap predicted the early-stance peak knee adduction moment 
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with r2=0.80 (r: Pearson correlation coefficient) and an MAE of 0.30% bodyweight*height 

compared to marker-based motion capture and force plates (Figure 3). This error is smaller than 

a range of thresholds for detecting knee osteoarthritis symptoms and progression (0.5–2.2% 

bodyweight*height1,32–34). We then evaluated whether OpenCap could estimate changes induced 

by the trunk sway modification in the peak knee adduction moment as well as the peak medial 

contact force, which is a more comprehensive loading metric that is often targeted by knee 

osteoarthritis interventions35,36. At the group level, OpenCap captured expected reductions in the 

early-stance peak knee adduction moment and peak medial contact force from the trunk sway 

gait modification (16–33% reductions, P<.006; t test and Wilcoxon signed rank test, n=10, 

Figure 3b). Significant changes in the same direction were also detected with motion capture and 

force plates (21–46% reductions, P<.016; t tests, n=10); further details about these statistical 

tests can be found in Table S5 in Supplementary Information. For this sample size, OpenCap had 

a 92% chance (post-hoc power averaged across tests) of detecting these expected group 

differences at the significance level alpha=.05, compared to the 77% chance from motion capture 

and force plates. At the individual level, OpenCap correctly predicted the directional change in 

both peak loading measures (decrease for nine individuals and increase for one individual) 

induced by trunk sway. OpenCap’s ability to accurately estimate knee loading and changes in 

loading during walking suggests that it could be used to identify individuals with medial knee 

osteoarthritis who may be at risk of rapid disease progression and to evaluate the effect of a gait 

modification on individual and group levels37,38. 

We then explored whether OpenCap is useful for studying differences in movement 

dynamics that commonly exist between young and older adults. Strategies for rising from a chair 

vary with age and are associated with different muscle force requirements2. Older adults often 
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use a rising strategy with increased trunk flexion, which shifts the muscular demand from the 

knee extensors to the hip extensors and ankle plantarflexors39; this strategy is associated with low 

functional muscle strength4, which relates to fall risk3. We simulated differences in rising 

strategies between age groups by instructing ten healthy individuals to rise from a chair five 

times naturally, then five times with increased trunk flexion (Figure 4). At the group level, 

OpenCap estimated the expected reduction in the knee extension moment (P=.024, t test, n=10) 

and increase in the hip extension (P=.020, t test, n=10) and ankle plantarflexion moments 

(P=.004, t test, n=10), averaged over the rising phase, from the natural to the increased trunk 

flexion condition. The direction of these changes matched what was measured with motion 

capture and force plates (P=.002–.003, t tests, n=10); further details about these statistical tests 

can be found in Table S6 in Supplementary Information. For this sample size, OpenCap had a 

65% chance (post-hoc power averaged across tests) of detecting these expected between-

condition differences at the significance level alpha=.05, compared to the 89% chance from 

motion capture and force plates. OpenCap also predicted the peak knee extension moment with 

r2=0.65 compared to marker-based motion capture and force plates. Together, these findings 

suggest that OpenCap can be used to study differences in movement dynamics between young 

and older adults and can identify individuals with low knee extensor strength who may benefit 

from muscle strengthening interventions2. 

Finally, we explored whether OpenCap can accurately estimate measures of muscle force 

associated with rehabilitation progress. Restoring between-limb symmetry in knee extensor 

muscle force generation is often a goal of rehabilitation following knee surgeries, and identifying 

persistent asymmetry prior to rehabilitation discharge can prevent poor functional outcomes5,6,40. 

To simulate post-surgical asymmetries, we instructed the ten healthy individuals to perform five 
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squats naturally, then asymmetrically by reducing the force under their left foot (Figure 5). Since 

muscle activation can be measured more directly than muscle force, we compared vasti (knee 

extensor) muscle activation measured with electromyography to activation estimated with 

OpenCap. We defined ground truth activation asymmetry using electromyography and a 

clinically relevant symmetry index threshold41 of 1.15. OpenCap classified squats as being 

symmetric or asymmetric with an area under the receiver operator characteristic curve (AUC) of 

0.83 and an accuracy of 75% at the optimal symmetry index threshold of 1.13 (Figure 5), which 

was similar to the performance of simulations that used motion capture and force plate data 

(AUC=0.82, accuracy=70%).  

To demonstrate OpenCap’s utility in real-world conditions, we extended this analysis of 

rehabilitation tracking to a field study. A clinician, who was not an expert in movement analysis, 

used OpenCap to evaluate knee extension moment symmetry in 100 individuals performing 

natural and asymmetric squats in the community. On average, set up and data collection took 

five minutes per participant, and for a single squat, kinematics and kinetics were computed 

automatically in two and 35 minutes on a single server, respectively. In total, data collection took 

eight hours for 100 subjects, and computation took 31 hours on a 32-thread CPU (kinetic 

computation was parallelized). OpenCap’s peak knee extension moment estimates could 

discriminate between the symmetric and asymmetric conditions with AUC=0.90 and 

accuracy=85% at the optimal symmetry index threshold of 1.33 when using the condition 

instruction (i.e., natural or asymmetric) as ground truth (Figure 6a,b). OpenCap also detected 

within-subject improvements in peak knee extension moment symmetry from the asymmetric to 

the natural condition with AUC=0.93 and accuracy=89% at the optimal threshold of 0.26 (Figure 

6c,d). Together, our lab and field studies demonstrate that OpenCap can detect asymmetries in 
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vasti force generation that may be useful for guiding rehabilitation decisions and can track 

improvements in symmetry expected to occur over the course of rehabilitation. 
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Discussion 

This study describes OpenCap, a platform that combines computer vision and 

musculoskeletal simulation to quantify human movement dynamics from smartphone videos. We 

showed that OpenCap is sufficiently accurate for several research and clinical applications. 

OpenCap estimated changes in dynamic measures between conditions with similar statistical 

power (0.65–0.92) as the gold standard technique (0.77–0.89), it estimated dynamic measures 

that predict adverse outcomes related to osteoarthritis and fall risk with r2=0.65–0.80, and it 

estimated dynamic measures that can inform rehabilitation decision making with classification 

accuracies of 75–89%. Our field study demonstrated how OpenCap enables clinicians and 

researchers alike to analyze movement dynamics in the field and in large populations. 

OpenCap reduces the cost, time, and expertise barriers to analyzing movement dynamics. 

OpenCap’s hardware can be acquired for between $40 and $700, depending on whether users 

need to purchase new iOS devices (Figure 1). This is about 215 times cheaper than traditional 

motion capture laboratory equipment, and it does not require a dedicated laboratory space. 

Hands-on time for measuring movement dynamics with OpenCap is the time for setting up the 

mobile devices and the time to perform the movements (Figure 1, bottom row). During our in-

field data collection, the five minutes of hands-on time per participant was about 25 times less 

than a comparable analysis in a motion capture laboratory (about 2 hours). OpenCap does not 

require specialized software or expertise, which bridges gaps between the computer vision, 

biomechanics, and clinical movement science communities. Most computer vision algorithms 

require computer science knowledge to run and most simulation tools require biomechanics 

knowledge to operate, but OpenCap automates these processes, making advancements in these 

fields more accessible to clinicians and researchers. OpenCap also meets Stanford University’s 
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security requirements for cloud-based systems using high-risk data (e.g., protected health 

information) and ensures end-to-end data encryption. To further facilitate ease of use, we provide 

tutorials and examples on a companion website (opencap.ai). 

Our results demonstrate OpenCap’s potential clinical utility as a screening tool and for 

informing rehabilitation decisions. Future studies could test OpenCap’s ability to screen for risk 

of non-contact ligament injury in athletes11,42, or to predict efficacy of surgery in individuals with 

cerebral palsy12,13. OpenCap assessments may also be fast enough to enable movement screens to 

become part of routine clinical care, allowing clinicians to track function over time, and 

following an injury or surgery, to benchmark rehabilitation status against pre-injury measures43.  

By enabling large-scale, out-of-lab studies, OpenCap can accelerate movement research. 

OpenCap detected between-condition differences with similar statistical power as motion capture 

and force plate analysis, but in substantially less time. This accuracy and efficiency makes 

prospective injury risk studies that require hundreds of participants more feasible, enables the 

incorporation of movement dynamics into population-scale health studies that typically only use 

pedometry (e.g., the Osteoarthritis Initiative44 or the UK Biobank45), and facilitates the 

development of more sensitive functional outcome measures for clinical trials. By automatically 

computing kinematics, OpenCap is not susceptible to errors introduced by between-experimenter 

variance in motion capture marker placement46. This could reduce variability in multi-center 

studies47 and enable movement data to be compiled into homogeneous, sharable datasets that are 

useful to the machine learning community. Importantly, OpenCap’s portability will enable 

studies of populations that are often underrepresented in movement research due to time and 

geographic constraints. 
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OpenCap uses machine learning to improve the fidelity of video-based kinematic 

estimates and physics-based modeling to maintain generalizability (Figure 2). We combined a 

deep learning model suited for time series data with a constrained biomechanical model to 

estimate 3D kinematics from video keypoints that, alone, are insufficient to characterize 3D 

kinematics. Our deep learning model predicts a comprehensive set of anatomical markers from 

the sparse video keypoints labeled in common computer vision datasets (e.g., COCO48). Using 

the predicted anatomical markers, instead of video keypoints, with our biomechanical model 

improved kinematic accuracy, averaged across all degrees of freedom, by 3.4° (see Methods and 

Table S2 in Supplementary Information). These improvements were greatest for the hip flexion, 

pelvic tilt, and lumbar flexion degrees of freedom (4.9–32.6° improvement), which are 

susceptible to large angular errors due to the sparsity of video keypoints between the hips and 

shoulders. Additionally, the deep learning model architecture provides temporal consistency, 

making OpenCap more robust to brief occlusions or mis-identified keypoints. Finally, despite 

some task-dependent tuning of the problem formulation, muscle-driven dynamic simulations are 

a more generalizable approach for estimating kinetics than an end-to-end machine learning 

approach. This enabled us to study the dynamics of different movements without training data 

for each activity. 

The accuracy of OpenCap’s kinematic and kinetic estimates is similar to state-of-the art 

markerless motion capture solutions. OpenCap’s kinematic error (range of root mean squared 

error [RMSE] across lower-extremity degrees of freedom: 2.0–10.2°) is similar to errors reported 

for inertial-measurement-unit-based approaches (RMSE: 2.0–12° for walking, running, and daily 

living activities18,49–55) and commercial and academic video-based systems with eight cameras 

(RMSE: 2.6–11° for walking, running, and cycling activities30,56). Furthermore, in contrast with 
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most inertial-measurement-unit-based approaches, OpenCap estimates global translations (e.g., 

pelvis displacement), enabling estimation of whole-body measures like center-of-mass trajectory. 

Interestingly, kinematic estimates did not substantially improve when using more than two 

cameras (see Methods and Table S2 in Supplementary Information), suggesting that two cameras 

are sufficient for analyzing activities like those included in this study. To our knowledge, there is 

no previous example of computing whole-body kinetics from video alone; however, OpenCap’s 

kinetic estimates are comparable to inertial-measurement-unit-based approaches. For example, 

OpenCap’s root mean square errors in ground reaction force (1.5–11.1% bodyweight) and lower-

extremity joint moment (0.3–1.7% bodyweight*height) predictions during walking (Table S3–S4 

in Supplementary Information) are comparable to those resulting from using a 17-sensor inertial 

measurement unit suit (1.7–9.3% bodyweight and 0.5–2.2% bodyweight*height, 

respectively18,57). OpenCap also predicted the first peak knee adduction moment during walking 

with 44% higher accuracy than a machine learning model trained specifically to predict this 

measure from marker positions that could be extracted from video23. 

OpenCap transforms the outputs of pose detection algorithms into valuable insights for 

studying human movement. We designed OpenCap to integrate different pose detection 

algorithms, and we found only minor differences in kinematics when testing different algorithms 

(see Methods and Tables S1–S2 in Supplementary Information). With the recent advances in 

joint center estimation from single-view25,29,58,59 and multi-view25–29 video, we expect OpenCap’s 

accuracy in estimating kinematics and kinetics to improve as more accurate pose estimation 

algorithms are released. By sharing our data and source code, we encourage researchers to 

benchmark their models using our data and to contribute to OpenCap’s development by adding 

support for their models.  
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Our study has several limitations. First, we tested OpenCap’s ability to estimate 

informative kinetic measures by having healthy individuals simulate different movement patterns 

associated with pathology or treatment. While the simulated movements were similar to those 

reported in the populations of interest (see Methods: Applications and Statistics), and OpenCap 

could distinguish differences in kinetics between these simulated conditions, future work is 

needed to validate these measures in the populations of interest. Second, the deep learning model 

that augments our 3D marker set may not generalize to activities outside of the distribution of 

activities that it was trained on. We generated the training data for this model using standard 

OpenSim kinematics data, so additional datasets could be added to the training set in the future. 

Additionally, estimating kinetics requires some task-dependent user inputs, which is a limitation 

of any optimization-based muscle-driven simulation. We have provided optimization problem 

formulations that work well for several activities. Overall, if future applications require high 

accuracy rather than generalizability, OpenCap's accuracy could likely be improved with task-

specific tuning of the deep learning model and optimization problem formulation. 

In conclusion, OpenCap allows non-experts to analyze human movement dynamics in an 

order of magnitude less time and for several orders of magnitude less money than was previously 

possible with marker-based motion capture and force plates. We expect that OpenCap will 

catalyze large-scale studies of human movement, the sharing of motion datasets, and the 

translation of movement biomarkers into clinical practice. 
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Figures 

 

Figure 1: Marker-based motion capture (Mocap) versus video-based (OpenCap) analysis of 

human movement dynamics. (Top row) Marker-based movement analysis usually occurs in a 

motion capture laboratory, and a comprehensive study of musculoskeletal dynamics typically 

requires more than two days of an expert’s time and equipment worth more than $150,000. 

(Bottom row) OpenCap enables the study of musculoskeletal dynamics in less than 10 minutes 

of hands-on time and with equipment worth less than $700 (assuming users need to purchase 

new mobile devices). OpenCap can be used anywhere with internet access and requires a 

minimum of two iOS devices (e.g., iPhones or iPads). (Right panel) OpenCap enables the 

estimation of kinematic, kinetic, and musculotendon parameters, many of which were previously 

only accessible using marker-based motion capture and force plate analysis. 
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Figure 2: OpenCap comprises a smartphone application, a web application, and cloud 

computing. To collect data, users open an application on two or more iOS devices and pair them 

with the OpenCap web application. The web application enables users to record videos 

simultaneously on the iOS devices and to visualize the resulting 3-dimensional (3D) kinematics. 

In the cloud, 2D keypoints are extracted from multi-view videos using open-source pose 

estimation algorithms. The videos are time synchronized using cross-correlations of keypoint 

velocities, and 3D keypoints are computed by triangulating these synchronized 2D keypoints. 

These 3D keypoints are converted into a more comprehensive 3D anatomical marker set using a 

recurrent neural network (LSTM) trained on a large motion capture dataset. 3D kinematics are 

then computed from marker trajectories using inverse kinematics and a musculoskeletal model 

with biomechanical constraints. Finally, kinetic measures are estimated using muscle-driven 

dynamic simulations that track 3D kinematics.   
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Figure 3: Medial knee loading during walking. We evaluated how accurately OpenCap 

estimates the knee adduction moment (KAM), a measure of medial knee loading that predicts 

knee osteoarthritis progression, and how knee loading changes with a modified walking pattern. 

Participants (n=10) walked naturally and with a trunk sway gait modification. a, OpenCap 

estimated the early-stance peak KAM with r2=0.80, compared to an analysis using marker-based 

motion capture and force plates (Mocap). The KAM is normalized by bodyweight (BW) and 

height (ht). b, The mean (bar) and standard deviation (error bar) across participants (open circles) 

are shown for the changes in the peak KAM and peak medial contact force (MCF), which is a 

more comprehensive measure of medial knee loading, from natural to trunk sway walking 

(*P<.05). OpenCap detected the reductions in peak KAM and MCF (P<.006, t test and Wilcoxon 

signed rank test) that were measured with Mocap (P<.016, t tests).  
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Figure 4: Distribution of lower-extremity joint moments when rising from a chair. To 

evaluate OpenCap’s ability to detect between-group differences in dynamics, we computed 

differences in lower-extremity joint moments while rising from a chair that commonly exist 

between young and older adults. Individuals (n=10) stood naturally and with increased trunk 

flexion, a strategy used by individuals with knee extensor weakness that shifts muscle demand to 

the hip extensors and ankle plantarflexors. a, The mean (bar) and standard deviation (error bar) 

across participants (open circles) are shown for the changes in knee extension, hip extension, and 

ankle plantarflexion moments, averaged over the rising phase, from the natural to trunk flexion 

condition (*P<.05). OpenCap identified the changes in joint moments (P=.004–.024, t tests) that 

were identified with motion capture and force plates (Mocap, P=.001–.002, t tests). b, The 

rising-phase-averaged knee extension moment values for each participant and condition are 

shown. OpenCap estimated the knee extension moment with r2=0.65 compared to simulations 

that used motion capture and force plate data as input (Mocap). 
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Figure 5: Asymmetry in vasti muscle activation during squatting. To assess the utility of 

OpenCap for informing rehabilitation decisions, we sought to identify between-limb 

asymmetries in knee extensor muscle (vasti) function that indicate incomplete rehabilitation and 

relate to poor post-surgical functional outcomes. Participants (n=10) performed squats naturally, 

then asymmetrically, where they were instructed to reduce the force under the left foot. a, b, The 

mean (line) and standard deviation (shading) across participants are shown for the vasti muscle 

activation of the left (unweighted) leg measured with electromyography (EMG) and estimated 

using OpenCap. Muscle activations are normalized by the maximum value for each participant 

and measurement modality. c, OpenCap identified peak vasti activation asymmetry between the 

left and right leg (asymmetry defined from EMG and clinically relevant symmetry threshold), 

with area under the receiver operator characteristic curve (AUC) of 0.83 and accuracy of 75%. 

This was similar to the performance of simulations that used marker-based motion capture and 

force plate data as input (Mocap sim., AUC=0.82, accuracy=70%). 
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Figure 6: Out-of-lab kinetic analysis. To demonstrate the practical utility of OpenCap for 

tracking rehabilitation progress, we enrolled 100 participants in a clinician-led field experiment. 

Participants performed symmetric squats and asymmetric squats, where they were instructed to 

reduce the force under the left foot, which likely resulted in an asymmetry between the left and 

right knee extension moments. We first evaluated the utility of OpenCap as a screening tool to 

detect peak knee extension moment asymmetries. a, The distributions of knee extension moment 

symmetry indices for both squat conditions are shown, with a symmetry index larger than one 

indicating a lower peak knee extension moment for the left (unweighted) leg compared to the 

right leg. b, OpenCap’s symmetry index estimates classified between natural and asymmetric 

squats with an area under the receiver operator characteristic curve (AUC) of 0.90 and accuracy 

of 85%. We then evaluated the utility of OpenCap for detecting changes in peak knee extension 

moment symmetry that would be expected to occur over time during rehabilitation. c, The 
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distributions of the average difference in the symmetry index between the asymmetric and 

natural conditions (i.e., hypothetical improved symmetry over time; red) and the average 

difference in the symmetry index between the three trials in the asymmetric condition (i.e., 

hypothetical unchanged symmetry over time; gray) are shown. d, OpenCap detected 

improvements in symmetry from the asymmetric to the natural condition with AUC=0.93 

(improved compared to unchanged distributions from c) and accuracy=89%.
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Methods 

1. Design 

 OpenCap comprises several steps to estimate movement dynamics from videos. These 

steps include calibrating cameras, collecting and processing videos, estimating marker positions, 

estimating kinematics, and generating physics-based dynamic simulations of movements. This 

pipeline is implemented in Python (v3.7.10). OpenCap’s web application guides users through 

each step, and cloud instances are used for computing (Figure 2). 

a. Camera calibration 

OpenCap models the iOS device cameras using a fifteen-parameter pinhole camera 

model60 and computes parameters using OpenCV61. At the beginning of a data collection, 

OpenCap loads the pre-computed intrinsic parameters related to each device’s camera hardware 

and recording settings (principal point, focal length, and distortion parameters) from a database 

that we created of recent iOS devices. Next, the web application guides users to place a 

checkerboard in view of all cameras, and OpenCap automatically computes the extrinsic 

parameters (camera transformation relative to the global frame) from a single image of a 

checkerboard. We used a precision-manufactured 720x540 mm checkerboard to pre-compute the 

intrinsic camera parameters for each device in our database (see Supplementary Information for 

details about intra- and inter-phone intrinsic parameter testing). A 210x175 mm checkerboard 

printed on A4 paper and mounted to a flat surface is sufficient for computing extrinsic camera 

parameters during each data collection. We found minimal kinematic differences when using the 

printed checkerboard, compared to the precision-manufactured checkerboard, to calibrate the 

cameras (see Supplementary Information). 
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b. Video collection and pose estimation 

 After calibration, users can proceed with simultaneously recording videos on all devices 

through the web application. Videos are recorded at a resolution of 720x1280 pixels, a frame rate 

of 60 Hz, and with the camera focus distance set to a fixed value. 

 Recorded videos are then processed using video pose detection algorithms. OpenCap 

currently supports two algorithms: OpenPose20 and HRNet62–65. These algorithms were selected 

due to performance and the inclusion of foot keypoints. For each video, and at each time frame, 

both algorithms return the two-dimensional (2D) position of body keypoints as well as a 

confidence score (between 0 and 1) indicating the confidence of the algorithm in the keypoint 

position. Twenty body keypoints are included for further analysis (neck, mid hip, left and right 

shoulders, hips, knees, ankles, heels, small and big toes, elbows, and wrists). OpenCap 

implements custom algorithms for processing 2D keypoint positions (e.g., handling keypoint 

occlusion) and time synchronizing them across videos using cross-correlations of keypoint 

velocities (see Supplementary Information for details). 

c. Triangulation and marker-set augmentation 

 OpenCap triangulates the synchronized 2D video keypoint positions to compute 3D 

positions. OpenCap uses a Direct Linear Transformation algorithm for triangulation66, and 

weights the contribution of individual cameras in the least-squares problem with the 

corresponding keypoint confidence score56. There are two major limitations of using 3D 

keypoint positions triangulated from video for biomechanical analysis. First, the video keypoint 

set is not sufficient to fully define the kinematics of all degrees-of-freedom of the body 

segments. Tracking these limited keypoints using a model with biomechanical joint constraints 

mitigates this issue for some, but not all body segments. For example, keypoints at the hips and 
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shoulders are insufficient for robustly determining sagittal-plane hip, pelvis, and lumbar 

kinematics. Second, most pose estimation algorithms identify keypoints on a frame-by-frame 

basis, so the resulting 3D keypoint trajectories are often physically unrealistic, especially in the 

presence of misidentified or occluded keypoints. 

 To overcome these limitations, we trained two long short-term memory (LSTM) 

networks to predict the 3D positions of 43 anatomical markers from the 3D positions of the 20 

triangulated video keypoints. The set of anatomical markers corresponds to what is commonly 

used for marker-based motion capture67 to robustly determine 3D joint kinematics. We chose 

LSTM networks as they leverage time series data, which may improve the temporal consistency 

of the output marker position trajectories. We trained two LSTM networks: an arm model to 

predict the positions of eight arm markers from the positions of nine arm and torso keypoints, 

and a body model to predict the positions of 35 body markers from the positions of 13 lower-

limb and torso keypoints. Both models also use height and weight as inputs. To train the 

networks, we synthesized corresponding pairs of 3D video keypoints and 3D anatomical markers 

from 108 hours motion capture data processed in OpenSim from published biomechanics 

studies68–77 (see Supplementary Information for details on dataset generation). We split the data 

into a training set (~80%), validation set (~10%), and test set (~10%). Prior to training, we 

expressed the 3D positions of each marker with respect to a root marker (the midpoint of the hip 

keypoints), normalized the 3D positions by the subject’s height, sampled at 60 Hz, split the data 

into non-overlapping time-sequences of 0.5 s, and added Gaussian noise (standard deviation: 

18 mm) to each time step of the video keypoint positions based on a range of previously reported 

keypoint errors23,25,28. For both models, we tuned hyperparameters using a random search. The 

RMSEs on the test set were 8.0 and 15.2 mm for the body and arm model, respectively (see 
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Supplementary Information for details about model architecture and training). In practice, 

OpenCap uses both LSTM networks to predict root-centered arm and body anatomical marker 

positions from root-centered 3D video keypoints. It then adds the root keypoint position to all 

predicted positions.  

d. Physics-based modeling and simulation 

 After calibration, OpenCap’s web application guides users to record the participant in a 

standing neutral pose. OpenCap uses the anatomical marker positions estimated from the neutral 

pose to scale a musculoskeletal model to the participant’s anthropometry using OpenSim’s Scale 

tool. OpenCap uses the musculoskeletal model from Lai et al.67,78 with modified hip abductor 

muscle paths according to Uhlrich et al.77. The musculoskeletal model comprises 33 degrees of 

freedom (pelvis in the ground frame [6], hips [2x3], knees [2x1], ankles [2x2], 

metatarsophalangeal joints [2x1], lumbar [3], shoulders [2x3], and elbows [2x2]). Note that since 

no markers are attached to the toes, no reliable estimates of metatarsophalangeal joint kinematics 

can be obtained. The metatarsophalangeal joint is nevertheless included when generating 

tracking simulations, since modeling that joint improves knee mechanics in muscle-driven 

simulations79. The musculoskeletal model is driven by 80 muscles actuating the lower-limb 

coordinates, 13 ideal torque motors actuating the lumbar, shoulder, and elbow coordinates, and 

six contact spheres per foot modeling food-ground contacts80,81. Raasch’s model82,83 is used to 

describe muscle excitation-activation coupling, and a Hill-type muscle model84,85 is used to 

describe muscle-tendon dynamics and the dependence of muscle force on muscle fiber length 

and velocity. Skeletal motion is modeled with Newtonian rigid body dynamics and smooth 

approximations of compliant Hunt-Crossley foot-ground contacts86,87. The dynamics of the ideal 

torque motors are described using linear first-order approximations of a time delay81. To increase 
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computational speed, muscle-tendon lengths and velocities, and moment arms are defined as a 

polynomial function of joint positions and velocities88. The polynomial coefficients are fit to the 

output from OpenSim’s Muscle Analysis tool applied to 5000 randomly varied lower limb 

postures. Muscles are represented by ninth-order or lower polynomials, with RMSE of muscle-

tendon length and moment arm lower than 1.5 mm compared to the original model. 

 After scaling, users can record any movement through OpenCap’s web application. 

OpenCap then uses the anatomical marker positions estimated from the recorded videos and 

LSTM network to compute joint kinematics using OpenSim’s Inverse Kinematics tool and the 

scaled musculoskeletal model. Users can visualize the resulting 3D kinematics in the web 

application.  

 Finally, OpenCap can estimate kinetics using muscle-driven tracking simulations of joint 

kinematics. The tracking simulations are formulated as optimal control problems that aim to 

identify muscle excitations that minimize a cost function subject to constraints describing muscle 

and skeleton dynamics. The cost function 𝐽 (Equation 1) includes squared terms for muscle 

activations (𝑎) and excitations of the ideal torque motors at the lumbar, shoulder, and elbow 

joints (𝑒𝑡𝑚). It also includes tracking terms (squared difference between simulated and reference 

data), namely tracking of experimental joint positions (�̃�), joint velocities (�̃̇�), and joint 

accelerations (�̃̈�): 

𝐽 = ∫ 𝑤1𝑎2 + 𝑤2𝑒𝑡𝑚
2 + 𝑤3‖�̃� − 𝑞‖2

2 + 𝑤4‖�̃̇� − �̇�‖
2

2
+ 𝑤5‖�̃̈� − �̈�‖

2

2
 𝑑𝑡

𝑡𝑓

𝑡0
,  

(1) 

where 𝑡0 and 𝑡𝑓 are initial and final times, 𝑤𝑖 with 𝑖 = 1, … , 5 are weights, and 𝑡 is time. 

Experimental joint positions, velocities, and accelerations are low-pass filtered using fourth-
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order, zero-lag Butterworth filters (default cutoff frequencies are 12 Hz for gait trials and 30 Hz 

for non-gait trials). Each cost term is scaled with empirically determined weights. To avoid 

singular arcs89, a penalty function is appended to the cost function with the remaining control 

variables81,90. Note that the optimal control problem formulation can be tailored to the activity of 

interest to incorporate activity-based knowledge by, for instance, adjusting the cost function, 

constraints, and filter settings (see Supplementary Information). The optimal control problems 

are formulated in Python with CasADi91 (v3.5), using direct collocation and implicit 

formulations of the muscle and skeleton dynamics81. Algorithmic differentiation is used to 

compute derivatives90, and IPOPT is used to solve the resulting nonlinear programming 

problems92 with a convergence tolerance of 1e-4 (all other settings are kept to default).  

2. Validation 

a. Participants and experiment 

 To validate OpenCap against gold standard kinematic and kinetic measures, we measured 

ten healthy adults (6 female and 4 male; age = 27.7±3.6 [23–35] years; body mass = 69.2±11.0 

[59.0–92.9] kg; height = 1.74±0.11 [1.60–1.96] m; mean ± standard deviation [range]) 

performing multiple activities in a motion capture laboratory. All participants provided written 

informed consent before participation. The study protocol was approved and overseen by the 

Institutional Review Board of Stanford University (IRB00000351). We conducted the 

experiment in accordance with this approved protocol and relevant guidelines and regulations. 

 Participants were instructed to perform four activities in a natural (i.e., self-selected) and 

modified way during data collection: i) walking naturally and with a trunk sway modification 

(trunk leaned laterally over stance leg), ii) performing five squats naturally and then 

asymmetrically (reduced force under the left foot), iii) performing five sit-to-stands naturally and 
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then with increased trunk flexion (forward lean when rising), and iv) performing three drop 

jumps naturally and then asymmetrically (reduced force under the left foot when landing). 

b. Experimental data 

 We measured ground truth kinematics, ground reaction forces, and muscle activity with 

optical motion capture, force plates, and electromyography. An eight-camera motion capture 

system (Motion Analysis Corp., Santa Rosa, CA, USA) tracked the positions (100 Hz) of 31 

retroreflective markers placed bilaterally on the 2nd and 5th metatarsal heads, calcanei, medial 

and lateral malleoli, medial and lateral femoral epicondyles, anterior and posterior superior iliac 

spines, sternoclavicular joints, acromia, medial and lateral epicondyles of the humerus, radial and 

ulnar styloid processes, and the C7 vertebrae. Twenty additional markers were used to aid in 

segment tracking. Ground reaction forces were synchronously measured (2000 Hz) using three 

in-ground force plates (Bertec Corp., Columbus, OH, USA). Wireless electromyography 

electrodes (Delsys Corp., Natick, MA, USA) measured muscle activity (2000 Hz) from the 

vastus lateralis and medialis (electromyography data from 14 other lower-extremity muscles are 

shared with the dataset but not analyzed here). We used OpenCap to record video from five 

smartphones (iPhone 12 Pro, Apple Inc., Cupertino, CA, USA). The phones were positioned 

1.5 m off the ground, 3 m from the center of the force plates, and at ±70°, ±45°, and 0°, where 0° 

faces the participant. Unless otherwise noted, the validation results used only the two ±45° 

cameras. A precision-manufactured, 720x540 mm checkerboard was used for computing the 

extrinsic parameters during OpenCap’s camera calibration step.   

 Marker, force, and electromyography data were filtered using a fourth-order, zero-lag 

Butterworth filter. Marker and force data were low-pass filtered (walking: 6 Hz, squat: 4 Hz, sit-

to-stand: 4 Hz, and drop jump: 30 Hz). These frequencies were selected as the frequency that 
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retained 99.7% of the cumulative signal power of the Fourier-transformed marker trajectories93. 

Electromyography data were band-pass filtered (30-500 Hz), rectified, and low-pass filtered 

(6 Hz). Electromyography data were normalized to maximum activation trials including 

maximum height jumps, sprinting, and isometric and isokinetic ankle dorsiflexion, knee flexion, 

hip abduction exercises94. 

c. Kinematics and kinetics 

 Laboratory-based (later referred to as Mocap) kinematic and kinetic data were estimated 

from measured marker and force plate data using OpenSim 4.3. We used the same modeling and 

simulations pipeline as OpenCap to scale the musculoskeletal models and estimate joint 

kinematics from measured marker data (see Methods: Design: Physics-based modeling and 

simulation). Joint kinetics were then estimated from joint kinematics (filtered at same 

frequencies as force plate data) and force plate data using OpenSim’s Inverse Dynamics tool.  

 OpenCap kinematic and kinetic data were estimated using the two 45° cameras and the 

HRNet pose detection algorithm. This setup combines simplicity, performance, and a permissible 

open-source software license. It was selected after conducting a sensitivity analysis studying the 

effect of using different camera configurations (two, three, and five cameras) and pose detection 

algorithms (OpenPose with default settings, OpenPose with high accuracy settings, and HRNet) 

on predicted anatomical marker positions and joint kinematics. See Supplementary Information 

and Methods: Validation: Validation Results for details about the sensitivity analysis and pose 

detection algorithm settings.  
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d. Error analysis 

 We evaluated the performance of OpenCap against Mocap by quantifying errors in 

anatomical marker positions, joint kinematics, ground reaction forces, and joint kinetics. 

 We quantified errors in 3D anatomical marker positions using mean per marker error 

(Euclidean distance). We report errors for 17 anatomical markers (the C7 vertebrae and the left 

and right acromia, anterior and posterior superior iliac spines, medial and lateral femoral 

epicondyles, medial and lateral malleoli, calcanei, and second and fifth metatarsal heads). Prior 

to error analysis, we synchronized and aligned Mocap and OpenCap position data by removing 

the time delay that minimized the mean difference between marker positions (averaged over all 

markers and time steps), then subtracting this average position offset from the OpenCap 

positions. 

 We quantified errors in 3D joint kinematics using MAE. We report errors for 18 

rotational degrees of freedom (pelvis rotations [3], hips [2x3], knees [2x1], ankles [2x2], and 

lumbar [3]) and three translational degrees of freedom (pelvis translations). 

 We quantified errors in 3D ground reaction forces using MAE normalized by 

bodyweight. We also expressed errors as percent of range of the measured signal over each trial. 

Prior to quantifying errors, we filtered ground reaction forces from OpenCap using the same 

filters as for the measured ground reaction forces (see Methods: Validation: Experimental data). 

 We quantified errors in 3D joint kinetics using MAE normalized by bodyweight times 

body height. We report errors for 15 rotational degrees of freedom (hips [2x3], knees [2x1], 

ankle [2x2], and lumbar [3]). It is important to note that while joint moments estimated from 

inverse dynamics are considered gold standard, they include non-physical pelvis residual forces 
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and moments to compensate for the inconsistency between model-based kinematics and 

measured ground reaction forces. In contrast, muscle-driven simulations are dynamically 

consistent and do not include pelvis residuals. Thus, the differences between Inverse Dynamics 

and OpenCap-estimated joint moments are not entirely attributable to error in the OpenCap 

pipeline. 

e. Validation Results 

 The marker error, averaged across markers and activities, was 32 mm using the two-

camera HRNet setup. Our sensitivity analysis demonstrated that OpenCap’s accuracy remained 

consistent across different pose detectors and additional cameras. Marker error was 31 and 35 

mm when using OpenPose with high accuracy and default setting, respectively. Using three 

cameras did not improve accuracy, but using five cameras mildly reduced error (29 mm for 

HRNet). Marker error was larger for the upper extremity (39 mm) and pelvis (38 mm) than for 

the lower extremity (27 mm) using the two-camera HRNet setup. Detailed results of the 

sensitivity analyses are presented in Table S1 of Supplementary Information. 

 The kinematic MAE for the two-camera HRNet setup, averaged across degrees of 

freedom and activities, was 4.5° (range=1.7–10.3°) and 12.3 mm (range=5–20.3 mm) for the 18 

rotational and three translational degrees of freedom, respectively (Table 1). Our sensitivity 

analysis showed that kinematic errors were similar when using the high accuracy and default 

OpenPose settings (4.3° and 4.7°, respectively), and when adding cameras (improvement of less 

than 0.3°). We also investigated the effect of using video keypoints instead of anatomical 

markers to estimate joint kinematics. Kinematic errors were 3.4° worse on average for the two-

camera HRNet setup when using the video keypoints instead of the anatomical markers. This 

was primarily due to 12.1–39.2° errors at the lumbar extension, pelvic tilt, and hip flexion 
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degrees of freedom, due to the limited information in the video keypoint marker set for 

distinguishing between rotations at these joints. Detailed results of the sensitivity analyses are 

presented in Table S2 of Supplementary Information. Average kinematic waveforms estimated 

using OpenCap and Mocap are presented in Figures S1-S4 of Supplementary Information. 

 The ground reaction force MAE, averaged across directions and activities was 6.2% 

bodyweight. It was 11.4% bodyweight in the vertical direction, 3.5% bodyweight in the anterior-

posterior direction, and 3.8% bodyweight in the medio-lateral direction (Table 1). The joint 

moment MAE, averaged across degrees of freedom and activities, was 1.2% bodyweight*height 

(Table 1). Detailed results are presented in Table S3–S4 of Supplementary Information, and 

average ground reaction force and joint moment waveforms estimated using OpenCap and 

Mocap are presented in Figures S5–S12 of Supplementary Information.  

3. Applications and Statistics 

 We assessed OpenCap’s ability to estimate kinetic measures related to musculoskeletal 

pathology in three applications that represent clinical use cases. Unless otherwise noted, these 

analyses were performed on the 10-subject dataset described in Methods: Validation. All 

statistical analyses were performed in Python (v3.7.10) using the scipy95 (v1.5.4), statsmodels96 

(v0.13.2), and pingouin97 (v0.5.2) packages. We compared conditions within and between 

measurement modalities using r2, MAE, two-sided paired t tests (alpha=.05), and two-sided 

Wilcoxon signed rank tests. Prior to conducting a t test, we tested for normality using a Shapiro 

Wilkes test, and we used a Wilcoxon signed rank test to compare non-normally distributed data. 

To prevent inflated Type 1 error from multiple comparisons, we report corrected P-values after 

controlling for the false discovery rate using the Benjamini Hochberg procedure98. We evaluated 

the post-hoc power of t tests and Wilcoxon signed rank tests using the sample size, alpha=.05, 
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and the observed effect size. We evaluated performance on classification tasks using AUC and 

binary classification accuracy at the threshold that maximized the true positive rate minus the 

false positive rate. Unless otherwise noted, values are reported as mean ± standard deviation. 

 In the first application, we assessed the peak knee adduction moment and peak medial 

knee contact force during walking. Participants walked naturally and with a trunk sway 

modification, which typically alters medial knee loading31. Participants walked with 15° more 

trunk sway on average during the trunk sway compared to the natural condition, which is similar 

to the 10–13° of trunk sway reported in gait modification studies31,99.  We computed peaks of 

both loading measures during the first half of the stance phase using the Joint Reaction Analysis 

tool in OpenSim (see Supplementary Information for details), which uses kinematics, ground 

reaction forces, and muscle forces as inputs. For OpenCap, we used the outputs of the muscle-

driven dynamic simulation for this analysis, and for Mocap, we used the OpenSim Static 

Optimization tool to estimate muscle forces. We first determined how accurately OpenCap could 

estimate the peak knee adduction moment and how it varies among gait patterns and individuals. 

For each walking condition, we averaged the peak knee adduction moment across the three trials 

for each individual and compared between OpenCap and Mocap using r2 and MAE. We then 

determined whether OpenCap could detect group changes in both loading measures from a gait 

modification similarly to Mocap. For each measurement modality, we used either a two-sided 

paired t test or a Wilcoxon signed rank test to evaluate the changes from baseline, and we 

computed the post-hoc power of each test. Finally, we evaluated whether OpenCap correctly 

identified an increase or decrease in peak knee loading measures for each individual, using the 

Mocap estimate as ground truth. 
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 In the second application, we evaluated lower-extremity joint moments while rising from 

a 40 cm chair. Participants stood naturally and with increased trunk flexion, which can shift the 

muscle force demand from the knee extensors to the hip extensors and ankle plantarflexors39. 

During the increased trunk flexion condition, participants stood with a 42±8° of trunk flexion, 

which is similar to the 47° reported in a cohort of older adults with functional limitations100. For 

three repetitions per condition, we averaged the hip extension, knee extension, and ankle 

plantarflexion moments over the rising phase, then averaged these values across repetitions. To 

evaluate OpenCap’s ability to detect group changes between conditions, we compared the 

moment changes from baseline to trunk-lean using two-sided paired t tests for both OpenCap and 

Mocap. We then conducted a post-hoc power analysis for each measurement modality. To 

determine OpenCap’s ability to identify individuals with low knee extensor moments during this 

motion, we compared each participant’s average knee extension moment for each condition 

between OpenCap and Mocap using r2 and MAE. 

 In the third application, we assessed the between-limb symmetry of knee extensor muscle 

activation while squatting. Participants squatted naturally and asymmetrically, which can elicit 

asymmetrical knee extensor force generation7. We first performed an in-lab experiment to 

compare peak vasti muscle (knee extensors) activation measured with electromyography to peak 

activation estimated with OpenCap and Mocap. Since there is no change in muscle strength 

between these conditions, a change in muscle activation between conditions is a more easily 

measured surrogate for a change in muscle force. For OpenCap, muscle activations were outputs 

of the muscle-driven tracking simulations, whereas for Mocap, muscle activations were 

estimated using OpenSim’s Static Optimization tool. We first averaged the activation of the 

vastus medialis and vastus lateralis, then extracted the peak value over a squat (standing to 
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standing again). We calculated the peak vasti activation symmetry index between the left and 

right leg (Equation 2) and averaged across three repetitions in each condition: 

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑖𝑛𝑑𝑒𝑥 =  1 −
𝑎involved −  𝑎uninvolved

𝑎uninvolved
, 

(2) 

where 𝑎involved is the peak activation of the left vasti (reduced force under left foot during 

asymmetric condition) and 𝑎uninvolved is the peak activation of the right vasti. The symmetry 

index is larger than one when the left peak vasti activation is lower than the right peak vasti 

activation, which would be expected in the asymmetric condition. On average, during the 

asymmetric condition compared to the natural condition, our participants squatted with a 

0.53±0.32 greater symmetry index measured by electromyography; this is similar to the 0.51 

greater asymmetry in vasti strength reported in individuals one month after a total knee 

replacement101. We determined OpenCap’s ability to classify symmetric vs. asymmetric squats 

using AUC and classification accuracy, with ground truth symmetry labels determined from 

electromyography based on a symmetry index threshold (1.15) that predicts functional deficits 

following anterior cruciate ligament surgery41. We also computed the AUC and accuracy for 

simulated muscle activations from Mocap. 

 Finally, we performed a field study where a clinician used OpenCap to evaluate knee 

extension moment symmetry in 100 individuals outside of the laboratory (41 female and 59 

male; age = 29.7±9.2 [18–67] years, body mass = 69.0±11.5 [50-109] kg; height = 1.74±0.09 

[1.45–1.97] m; mean ± standard deviation [range]). We used a 210x175 mm checkerboard 

printed on A4 paper and mounted to plexiglass for camera calibration. Participants performed 

natural squats and asymmetric squats. All participants provided written informed consent before 

participation. The study protocol was approved and overseen by the Institutional Review Board 
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of Stanford University (IRB00000351). We conducted the experiment in accordance with this 

approved protocol and relevant guidelines and regulations. First, we evaluated OpenCap’s ability 

to detect a squat with a between-limb asymmetry in the peak knee extension moment. For each 

participant, we computed the peak knee extension moment for three repetitions per condition, 

computed the peak knee extension moment symmetry index (Equation 2), and averaged across 

the repetitions in each condition. To determine the classification performance, we computed 

AUC and accuracy, with ground truth labels being the instructed condition (i.e., natural [assumed 

to be symmetric] vs. asymmetric squats). Second, we evaluated OpenCap’s ability to detect 

between-condition changes in knee extension moment symmetry, simulating the ability to detect 

improvements in symmetry that would be expected to occur over time. To simulate improved 

symmetry, we subtracted each participant’s symmetry index averaged over the repetitions of the 

natural condition from their symmetry index averaged over repetitions of the asymmetric 

condition (a positive value indicates an improvement in symmetry). To simulate unchanged 

symmetry, we averaged the difference in symmetry index between each combination of the 

asymmetric squat repetitions. We computed the AUC and accuracy of this change in symmetry 

measure using the known class (i.e., improved symmetry or unchanged symmetry) as ground 

truth.  
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Table 1: Mean absolute error (MAE) in kinematics and kinetics from OpenCap compared 

to laboratory-based motion capture and force plates. Errors for each activity were averaged 

over trials and participants (n=10), and the reported mean is an average over activities and 

degrees of freedom (six for pelvis position and orientation [kinematics only], three for the 

lumbar, three per hip, one per knee, and two per ankle). Forces are expressed in percent 

bodyweight (BW) and moments in percent BW times height (ht). Kinematic and joint moment 

errors are presented as the mean and range over the degrees of freedom, and kinetic errors are 

additionally presented as the MAE as a percentage of the range. Root mean squared error in 

kinematics and kinetics are available in Tables S2–S4 in Supplementary Information. Average 

kinematic, ground reaction force, and joint moment waveforms estimated using OpenCap and 

Mocap are presented in Figures S1–S12 of Supplementary Information.  

Kinematics (MAE) Walking Squat Sit-to-stand Drop jump Mean 

Rotations (n=18) [°] 
4.1 

(2.3–6.6) 

4.1 

(1.8–7.2) 

4.7 

(1.7–10.3) 

5.1 

(2.3–8.6) 
4.5 

Translations (n=3) [mm] 
12.3 

(6.8–19.6) 

12.3 

(5.8–18.4) 

13.2 

(5–20.3) 

11.5 

(6.3–16.5) 
12.3 

Ground reaction forces (MAE) 

Vertical [%BW] 8.2 (7.5%) 6.4 (20.0%) 5.7 (13.4%) 25.2 (13.8%) 11.4 (13.7%) 

Anterior-posterior [%BW] 2.1 (6.7%) 1.3 (37.5%) 1.9 (31.0%) 8.9 (17.3%) 3.5 (23.1%) 

Medio-lateral [%BW] 1.1 (17.1%) 5.7 (85.4%) 3.2 (110.5%) 5.3 (29%) 3.8 (60.5%) 

Joint moments (MAE) 

All degrees of freedom (n=15) 

[%BW*ht] 

0.75 

(0.20–1.32, 19%) 

0.97 

(0.11–1.93, 45%) 

0.68 

(0.13–1.09, 60%)  

2.50 

(1.15–5.90, 25%) 

1.22  

(37%) 
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