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Abstract	1 

Human	childhood	is	characterized	by	dramatic	changes	in	the	mind	and	brain.	However,	little	is	2 

known	about	the	large-scale	intrinsic	cortical	network	changes	that	occur	during	childhood	due	to	3 

methodological	challenges	in	scanning	young	children.	Here,	we	overcome	this	barrier	by	using	4 

sophisticated	acquisition	and	analysis	tools	to	investigate	functional	network	development	in	5 

children	between	the	ages	of	4	and	10	years	(𝑛 = 92).	At	multiple	spatial	scales,	age	is	positively	6 

associated	with	brain	network	segregation.	At	the	system	level,	age	was	associated	with	7 

segregation	of	systems	involved	in	attention	from	those	involved	in	abstract	cognition,	and	with	8 

integration	among	attentional	and	perceptual	systems.	Associations	between	age	and	functional	9 

connectivity	are	most	pronounced	in	visual	and	medial	prefrontal	cortex,	the	two	ends	of	a	10 

gradient	from	perceptual,	externally	oriented	cortex	to	abstract,	internally	oriented	cortex.	These	11 

findings	suggest	that	both	ends	of	the	sensory-association	gradient	may	develop	early,	in	contrast	12 

to	the	classical	theories	that	cortical	maturation	proceeds	from	back	to	front,	with	sensory	areas	13 

developing	first	and	association	areas	developing	last.	More	mature	patterns	of	brain	network	14 

architecture,	controlling	for	age,	were	associated	with	better	visuospatial	reasoning	abilities.	Our	15 

results	suggest	that	as	cortical	architecture	becomes	more	specialized,	children	become	more	able	16 

to	reason	about	the	world	and	their	place	in	it.	17 

Keywords:	childhood,	functional	network,	development,	graph	theory,	reasoning	18 

Significance	19 

Anthropologists	have	called	the	transition	from	early	to	middle	childhood	the	“age	of	reason”,	20 

when	children	across	cultures	become	more	independent.	We	employ	cutting-edge	neuroimaging	21 

acquisition	and	analysis	approaches	to	investigate	associations	between	age	and	functional	brain	22 

architecture	in	childhood.	Age	was	positively	associated	with	segregation	between	cortical	23 

systems	that	process	the	external	world,	and	those	that	process	abstract	phenomena	like	the	past,	24 

future,	and	minds	of	others.	Surprisingly,	we	observed	pronounced	development	at	both	ends	of	25 

the	sensory-association	gradient,	challenging	the	theory	that	sensory	areas	develop	first	and	26 

association	areas	develop	last.	Our	results	open	new	directions	for	research	into	how	brains	27 
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reorganize	to	support	rapid	gains	in	cognitive	and	socioemotional	skills	as	children	reach	the	age	1 

of	reason.	2 

Introduction	3 

Children’s	minds	develop	fastest	during	the	first	decade	of	life.	Sensory	and	motor	skills	develop	4 

before	complex	cognitive	skills:	children	can	see	and	walk	before	they	can	solve	abstract	puzzles.	5 

Diverse	skills	including	reasoning,	executive	function,	emotion	regulation,	and	social	cognition	all	6 

improve	dramatically	until	8-10	years	of	age,	after	which	change	slows	down	(see	Akshoomoff	et	7 

al.	(2014);	Kopp	(1989);	Wellman	(2014);	Whitaker	et	al.	(2018);	but	see	also	Fortenbaugh	et	al.	8 

(2015)).	Developmental	psychologists	once	called	these	changes	the	“5-to-7-year	shift”:	the	9 

transition	from	Piaget’s	preoperational	stage,	in	which	children	rely	on	perceptual	information,	to	10 

the	concrete	operational	stage,	in	which	children	are	less	bound	by	perceptual	information	and	11 

more	able	to	think	abstractly	(Sameroff	and	Haith,	1996).	Anthropologists	have	called	this	12 

developmental	period	the	“age	of	reason”	or	the	“age	of	sense”,	when	children	become	more	13 

independent	from	their	parents,	begin	to	build	more	complex	social	relationships	with	peers	and	14 

other	adults,	and	become	less	egocentric	and	more	able	to	understand	others’	perspectives	15 

(Chandler	and	Lalonde,	1996;	Lancy,	2014).	16 

A	core	tenet	of	developmental	cognitive	neuroscience	is	that	brain	development	proceeds	along	17 

the	sensory-association	axis,	with	sensory	areas	developing	first	and	association	areas	developing	18 

last	(Sydnor	et	al.,	2021;	Tooley	et	al.,	2021).	This	sequence	is	in	line	with	data	from	both	19 

behavioral	and	cognitive	development	(Cole	et	al.,	2005).	The	far	end	of	the	association	axis	is	20 

anchored	by	the	default	mode	system	(Smallwood	et	al.,	2021),	which	is	furthest	from	sensory	21 

input	and	engages	primarily	in	abstract	cognitive	processes	that	do	not	rely	on	the	current	22 

sensory	environment.	Examples	of	such	processes	include	remembering	the	past,	projecting	the	23 

future,	and	taking	the	perspective	of	others	(Buckner	and	DiNicola,	2019).	Other	association	24 

systems,	such	as	the	dorsal	and	ventral	attention	systems,	receive	and	process	more	input	from	25 

the	outside	world	(Corbetta	and	Shulman,	2002).	The	frontoparietal	system	can	be	thought	of	as	a	26 

toggle	controlling	the	switch	between	internally	and	externally	oriented	cognition,	flexibly	27 

coordinating	other	systems	and	holding	sensory	information	online.	Such	processes	are	commonly	28 

exemplified	in	working	memory	and	reasoning	tasks	(Owen	et	al.,	2005;	Cole	et	al.,	2013).	29 
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Data	on	structural	brain	development,	including	cortical	thinning,	surface	area,	and	white	matter	1 

coherence,	clearly	support	early	development	of	sensory	areas	(Stiles	and	Jernigan,	2010;	2 

Raznahan	et	al.,	2011;	Whitaker	et	al.,	2016;	Gennatas	et	al.,	2017;	Reynolds	et	al.,	2019).	However,	3 

regions	of	the	default	mode	system,	including	the	medial	prefrontal	cortex	and	the	precuneus,	also	4 

show	early	structural	development	(Brown	and	Jernigan,	2012;	Li	et	al.,	2013;	Wierenga	et	al.,	5 

2014;	Li	et	al.,	2015).	Thus,	another	possibility	is	that	both	ends	of	the	sensory-association	axis	6 

become	anchored	early	in	life,	and	developmental	processes	differentiate	and	refine	the	7 

boundaries	of	attention	and	executive	systems	along	this	axis	later	in	development.	Brain	8 

structure	is	easier	to	measure	than	function	in	sleeping	children,	so	it	has	been	better	9 

characterized	in	early	childhood	(see	Houston	et	al.	(2014)	and	Lenroot	and	Giedd	(2006)).	10 

However,	brain	function	may	be	more	closely	linked	to	cognition	and	behavior	(Zimmermann	et	11 

al.,	2018;	Dhamala	et	al.,	2021),	particularly	during	development	when	the	brain	is	highly	plastic	12 

(Chen	et	al.,	2020).	13 

Functional	brain	networks	can	be	studied	at	multiple	spatial	scales:	in	the	whole	brain,	across	14 

systems,	and	among	regions	or	parcels.	Understanding	how	functional	networks	reorganize	at	the	15 

whole	brain	level	allows	us	to	examine	the	extent	to	which	segregation	is	an	overall	guiding	16 

principle	of	development,	while	studying	the	constituent	systems	(sometimes	referred	to	as	17 

“networks’’	in	the	literature)	allows	for	examination	of	relationships	among	specialized	functional	18 

subnetworks.	The	parcel	resolution	yields	more	granular	detail	about	which	specific	brain	areas,	19 

or	network	nodes,	might	drive	effects.	Segregation	refers	to	the	presence	of	groups	or	20 

subnetworks	of	densely	interconnected	nodes,	and	is	thought	to	emerge	partially	as	a	result	of	21 

maturing	inhibitory	interneurons;	synchronized	inhibition	may	be	necessary	for	establishing	22 

segregated	network	function	(Cardin,	2018;	Kraft	et	al.,	2020;	Chini	et	al.,	2021).	23 

Functional	network	development	has	been	studied	predominantly	in	middle	childhood	(7-10	24 

years)	or	later	(see	Morgan	et	al.	(2018)	and	Grayson	and	Fair	(2017)	for	review),	due	to	the	25 

challenges	of	acquiring	high	quality	data	in	younger	children	while	they	are	awake.	From	middle	26 

childhood	through	adolescence,	at	the	whole	brain	level,	networks	become	more	modular	and	27 

segregated	with	age,	supporting	improved	cognition	(Satterthwaite	et	al.,	2013b;	Gu	et	al.,	2015;	28 

Grayson	and	Fair,	2017;	Marek	et	al.,	2019).	At	the	system	resolution,	age	is	associated	with	29 

increases	in	within-system	connectivity,	and	decreases	in	between-system	connectivity,	30 
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particularly	between	the	default	mode	system	and	executive	control	and	attention	systems	(Fair	et	1 

al.,	2008;	Chai	et	al.,	2013;	Satterthwaite	et	al.,	2013b;	Gu	et	al.,	2015;	Lopez	et	al.,	2019;	Jones	et	2 

al.,	2021).	At	the	regional	level,	effects	are	less	consistent,	perhaps	because	findings	vary	widely	3 

depending	on	the	age	range	studied	(Grayson	and	Fair,	2017;	Morgan	et	al.,	2018).	Another	way	to	4 

examine	parcel-level	effects	is	to	examine	the	development	of	the	sensory-association	axis	across	5 

cortex.	Two	recent	and	well-powered	studies	found	that	in	middle	childhood,	a	sensory-6 

association	gradient	is	in	place,	but	the	most	variance	in	patterns	of	connectivity	is	explained	by	7 

separation	between	visual	and	somatomotor	systems	(Dong	et	al.,	2021;	Xia	et	al.,	2022).	By	age	8 

12	years,	however,	the	organization	of	the	sensory-association	gradient	resembles	that	of	adults;	9 

development	of	the	primary	sensory-association	gradient	may	be	mediated	by	changes	in	network	10 

architecture	(Dong	et	al.,	2021;	Xia	et	al.,	2022).	Functional	network	architecture	has	been	shown	11 

to	have	cognitive	consequences:	youth	with	more	segregated	networks,	and	in	particular	task-12 

positive	(i.e.,	attention	and	control	systems)	and	task-negative	(i.e.,	default	mode)	systems,	13 

perform	better	on	a	wide	variety	of	cognitive	tasks	(Gu	et	al.,	2015;	Lopez	et	al.,	2019;	Marek	et	al.,	14 

2019;	Jones	et	al.,	2021;	Xia	et	al.,	2022).	15 

A	few	studies	have	characterized	functional	network	development	in	children	younger	than	6	16 

years	of	age,	and	overall	suggest	developmental	specialization	of	cortex	with	age.	In	utero,	a	proto-17 

default-mode	system	is	detectable,	and	visual	and	motor	systems	show	overlap	with	that	found	in	18 

adults,	but	attention	and	frontoparietal	systems	remain	undifferentiated	(Turk	et	al.,	2019;	19 

Thomason,	2020).	Infant	brain	networks	can	be	studied	during	sleep:	primary	sensory	systems	20 

have	an	adult-like	architecture	at	birth,	but	default,	ventral	attention,	and	dorsal	attention	systems	21 

do	not	develop	a	distributed	network	architecture	until	1-2	years	of	age,	and	executive	control	22 

systems	are	still	immature	at	2	years	of	age	(Gilmore	et	al.,	2018).	The	anticorrelation	between	23 

default	and	dorsal	attention	system	connectivity	begins	to	emerge	around	1	year	of	age	(see	Gao	et	24 

al.	(2013),	𝑛 = 147).	From	the	age	of	3	months	to	6	years,	within-system	connectivity	broadly	25 

increases	with	age,	while	between-system	connectivity	decreases	(see	Bruchhage	et	al.	(2020),	26 

𝑛 = 196,	natural	sleep).	Another	way	to	address	challenges	involved	in	scanning	young	children	is	27 

to	have	them	view	movies:	a	study	of	children	aged	4	to	7	years	showed	that	age	was	positively	28 

associated	with	connectivity	in	systems	identified	with	an	independent	component	analysis,	29 

including	sensory,	motor,	default	mode,	and	executive	control	systems,	but	not	the	ventral	30 
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attention	system	(see	Rohr	et	al.	(2018),	𝑛 = 60).	An	analysis	of	the	same	sample	also	found	that	1 

age	was	negatively	associated	with	connectivity	between	seeds	in	the	dorsal	attention	system	2 

(intraparietal	sulcus,	frontal	eye	fields)	and	areas	of	the	default	mode	system	(Rohr	et	al.	(2017),	3 

𝑛 = 44).	In	general,	more	mature	patterns	of	connectivity	are	associated	with	better	performance	4 

on	measures	of	attention	and	cognition	(Rohr	et	al.,	2017,	2018;	Bruchhage	et	al.,	2020;	Qi	et	al.,	5 

2021).	These	studies	of	young	children	have	examined	connectivity	between	specific	regions	or	6 

subsets	of	regions,	but	not	the	architecture	of	intrinsic	cortical	networks	at	rest.	Hence,	little	is	7 

known	about	how	rewiring	of	intrinsic	functional	networks	supports	the	profound	cognitive	8 

changes	that	take	place	during	childhood.	9 

The	present	research	10 

Here	we	focused	on	functional	brain	network	development	between	the	ages	of	4	and	10	years	11 

(𝑛 = 92).	To	overcome	barriers	associated	with	resting-state	data	collection	from	young	children,	12 

we	applied	sophisticated	neuroimaging	acquisition	and	analysis	approaches	to	minimize	motion	13 

and	its	impacts,	including	sequences	optimized	to	reduce	motion	artifacts	(Tisdall	et	al.,	2012),	14 

real-time	motion	monitoring	(Dosenbach	et	al.,	2017),	rigorous	image	quality	assurance	using	15 

open-source	tools,	and	a	preprocessing	pipeline	optimized	to	reduce	the	impact	of	head	motion.	16 

We	used	network	science	tools	to	take	a	hierarchical	analytical	approach,	asking	first	whether	17 

whole-brain	measures	of	network	topology	are	associated	with	age,	and	then	which	systems	and	18 

parcels	of	cortex	drive	patterns	of	topological	refinement.	Finally,	we	asked	whether	network	19 

structure	was	associated	with	cognition.	We	focused	on	reasoning	because	it	is	a	core	skill	that	20 

develops	rapidly	until	middle	childhood	(Whitaker	et	al.,	2018),	is	highly	predictive	of	later	21 

academic	outcomes	(Fuchs	et	al.,	2006;	Ferrer	et	al.,	2007;	Pagani	et	al.,	2017),	and	was	assessed	22 

across	the	majority	of	our	sample.	If	age-associated	changes	in	network	architecture	support	23 

reasoning	skills,	then	individual	differences	in	reasoning,	controlling	for	age,	should	mirror	24 

associations	with	age.	In	other	words,	we	predict	that	children	with		more	mature	functional	25 

architecture,	i.e.,	greater	network	segregation,	should	have	better	cognitive	skills.	26 
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Materials	&	Methods	1 

Participants	2 

The	Institutional	Review	Board	at	the	University	of	Pennsylvania	approved	this	study.	All	parents	3 

provided	informed,	written	consent.	Children	younger	than	age	8	provided	verbal	assent,	and	4 

children	ages	8	and	older	provided	written	assent.	Participants	were	recruited	from	Philadelphia	5 

and	the	surrounding	regions	through	advertisements	on	public	transportation,	partnerships	with	6 

local	schools,	outreach	programs,	community	family	events,	and	social	media	ads.	Children	were	7 

between	the	ages	of	4	and	10.59	years	(𝑀 =	6.85,	𝑆𝐷 =	1.38).	We	chose	to	collect	data	from	8 

children	starting	at	4	years	of	age,	as	collecting	functional	brain	imaging	data	from	awake	children	9 

younger	than	4	may	result	in	large	amounts	of	unusable	data.	Parents	were	asked	to	report	their	10 

child’s	gender	and	were	provided	four	sex	categories:	female,	male,	other,	and	prefer	not	to	11 

answer.	We	recognize	that	the	wording	of	this	question	conflated	sex	and	gender,	making	it	12 

impossible	for	us	to	investigate	the	relation	between	brain	development	and	the	child’s	gender	13 

identity,	whether	within	or	outside	the	binary.	54%	of	children	were	reported	by	parents	to	be	14 

male	and	46%	were	reported	by	parents	to	be	female;	none	were	reported	to	be	other,	suggesting	15 

that	we	might	not	have	any	intersex	children	in	our	sample.	The	racial	and	ethnic	makeup	of	the	16 

sample	was	as	follows:	61%	Black,	36%	white,	20%	Asian,	8%	other,	and	10%	Hispanic/Latino.	17 

Percentages	sum	to	greater	than	100%	because	parents	or	guardians	could	endorse	multiple	18 

races.	49%	of	children	had	a	parent	with	a	college	degree	or	more	education	and	45%	had	an	19 

annual	family	income	of	$50,000	or	more.	For	comparison,	Philadelphia	is	43.6	%	Black,	44.8	%	20 

White,	7.8	%	Asian,	3.9	%	Other,	and	15.2	%	Hispanic	or	Latino,	and	the	median	household	income	21 

was	$49,127	(US	Census	Bureau,	2020).	22 

The	target	sample	size	was	123	children	with	usable	data	to	detect	correlations	of	𝑟 = .25	with	a	23 

power	of	greater	than	.8.	However,	data	usability	in	young	children	can	be	difficult	to	predict,	and	24 

data	collection	was	cut	short	in	2020	by	the	COVID-19	pandemic.	Resting-state	scans	were	25 

acquired	for	138	participants.	Ninety-two	participants	were	included	in	the	final	sample.	26 

Participants	were	excluded	for	not	completing	the	resting-state	scan	(e.g.,	due	to	falling	asleep	or	27 

wanting	to	end	the	scan	early,	𝑛 = 17),	or	parent-reported	diagnosis	of	Attention-28 
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Deficit/Hyperactivity	Disorder	or	developmental	delay	during	the	visit,	despite	not	reporting	a	1 

diagnosis	during	screening	(𝑛 = 4).	2 

To	mitigate	the	effect	of	image	quality	on	our	analyses,	we	also	employed	motion	and	quality	3 

exclusions,	excluding	children	with	average	framewise	displacement	(FD)	>	1	mm	(𝑛 = 14),	and	4 

censored	volumes	at	0.5	mm	FD.	We	further	excluded	children	with	>	30%	of	frames	exceeding	0.5	5 

mm	FD	(𝑛 = 8,	Power	et	al.	(2012))	or	artifacts	(𝑛 = 3,	see	below	for	details).These	criteria	were	6 

selected	to	balance	the	need	to	include	as	much	data	as	possible	in	a	young	population	(Leonard	et	7 

al.,	2017)	and	the	need	to	limit	the	influence	of	low-quality	on	connectivity	metrics	(Power	et	al.,	8 

2014a).	9 

We	conducted	an	additional	sensitivity	analysis	with	stricter	motion	cutoffs:	excluding	children	10 

with	>	0.5	mm	average	FD	(𝑛 = 9)	and	censoring	volumes	with	>	0.25	mm	FD.	11 

25	children	were	excluded	for	image	artifacts	or	motion	in	the	original	sample.	At	the	more	lenient	12 

threshold,	these	children	were	younger	than	the	included	children	(𝑡(40.15) = −2.79,	𝑝 = .008),	13 

but	not	different	on	age-normed	reasoning	scores	(𝑡(37.60) = −1.47,	𝑝 = .150).	At	the	stricter	14 

threshold,	34	children	were	excluded	for	image	artifacts	or	motion:	excluded	children	were	15 

younger	than	the	included	children	(𝑡(50.96) = −2.13,	𝑝 = .038),	but	not	different	on	age-normed	16 

reasoning	scores	(𝑡(52.15) = −1.46,	𝑝 = .150).	17 

Data	acquisition	18 

Prior	to	the	scanning	session,	participants	were	acclimated	to	the	scanning	environment	with	a	19 

mock	scanner	that	simulates	typical	MRI	noises.	Participants	practiced	keeping	still	in	the	mock	20 

scanner,	by	watching	a	movie	that	would	pause	each	time	they	moved	their	heads	more	than	1	21 

mm.	During	the	MRI	session,	a	researcher	stayed	in	the	scanner	room	with	the	participant	to	22 

reassure	the	child.	Participants	viewed	a	fixation	cross	on	a	gray	screen	throughout	the	resting-23 

state	scan.	24 

Imaging	was	performed	at	the	Center	for	Advanced	Magnetic	Resonance	Imaging	and	25 

Spectroscopy	(CAMRIS)	at	the	University	of	Pennsylvania.	Scanning	was	conducted	using	a	26 

Siemens	MAGNETOM	Prisma	3	T	MRI	scanner	with	the	vendor’s	32-channel	coil.	5-minute	resting-27 

state	fMRI	scans	were	acquired	using	a	T2*-weighted	multiband	gradient-echo	echo-planar	28 
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imaging	(EPI)	sequence	(TR	=	2000	ms,	TE	=	30.2	ms,	BW	=	1860	Hz/px,	flip	angle	=	90◦,	voxel	size	1 

=	2	mm	isotropic,	matrix	size	=	96	×	96,	75	axial	slices,	FOV	=	192	mm,	volumes	=	150–240,	5	2 

dummy	scans,	multiband	acceleration	factor	=	3).	We	chose	a	multiband	factor	of	3	to	minimize	3 

interactions	between	multiband	and	motion	(Risk	et	al.,	2021).	A	whole-brain,	high-resolution,	T1-4 

weighted	3D-encoded	multi-echo	anatomical	image	(MEMPRAGE)	was	acquired	(TR	=	2530	ms,	5 

TEs	=	1.69	ms/3.55	ms/5.41	ms/7.27	ms,	BW	=650	Hz/px,	3x	GRAPPA,	flip	angle	=	7◦,	voxel	size	6 

=1	mm	isotropic,	matrix	size	=	256	×	256,	176	sagittal	slices,	FOV	=256	mm,	total	scan	time	of	4:38	7 

minutes).	This	anatomical	sequence	used	interleaved	volumetric	navigators	to	prospectively	track	8 

and	correct	for	subject	head	motion	(Tisdall	et	al.,	2012).	9 

To	increase	the	amount	of	usable	data,	midway	through	data	collection,	we	updated	our	10 

acquisition	strategy	in	two	ways:	(i)	monitoring	head	motion	in	real-time	using	the	Framewise	11 

Integrated	Real-time	MRI	Monitor	(FIRMM)	system	(Dosenbach	et	al.,	2017),	and	(ii)	collecting	10	12 

minutes	of	low-motion	resting-state	data	(2	resting-state	runs	of	data	with	FD	<	1	mm)	when	13 

possible.	An	incidental	feature	of	this	design	choice	is	that	it	decouples	age,	and	reasoning	ability,	14 

from	the	amount	of	data	acquired	for	each	child.	One	scan	was	acquired	for	43	children,	two	scans	15 

were	acquired	for	48	children,	and	three	scans	were	acquired	for	one	child.	Participants	were	16 

eligible	for	inclusion	if	they	had	more	than	135	frames	of	resting-state	data.	Participants	had	an	17 

average	FD	of	0.3	mm	(𝑆𝐷 =	0.18	mm).	For	participants	with	more	than	one	usable	resting-state	18 

run,	we	took	an	average	of	FD	across	runs,	weighted	by	run	length.	All	analyses	controlled	for	19 

average	FD	and	total	number	of	resting-state	frames	collected.	20 

Image	preprocessing	21 

Results	included	in	this	manuscript	come	from	preprocessed	data,	where	the	preprocessing	was	22 

performed	using	Freesurfer	(Dale	et	al.,	1999),	fMRIPprep	1.2.6-1	(Esteban	et	al.	(2018);	Esteban	23 

et	al.	(2019);	RRID:SCR_016216),	which	is	based	on	Nipype	1.1.7	(Gorgolewski	et	al.	(2017);	24 

Gorgolewski	et	al.	(2011);	RRID:SCR_002502),	as	well	as	xcpEngine	1.0	(Ciric	et	al.,	2018).	Brain	25 

surfaces	were	reconstructed	using	recon-all	(Dale	et	al.,	1999)	prior	to	other	processing,	and	26 

reconstructed	surfaces	were	used	as	input	to	fMRIprep.	27 

The	T1-weighted	(T1w)	image	was	corrected	for	intensity	non-uniformity	(INU)	using	28 

N4BiasFieldCorrection	(Tustison	et	al.	(2010),	ANTs	2.2.0),	and	used	as	T1w-reference	throughout	29 
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the	workflow.	The	T1w-reference	was	then	skull-stripped	using	antsBrainExtraction.sh	(ANTs	1 

2.2.0),	using	OASIS	as	the	target	template.	The	brain	mask	was	refined	with	a	custom	variation	of	2 

the	method	to	reconcile	ANTs-derived	and	FreeSurfer-derived	segmentations	of	the	cortical	gray-3 

matter	of	Mindboggle	(RRID:SCR_002438,	Klein	et	al.	(2017)).	Spatial	normalization	to	the	ICBM	4 

152	Nonlinear	Asymmetrical	template	version	2009c	(Fonov	et	al.	(2009),	RRID:SCR_008796)	was	5 

performed	through	nonlinear	registration	with	antsRegistration	(ANTs	2.2.0,	RRID:SCR_004757,	6 

Avants	et	al.	(2010)),	using	brain-extracted	versions	of	both	T1w	volume	and	template.	Brain	7 

tissue	segmentation	of	cerebrospinal	fluid	(CSF),	white	matter	(WM)	and	gray	matter	was	8 

performed	on	the	brain-extracted	T1w	using	fast	(FSL	5.0.9,	RRID:SCR_002823,	Zhang	et	al.	9 

(2001)).	10 

For	each	of	the	resting-state	BOLD	runs	found	per	subject,	the	following	preprocessing	was	11 

performed:	A	reference	volume	and	its	skull-stripped	version	were	generated	using	a	custom	12 

methodology	of	fMRIPrep.	The	BOLD	reference	was	then	co-registered	to	the	T1w	reference	using	13 

bbregister	(FreeSurfer)	which	implements	boundary-based	registration	(Greve	and	Fischl,	2009).	14 

Co-registration	was	configured	with	nine	degrees	of	freedom	to	account	for	distortions	remaining	15 

in	the	BOLD	reference.	Head-motion	parameters	with	respect	to	the	BOLD	reference	16 

(transformation	matrices,	and	six	corresponding	rotation	and	translation	parameters)	were	17 

estimated	before	any	spatiotemporal	filtering	using	mcflirt	(FSL	5.0.9,	Jenkinson	et	al.	(2002)).	18 

BOLD	runs	were	slice-time	corrected	using	3dTshift	from	AFNI	20160207	(Cox	and	Hyde	(1997),	19 

RRID:SCR_005927).	The	BOLD	time-series	were	resampled	onto	MNI152NLin2009cAsym	20 

standard	space	by	applying	a	single,	composite	transform,	generating	a	preprocessed	BOLD	run	in	21 

MNI152NLin2009cAsym	space.	22 

Several	confounding	time-series	were	calculated	based	on	the	preprocessed	BOLD:	framewise	23 

displacement	(FD),	DVARS	and	three	region-wise	global	signals	(CSF,	WM,	and	the	whole-brain).	24 

FD	and	DVARS	were	calculated	for	each	functional	run,	both	using	their	implementations	in	25 

Nipype	(following	the	definitions	by	Power	et	al.	(2014b)).	The	head-motion	estimates	calculated	26 

in	the	correction	step	were	also	placed	within	the	corresponding	confounds	file.	27 

All	resamplings	can	be	performed	with	a	single	interpolation	step	by	composing	all	the	pertinent	28 

transformations	(i.e.	head-motion	transform	matrices	and	co-registrations	to	anatomical	and	29 
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template	spaces).	Gridded	(volumetric)	resamplings	were	performed	using	antsApplyTransforms	1 

(ANTs),	configured	with	Lanczos	interpolation	to	minimize	the	smoothing	effects	of	other	kernels	2 

(Lanczos,	1964).	3 

Further	preprocessing	was	performed	using	a	confound	regression	procedure	that	has	been	4 

optimized	to	reduce	the	influence	of	participant	motion	(Satterthwaite	et	al.,	2013b;	Ciric	et	al.,	5 

2017;	Parkes	et	al.,	2018);	preprocessing	was	implemented	in	XCPEngine	1.0,	a	multi-modal	6 

toolkit	that	deploys	processing	instruments	from	frequently	used	software	libraries,	including	FSL	7 

(Jenkinson	et	al.,	2012)	and	AFNI	(Cox,	1996).	Further	documentation	is	available	at	8 

https://xcpengine.readthedocs.io	and	https://github.com/PennBBL/xcpEngine.	Functional	9 

timeseries	were	demeaned,	and	linear	and	quadratic	trends	were	removed.	Confound	regression	10 

was	performed	using	a	36-parameter	model;	confounds	included	mean	signal	from	the	whole	11 

brain,	WM,	and	CSF	compartments,	6	motion	parameters	as	well	as	their	temporal	derivatives,	12 

quadratic	terms,	and	the	temporal	derivatives	of	the	quadratic	terms	(Satterthwaite	et	al.,	2013a).	13 

Motion	censoring	was	applied,	with	outlier	volumes	exceeding	FD	=	0.5	mm	or	standardized	14 

DVARS	=	1.75	flagged	and	removed	from	confound	regression.	Outlier	volumes	were	interpolated	15 

over	using	least	squares	spectral	analysis	(Power	et	al.,	2014a)	prior	to	band-pass	filtering	to	16 

retain	frequencies	between	0.01	Hz	and	0.08	Hz,	then	re-censored.	Prior	to	confound	regression,	17 

all	confound	parameters	were	band-pass	filtered	in	a	fashion	identical	to	that	applied	to	the	18 

original	timeseries	data,	ensuring	comparability	of	the	signals	in	frequency	content	(Hallquist	et	19 

al.,	2013).	20 

Image	quality	and	exclusion	criteria	21 

The	quality	of	imaging	data	was	assessed	using	fMRIPrep’s	visual	reports	and	MRIQC	0.14.2	22 

(Esteban	et	al.,	2017).		Two	raters	manually	examined	all	structural	and	functional	images	23 

between	preprocessing	steps	for	image	quality	issues.	Functional	images	were	visually	inspected	24 

for	whole-brain	field	of	view	coverage,	signal	blurring	or	artifacts,	and	proper	alignment	to	the	25 

anatomical	image.	Participants	were	excluded	for:	unusable	anatomical	image	(n	=	1),	artifact	in	26 

functional	data	(due	to	hair	glitter,	𝑛 = 1),	incorrect	registration	at	the	scanner	(𝑛 = 1),	average	27 

FD	greater	than	1	mm	(𝑛 = 14),	more	than	30%	of	resting-state	frames	exceeding	FD	>	0.5	mm	28 

(𝑛 = 8,	Power	et	al.	(2012)).		All	participants	that	were	flagged	for	dropout	or	signal	blurring	were	29 
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ultimately	excluded	for	not	meeting	motion	criteria.	For	participants	with	more	than	one	usable	1 

resting-state	run,	FD	was	averaged	across	runs,	weighted	by	run	length.	All	analyses	controlled	for	2 

average	FD	and	total	number	of	resting-state	frames.	3 

To	ensure	that	our	results	were	not	driven	by	motion,	we	conducted	an	additional	analysis	with	a	4 

more	stringent	preprocessing	pipeline	and	motion	exclusion	criteria.	In	this	pipeline,	motion	5 

censoring	was	applied	with	a	threshold	for	outlier	volumes	of	FD	>	0.25	mm	or	standardized	6 

DVARS	>	1.75.	One	participant	was	lost	during	preprocessing	as	they	did	not	have	adequate	7 

degrees	of	freedom.	Additionally,	we	excluded	participants	who	had	average	FD	greater	than	0.5	8 

mm	(𝑛 = 8	additional	participants),	for	a	total	of	𝑛 = 83	total	participants.	9 

Functional	network	analysis	10 

After	preprocessing	and	nuisance	regression,	we	extracted	residual	mean	BOLD	time	series	from	a	11 

400-region	cortical	parcellation	(Schaefer	et	al.,	2018),	and	represented	the	functional	12 

connectivity	matrix	as	a	graph	or	network	(Bassett	et	al.,	2018).	To	evaluate	whether	our	results	13 

were	dependent	on	specific	node	definitions,	we	also	extracted	residual	mean	BOLD	time	series	14 

from	a	200-region	cortical	parcellation	(Schaefer	et	al.,	2018).	Results	were	qualitatively	similar	15 

between	the	two	parcellations	(see	online	at	16 

https://github.com/utooley/Tooley_2022_childhood_functional_network_dev).	17 

We	assigned	regions,	or	nodes,	to	systems	based	on	a	7-system	partition	(Yeo	et	al.,	2011),	or	18 

assignment	of	nodes	to	systems.	Here,	we	use	the	term	system	to	refer	to	a	set	of	regions	19 

previously	defined	a	priori	(i.e.	the	dorsal	attention	system,	comprising	a	set	of	regions),	while	we	20 

use	the	term	network	to	refer	to	the	representation	of	the	functional	connectivity	matrix	as	a	21 

graph.	Regions	were	represented	by	network	nodes,	and	the	functional	connectivity	between	22 

region	𝑖	and	region	𝑗	was	represented	by	the	network	edge	between	node	𝑖	and	node	𝑗.	We	used	23 

this	encoding	of	the	data	as	a	network	to	produce	an	undirected,	signed,	and	weighted	adjacency	24 

matrix	𝐴.	We	estimated	the	functional	connectivity	between	any	two	brain	regions	by	calculating	25 

the	product-moment	correlation	coefficient	𝑟	between	the	mean	activity	time	series	of	region	𝑖	26 

and	the	mean	activity	time	series	of	region	𝑗	(Zalesky	et	al.,	2012).	Correlations	were	subsequently	27 

𝑟-to-𝑧-transformed.	28 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2022. ; https://doi.org/10.1101/2022.07.07.499176doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499176
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 13 

Recent	evidence	has	demonstrated	that	the	maintenance	of	edge	weights	is	critical	for	an	accurate	1 

understanding	of	the	underlying	biology	of	neural	systems	(Cole	et	al.,	2012;	Bassett	and	2 

Bullmore,	2017),	and	work	in	applied	mathematics	has	demonstrated	that	graph-related	3 

calculations	are	markedly	more	robust	in	weighted	graphs	than	in	binary	graphs	(Good	et	al.,	4 

2010).	In	light	of	these	two	lines	of	evidence	and	recent	work	in	the	field	developing	methods	5 

sensitive	to	the	topologies	present	in	weak	versus	strong	edges	(Rubinov	and	Sporns,	2011),	we	6 

maintained	all	edge	weights	without	thresholding	and	studied	the	full	graph	including	both	7 

positive	and	negative	correlations	(Bassett	et	al.,	2012;	Santarnecchi	et	al.,	2014).	Functional	8 

connectivity	matrices	were	averaged	across	runs	for	each	participant,	weighted	by	the	number	of	9 

frames	in	each	run	passing	the	quality	threshold.	10 

Across	the	cortex,	we	calculated	the	following	summary	functional	network	measures.	System	11 

segregation	is	a	measure	of	segregation	that	quantifies	the	difference	between	mean	within-12 

system	connectivity	and	mean	between-system	connectivity	as	a	proportion	of	mean	within-13 

system	connectivity	(Chan	et	al.,	2014;	Wig,	2017),	given	an	a	priori	partition	of	nodes	into	14 

systems,	in	this	case	the	7-system	partition	referenced	earlier	(Yeo	et	al.,	2011).	Modularity,	15 

quantified	by	the	modularity	quality	index	(Q),	is	a	measure	of	mesoscale	network	segregation	16 

that	estimates	the	extent	to	which	a	network’s	nodes	can	be	subdivided	into	groups	or	“modules”	17 

characterized	by	strong,	dense	intramodular	connectivity	and	weak,	sparse	intermodular	18 

connectivity.	Our	approach	is	built	on	the	modularity	quality	function	originally	defined	in	19 

Newman	(2006).	Unlike	system	segregation,	the	modularity	quality	index	is	independent	of	a	20 

mapping	of	nodes	to	functional	systems.	Higher	modularity	is	indicative	of	a	more	highly	21 

segregated	network	at	the	mesoscale.	The	clustering	coefficient	is	a	measure	of	local	segregation	22 

that	quantifies	the	amount	of	connectivity	between	a	node	and	its	strongest	neighbors	(Achard	et	23 

al.,	2006;	Bartolomei	et	al.,	2006;	Bassett	et	al.,	2006;	Xu	et	al.,	2016a).	A	node	has	a	high	clustering	24 

coefficient	when	a	high	proportion	of	its	neighbors	are	also	strong	neighbors	of	each	other.	The	25 

participation	coefficient	quantifies	the	diversity	of	a	node’s	connections	across	systems	(Guimer‘a	26 

and	Nunes	Amaral,	2005;	Rubinov	and	Sporns,	2010).	A	node	has	a	high	participation	coefficient	27 

when	it	is	evenly	and	strongly	connected	to	many	different	systems.	A	lower	participation	28 

coefficient	is	indicative	of	a	more	highly	segregated	network.	We	specifically	chose	measures	of	29 

functional	network	topology	that	were	suitable	for	weighted,	signed	networks,	when	possible.	30 
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System	segregation	1 

System	segregation	quantifies	the	difference	in	mean	within-system	connectivity	and	mean	2 

between-system	connectivity	as	a	proportion	of	within-system	connectivity.	Previous	work	has	3 

linked	this	measure	to	aging-related	changes	in	brain	networks	and	poorer	cognitive	ability	across	4 

age	(Chan	et	al.,	2014).	In	these	analyses,	we	define	system	segregation	as	in	(Chan	et	al.,	2014),	5 

as:	6 

𝑎‾!"#$"% − 𝑎‾&'#!''%
𝑎‾!"#$"%

	7 

Where	𝑎‾!"#$"%	is	the	mean	edge	weight	between	nodes	within	the	same	system	and	𝑎‾&'#!''%	is	the	8 

mean	edge	weight	between	nodes	of	one	system	to	all	nodes	in	other	systems.	We	assigned	nodes	9 

to	systems	based	on	a	7-system	partition	(Yeo	et	al.,	2011).	Freely	available	MATLAB	code	from	10 

https://github.com/mychan24/system_matrix_tools	was	used	to	calculate	system	segregation.	11 

Modularity	quality	index	12 

Statistics	that	quantify	the	modular	structure	of	a	network	assess	the	extent	to	which	a	network’s	13 

nodes	can	be	subdivided	into	groups	or	modules	characterized	by	strong,	dense	intramodular	14 

connectivity	and	weak,	sparse	intermodular	connectivity.	We	considered	the	most	commonly	15 

studied	mesoscale	organization—assortative	community	structure—that	is	commonly	assessed	16 

by	maximizing	a	modularity	quality	function	(Porter	et	al.,	2009;	Fortunato,	2010).	Our	approach	17 

is	built	on	the	modularity	quality	function	originally	defined	by	Newman	(Newman,	2006)	and	18 

subsequently	extended	to	weighted	and	signed	networks	by	various	groups.	19 

Specifically,	we	follow	Rubinov	and	Sporns	(2011)	by	first	letting	the	weight	of	a	positive	20 

connection	between	nodes	𝑖	and	𝑗	be	given	by	𝑎"() 	,	the	weight	of	a	negative	connection	between	21 

nodes	𝑖	and	𝑗	be	given	by	𝑎*"( 	,	and	the	strength	of	a	node	𝑖,	𝑠"
± = ∑ 𝑎

±
!"( ,	be	given	by	the	sum	of	the	22 

positive	or	negative	𝑗	connection	weights	of	𝑖.	We	denote	the	chance	expected	within-module	23 

connection	weights	as	𝑒"()	for	positive	weights	and	𝑒"(*	for	negative	weights,	where	𝑒"(
± =

,!
±,"

±

-±
.	We	24 

let	the	total	weight	𝑣± = ∑ 𝑎"(
±

"( 	be	the	sum	of	all	positive	or	negative	connection	weights	in	the	25 

network.	Then	the	asymmetric	generalization	of	the	modularity	quality	index	is	given	by:	26 
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𝑄∗ =
1
𝑣)BC𝑎"() − 𝑒"()D

"(

𝛿/!/" −
1

𝑣) + 𝑣*BC𝑎"(* − 𝑒"(*D
"(

𝛿/!/" 		1 

where	𝑀" 	is	the	community	to	which	node	𝑖	is	assigned,	and	𝑀( 	is	the	community	to	which	node	𝑗	2 

is	assigned.	We	use	a	Louvain-like	locally	greedy	algorithm	as	a	heuristic	to	maximize	this	3 

modularity	quality	index	subject	to	a	partition	M	of	nodes	into	communities.	We	ran	the	Louvain	4 

algorithm	100	times	per	network,	and	detected	on	average	3	(M=3.44,	SD	=0.483)	communities	5 

using	modularity	maximization	in	our	developmental	sample.	6 

Clustering	coefficient	7 

To	assess	local	network	segregation,	we	used	a	commonly	studied	graph	measure	of	local	8 

connectivity—the	clustering	coefficient—	that	is	commonly	interpreted	as	reflecting	the	capacity	9 

of	the	system	for	processing	within	the	immediate	neighborhood	of	a	given	network	node	(Achard	10 

et	al.,	2006;	Bartolomei	et	al.,	2006;	Bassett	and	Bullmore,	2006;	Xu	et	al.,	2016b).	We	specifically	11 

used	a	formulation	that	was	recently	generalized	to	signed	weighted	networks	(Zhang	and	12 

Horvath,	2005;	Costantini	and	Perugini,	2014).	This	version	is	sensitive	to	nonredundancy	in	path	13 

information	based	on	edge	sign	as	well	as	edge	weight	and	importantly	distinguishes	between	14 

positive	triangles	and	negative	triangles,	which	have	distinct	meanings	in	networks	constructed	15 

from	correlation	matrices.	16 

Let	the	functional	connectivity	network	of	a	single	participant	be	represented	as	the	graph	𝐺 =17 

(𝑉, 𝐸),	where	𝑉	and	𝐸	are	the	vertex	and	edge	sets,	respectively.	Let	𝑎"( 	be	the	weight	associated	18 

with	the	edge	(𝑖, 𝑗) ∈ 𝑉,	and	define	the	weighted	adjacency	matrix	of	𝐺	as	𝐴 = M𝑎"(N.	The	clustering	19 

coefficient	of	node	𝑖	with	neighbors	𝑗	and	𝑞	is	given	by	20 

𝐶" =
∑ C𝑎("𝑎"0𝑎(0D(0

∑ Q𝑎("𝑎"0Q(10
			21 

The	clustering	coefficient	of	the	entire	network	was	calculated	as	the	average	of	the	clustering	22 

coefficient	across	all	nodes	as	follows:	23 

𝐶 =
1
𝑛B𝐶"
"∈3

			24 
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 16 

In	this	way,	we	obtained	estimates	of	the	regional	and	global	clustering	coefficient	for	each	subject	1 

in	the	sample.	2 

Participation	coefficient	3 

The	participation	coefficient	is	a	measure	of	network	integration	that	quantifies	the	diversity	of	a	4 

node’s	connections	across	communities,	and	has	been	linked	in	older	children	and	adolescents	to	5 

developmental	changes	in	network	segregation	(Marek	et	al.,	2015;	Baum	et	al.,	2017).	In	these	6 

analyses,	we	define	the	participation	coefficient	𝑃" 	of	a	node	𝑖	as:	7 

𝑃" = 1 −B S
𝑎"4
𝑠"
T

4∈5

	8 

where	𝑘	is	a	system	in	a	set	𝐾	of	systems,	in	this	case	defined	by	the	a	priori	mapping	of	nodes	to	9 

intrinsic	functional	systems	(Yeo	et	al.,	2011),	𝑎"4 	is	the	positive	(negative)	weight	of	edges	10 

between	node	𝑖	and	nodes	in	system	𝑘,	and	𝑠" 	is	the	positive	(negative)	strength	of	node	i.	The	11 

participation	coefficient	was	calculated	separately	on	negative	and	positive	weights	(Rubinov	and	12 

Sporns,	2010).	13 

As	in	our	analyses	of	local	segregation,	the	participation	coefficient	of	the	entire	network	was	14 

calculated	as	the	average	positive	(negative)	participation	coefficient	across	all	nodes	as	follows:	15 

𝑃 =
1
𝑛B𝑃"
"∈3

	16 

The	average	positive	and	negative	participation	coefficient	for	each	participant’s	network	were	17 

averaged	to	obtain	a	global	measure	of	network	integration.	18 

System	connectivity	19 

Within-	and	between-system	connectivity	were	estimated	as	the	average	connectivity	between	20 

nodes	within	a	functional	system	or	between	pairs	of	functional	systems.	Results	were	corrected	21 

for	multiple	comparisons	using	the	Benjamini-Hochberg	false	discovery	rate	(FDR).	22 
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Parcel-level	connectivity	1 

When	examining	results	at	the	parcel	resolution,	we	applied	a	similar	model	as	that	at	the	whole-2 

brain	and	system	level	across	all	79,800	edges	in	each	child’s	functional	brain	network.	As	3 

correction	for	multiple	comparisons	in	this	situation	raises	the	risk	of	missing	true	effects,	we	4 

alternatively	employed	a	stringent	significance	threshold	for	display	of	edge-level	data	(𝑝 <5 

0.001).	Data	are	presented	at	𝑝 < .01	and	at	𝑝 < .00001	online	at	6 

https://github.com/utooley/Tooley_2022_childhood_functional_network_dev.	7 

Statistical	models	8 

All	statistical	analyses	were	conducted	in	MATLAB	R2018a	and	R	3.6.1	[@MATLAB:2018a;	R	Core	9 

Team	(2013)];	code	is	publicly	available	at	10 

https://github.com/utooley/Tooley_2022_childhood_functional_network_dev.	We	examined	11 

effects	of	age	using	generalized	additive	models	with	the	mgcv	package	in	R	(Wood,	2011;	12 

Satterthwaite	et	al.,	2014).	We	first	tested	for	nonlinear	effects	of	age.	The	penalty	parameters	for	13 

the	nonlinear	spline	terms	were	fit	as	random	effects	and	tested	using	restricted	likelihood	ratio	14 

tests	(RLRTs)	with	RLRsim	(Scheipl	et	al.,	2008).	Note	that	these	tests	of	nonlinearity	are	15 

constructed	so	as	to	test	for	nonlinear	effects	over	and	above	any	linear	effects	that	may	be	16 

present.	We	did	not	observe	significant	nonlinear	relationships	between	age	and	whole-brain	or	17 

system-level	measures	of	network	structure.	7.9%	of	edges	showed	significant	nonlinear	effects	of	18 

age,	as	compared	to	12.5%	of	edges	that	showed	linear	effects.	Nonlinear	effects	at	the	parcel	level	19 

are	presented	online	at	20 

https://github.com/utooley/Tooley_2022_childhood_functional_network_dev.	21 

We	modeled	the	linear	effect	of	age	while	controlling	for	in-scanner	motion	(average	FD),	sex	22 

(male	or	female),	total	number	of	volumes	across	runs,	and	average	functional	network	weight.	23 

Average	network	weight	was	included	to	control	for	global	differences	in	connectivity	strength	24 

(Van	Wijk	et	al.,	2010;	Ginestet	et	al.,	2011;	Yan	et	al.,	2013).	Multiple	comparisons	correction	was	25 

applied	across	models	at	the	parcel	and	system	resolutions	using	Benjamini-Hochberg	false	26 

discovery	rate	(FDR)	correction	(Benjamini	and	Hochberg,	1995).	Surfaces	and	partitions	were	27 

shown	on	cortical	surfaces	generated	by	Freesurfer	(Dale	et	al.,	1999),	using	fsbrain	0.4.2	and	28 

freesurfer-formats	0.1.14	(Schäfer	and	Ecker,	2020).	29 
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Measurement	and	analyses	of	visuospatial	reasoning	ability	1 

To	assess	reasoning,	we	administered	matrix	reasoning	tests	from	Wechsler	batteries.	We	used	2 

age-appropriate	versions	to	avoid	ceiling	and	floor	effects.	Children	between	the	ages	of	4	and	7	3 

years,	7	months	completed	the	Matrix	Reasoning	subtest	of	the	Wechsler	Preschool	&	Primary	4 

Scale	of	Intelligence	(WPPSI-IV,	Wechsler	and	Corporation	(2012);	𝑛 = 63).	Children	over	age	7	5 

years,	7	months	took	the	Matrix	Reasoning	subtest	of	the	Wechsler	Intelligence	Scale	for	Children	6 

(WISC,	Wechsler	et	al.	(2014);	𝑛 = 23).	Test	items	in	both	versions	require	identifying	and	7 

integrating	patterns	in	abstract	shapes.	For	example,	in	Figure	4a,	the	foreground	and	background	8 

shapes	switch	across	columns,	and	the	shape	type	and	color	change	across	rows.	To	answer	the	9 

question	correctly,	it	is	necessary	to	integrate	these	two	relations.	The	WPPSI	is	normed	down	to	10 

2.5	years	old	so	it	begins	with	simpler	items	than	the	WISC.	Therefore,	raw	scores	on	the	WPPSI	11 

cannot	be	combined	with	raw	scores	on	the	WISC.	Age	was	positively	associated	with	raw	scores	12 

on	the	WPPSI	(mean	raw	score:	15.31,	range	3-23,	max	possible	score:	26,	𝑡(62) = 2.78,	𝑝 = .007).	13 

Age	was	not	associated	with	raw	scores	on	the	WISC	(mean	raw	score:	16.13,	range	7-24,	max	14 

possible	score:	32,	𝑡(21) = 0.40,	𝑝 = .694).	Scaled	scores	were	used	for	all	brain	analyses.	Models	15 

examining	relationships	between	reasoning	and	system	connectivity	controlled	for	age,	sex,	in-16 

scanner	motion,	total	number	of	volumes	across	runs,	and	average	functional	network	weight.	17 

Associations	between	system	connectivity	and	reasoning	ability	were	examined	only	for	systems	18 

showing	significant	associations	with	age	and	the	frontoparietal	system	(FDR-corrected	for	19 

multiple	comparisons	across	5	systems).	20 

Results	21 

Functional	network	segregation	increases	with	age	22 

We	first	investigated	age	effects	on	measures	of	whole-brain	functional	network	segregation	(Fig.	23 

1).	Measures	of	functional	network	segregation	were	consistently	positively	associated	with	age,	24 

including	average	within-system	connectivity	(𝛽 =	0.3,	𝑡(86) = 3.75,	𝑝 < .001,	𝑝678 =	0.0006),	25 

average	between-system	connectivity	(𝛽 =	-0.06,	𝑡(86) = −3.75,	𝑝 < .001,	𝑝678 =	0.0006),	26 

overall	system	segregation	(𝛽 =	0.11,	𝑡(86) = 3.60,	𝑝 = .001,	𝑝678 =	0.0008),	the	modularity	27 

quality	index	(𝛽 =	0.19,	𝑡(86) = 3.06,	𝑝 = .003,	𝑝678 =	0.004),	and	the	clustering	coefficient	(𝛽 =	28 

0.19,	𝑡(86) = 2.35,	𝑝 = .021,	𝑝678 =	0.021).	Consistent	with	these	associations,	we	found	that	the	29 
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average	participation	coefficient,	a	measure	that	inversely	tracks	network	segregation,	was	1 

negatively	correlated	with	age	(𝛽 =	-0.35,	𝑡(86) = −4.68,	𝑝 < .001,	𝑝678 =	0.00006).	2 

 3 

Figure	1.	Functional	network	segregation	is	positively	associated	with	age.	a.	System	segregation	is	a	whole-4 
brain	measure	of	functional	network	segregation	that	quantifies	the	difference	between	mean	within-system	5 
connectivity	and	mean	between-system	connectivity	as	a	proportion	of	mean	within-system	connectivity.	b.	System	6 
segregation	is	positively	associated	with	age.	c.	Modularity	is	a	measure	of	mesoscale	network	segregation	that	7 
estimates	the	extent	to	which	a	network’s	nodes,	or	in	this	case	brain	regions,	can	be	subdivided	into	modules	8 
characterized	by	strong,	dense	intramodular	connectivity	and	weak,	sparse	intermodular	connectivity.	Note	that	the	9 
modules	are	data-driven,	not	a	priori	defined	as	functional	systems.	d.	Modularity	is	positively	associated	with	age.	e.	10 
The	clustering	coefficient	is	a	measure	of	local	segregation	that	quantifies	the	amount	of	connectivity	between	a	node	11 
and	its	neighbors.	A	node	has	a	high	clustering	coefficient	when	a	high	proportion	of	its	neighbors	are	also	strongly	12 
connected	to	one	another.	In	a	weighted	network,	the	clustering	coefficient	measures	the	strength	of	triangles	around	13 
a	node.	f.	The	average	clustering	coefficient	is	positively	associated	with	age.	g.	The	participation	coefficient	quantifies	14 
the	diversity	of	a	node’s	connections	across	systems.	A	node	has	a	high	participation	coefficient	when	it	is	evenly	15 
connected	to	many	different	systems.	A	lower	participation	coefficient	is	indicative	of	a	more	segregated	network.	h.	16 
The	average	participation	coefficient	is	negatively	associated	with	age.	17 

Systems	specializing	in	perceptual	processing	segregate	from	systems	for	abstract	thought	18 

We	next	tested	for	age	effects	at	the	system	level	by	dividing	the	cortex	into	seven	systems	(Yeo	et	19 

al.,	2011).	We	first	visualized	the	balance	of	significant	positive	and	negative	age	effects	within	and	20 

between	systems	(Fig.	2a).	Within	systems,	94.6%	of	significant	age	effects	were	positive	and	5.3%	21 

were	negative.	Between	systems,	27.7%	of	significant	age	effects	were	positive	and	72.2%	were	22 
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negative.	Age	was	positively,	but	weakly,	associated	with	within-system	connectivity	in	the	visual	1 

(Fig.	2b,	𝛽 =	0.25,	𝑡(86) = 2.51,	𝑝 = .014)	and	default	mode	systems	(𝛽 =	0.24,	𝑡(86) = 2.42,	𝑝 =2 

.017),	as	well	as	in	the	ventral	attention	system	(𝛽 =	0.24,	𝑡(86) = 2.41,	𝑝 = .018).	The	3 

significance	of	these	associations	did	not	survive	correction	for	multiple	comparisons.	In	contrast,	4 

age	was	strongly	associated	with	between-system	connectivity	(Fig.	2c).	Age	was	negatively	5 

associated	with	connectivity	between	the	default	mode	and	dorsal	attention	systems	(𝛽 =	-0.24,	6 

𝑡(86) = −3.79,	𝑝 < .001,	𝑝678 =	0.01),	and	connectivity	between	the	default	mode	and	ventral	7 

attention	systems	(𝛽 =	-0.22,	𝑡(86) = −3.36,	𝑝 = .001,	𝑝678 =	0.02).	Additionally,	age	was	8 

positively	correlated	with	connectivity	between	the	visual	and	dorsal	attention	systems	(𝛽 =	0.32,	9 

𝑡(86) = 3.15,	𝑝 = .002,	𝑝678 =	0.02)	and	with	connectivity	between	the	dorsal	attention	and	10 

ventral	attention	systems	(𝛽 =	0.22,	𝑡(86) = 2.92,	𝑝 = .004,	𝑝678 =	0.03).	11 

 12 

Figure	2.	System-level	effects	of	age	on	system	connectivity.	a.	Age	effects	on	edge	connectivity.	Note	that	only	13 
edges	with	significant	age	effects	at	𝑝$%& < 0.001	are	shown.	b.	Age	effects	on	within-system	connectivity.	No	14 
relationships	survive	FDR	correction	across	systems.	c.	Age	effects	on	between-system	connectivity.	All	effects	shown	15 
survive	FDR	correction	across	systems.	16 

Age	effects	are	concentrated	at	both	ends	of	the	sensory-association	gradient	17 

We	next	examined	age	effects	at	the	parcel	level	to	characterize	regional	specificity.	In	particular,	18 

we	determined	which	parcels	had	the	most	edges	with	significant	age	effects.	Parcels	with	the	19 

highest	number	of	positive	edge-level	age	effects	were	observed	in	the	intraparietal	sulcus	(2	20 

parcels	with	9	significant	edges),	the	medial	prefrontal	cortex	(7	edges),	and	the	occipital	cortex	(6	21 
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edges;	see	Fig.	3a).	When	parcels	were	grouped	by	system	(Yeo	et	al.,	2011),	positive	associations	1 

with	age	were	most	common	in	the	visual	system,	followed	by	the	default	mode	system,	and	the	2 

ventral	attention	system	(Fig.	3b).	Parcels	with	negative	edge-level	age	effects	were	also	3 

concentrated	in	the	medial	prefrontal	cortex	and	the	intraparietal	sulcus,	but	not	in	lower-level	4 

sensory	or	motor	areas	(Fig.	3c).	Edge-level	age	effects	were	most	pronounced	in	a	medial	5 

prefrontal	cortex	parcel	in	the	default	mode	system	(top	parcel:	medial	prefrontal	cortex,	13	6 

negative	age-associated	edges).	The	top	five	non-anatomical	meta-analytic	associations	on	7 

Neurosynth	for	the	medial	prefrontal	cortex	region	(MNI	coordinates	of	centroid:	x	=	8,	y	=	54,	z	=	8 

12)	were	“mind,”	“theory	mind,”	“autobiographical,”	“mentalizing,”	and	“mental	states”.	Negative	9 

associations	with	age	were	most	common	in	the	default	mode	system	and	the	ventral	attention	10 

system,	followed	by	the	dorsal	attention	and	frontoparietal	systems.	Very	few	negative	11 

associations	were	found	in	the	visual,	somatomotor,	or	limbic	systems	(Fig.	3d).	12 

 13 

Figure	3.	Parcel-level	effects	of	age	on	network	connectivity.	a.	Number	of	edges	from	each	parcel	showing	a	14 
significant	positive	age	association;	significance	was	defined	as	𝑝$%& < 0.001.	b.	Number	of	edges	with	positive	effects	15 
of	age,	grouped	by	system.	Each	datapoint	represents	a	parcel.	c.	Number	of	edges	from	each	parcel	showing	a	16 
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significant	negative	age	association;	significance	was	defined	as	𝑝$%& < 0.001.	d.	Negative	edge	effects	for	each	parcel	1 
grouped	by	system.	Each	datapoint	represents	a	parcel.	2 

Functional	network	structure	is	associated	with	cognition	3 

Finally,	we	explored	the	cognitive	consequences	of	age-associated	network	segregation	by	4 

examining	relationships	between	functional	architecture	and	visuospatial	reasoning	(matrix	5 

reasoning	from	Wechsler	tests	(Wechsler	and	Corporation,	2012;	Wechsler	et	al.,	2014);	see	Fig.	6 

4a).	Controlling	for	age,	reasoning	was	positively	associated	with	average	within-system	7 

connectivity	(𝛽 =	0.34,	𝐹(1,79) = 4.78,	𝑝 = .032,	𝑝678 =	0.08),	and	negatively	associated	with	8 

average	between-system	connectivity	(𝛽 =	-1.57,	𝐹(1,79) = 4.78,	𝑝 = .032,	𝑝678 =	0.08)	and	9 

average	participation	coefficient	(𝛽 =	-0.35,	𝐹(1,79) = 4.39,	𝑝 = .039,	𝑝678 =	0.08).	However,	10 

these	associations	did	not	pass	correction	for	multiple	comparisons,	and	reasoning	was	not	11 

associated	with	other	measures	of	whole-brain	network	architecture	(𝑝-values	>	.05).	At	the	12 

system	level,	we	focused	on	pairs	of	cognitive	systems	that	show	significant	associations	with	age	13 

(see	Fig.	2c),	and	found	that	connectivity	between	the	visual	and	dorsal	attention	systems	was	14 

positively	associated	with	reasoning	ability	(Fig.	4b,	𝛽 =	0.46,	𝑡(79) = 4.06,	𝑝 < .001,	𝑝678 =	15 

0.0006).	We	also	found	that	connectivity	between	the	default	and	dorsal	attention	systems	was	16 

negatively	associated	with	reasoning	ability	(Fig.	4b,	𝛽 =	-0.55,	𝑡(79) = −2.93,	𝑝 = .004,	𝑝678 =	17 

0.01).	Further,	motivated	by	prior	studies	linking	the	frontoparietal	system	to	reasoning	(Prado	et	18 

al.,	2011;	Wertheim	and	Ragni,	2018),	we	tested	whether	reasoning	was	associated	with	within-19 

system	frontoparietal	connectivity;	we	found	no	effect	(𝛽 =	0.07,	𝑡(79) = 0.51,	𝑝 = .613,	𝑝678 =	20 

0.68).	At	the	parcel	level,	connections	with	the	intraparietal	sulcus	(top	parcel:	8	edges),	as	well	as	21 

the	medial	prefrontal	and	occipital	areas,	showed	positive	relationships	with	reasoning	(Fig.	4c).	22 

Parcels	with	positive	reasoning	effects	were	most	numerous	in	the	visual	system	(Fig.	4d).	23 

Connections	with	the	frontal	pole	(top	parcel:	8	edges),	the	intraparietal	sulcus,	the	medial	24 

prefrontal	cortex,	and	visual	areas	showed	negative	associations	with	reasoning	(Fig.	4e).	Parcels	25 

with	negative	reasoning	effects	were	most	numerous	in	the	visual,	default	mode,	and	dorsal	26 

attention	systems	(Fig.	4f).	27 
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 1 

Figure	4.	Associations	between	functional	network	structure	and	visuospatial	reasoning.	a.	Example	reasoning	2 
item.	Reasoning	was	assessed	with	the	Matrix	Reasoning	subscale	of	the	Weschler	assessments.	b.	System-level	3 
associations	with	reasoning,	controlling	for	age.	Reasoning	is	associated	with	connectivity	between	the	visual	and	4 
dorsal	attention	systems,	and	with	connectivity	between	the	default	mode	and	dorsal	attention	systems.	c.	The	5 
number	of	edges	from	each	parcel	showing	a	significant	positive	reasoning	association;	significance	was	defined	as	6 
𝑝$%& < 0.001.	d.	The	number	of	edges	with	positive	effects	of	reasoning,	grouped	by	system.	Each	datapoint	7 
represents	a	parcel.	e.	The	number	of	edges	from	each	parcel	showing	a	significant	negative	reasoning	association;	8 
significance	was	defined	as	𝑝$%& < 0.001.	f.	The	number	of	edges	with	negative	effects	of	reasoning,	grouped	by	9 
system.	Each	datapoint	represents	a	parcel.	10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2022. ; https://doi.org/10.1101/2022.07.07.499176doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499176
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 24 

Sensitivity	analyses	1 

We	conducted	a	set	of	sensitivity	analyses	to	ensure	that	our	results	were	not	dependent	on	2 

specific	analytical	choices.	Specifically,	we	conducted	our	main	analyses	with	a	more	stringent	3 

preprocessing	pipeline	and	motion	exclusion	criteria.	In	this	pipeline,	measures	of	functional	4 

network	segregation	were	consistently	positively	associated	with	age,	including	average	within-5 

system	connectivity	(𝛽 =	0.22,	𝑡(77) = 3.02,	𝑝 = .003,	𝑝678 =	0.007),	average	between-system	6 

connectivity	(𝛽 =	-0.04,	𝑡(77) = −3.02,	𝑝 = .003,	𝑝678 =	0.007),	overall	system	segregation	(𝛽 =	7 

0.1,	𝑡(77) = 2.53,	𝑝 = .013,	𝑝678 =	0.01),	the	modularity	quality	index	(𝛽 =	0.23,	𝑡(77) = 3.74,	8 

𝑝 < .001,	𝑝678 =	0.002),	and	the	clustering	coefficient	(𝛽 =	0.21,	𝑡(77) = 2.67,	𝑝 = .009,	𝑝678 =	9 

0.01).	Consistent	with	these	associations,	we	found	that	the	average	participation	coefficient,	a	10 

measure	that	inversely	tracks	network	segregation,	was	negatively	correlated	with	age	(𝛽 =	-0.23,	11 

𝑡(77) = −2.66,	𝑝 = .009,	𝑝678 =	0.01,	see	Fig.	5a).	12 

At	the	system	resolution,	age	was	positively,	but	weakly,	associated	with	within-system	13 

connectivity	in	the	visual	(𝛽 =	0.25,	𝑡(77) = 2.21,	𝑝 = .030)	and	limbic	(𝛽 =	0.2,	𝑡(77) = 2.05,	𝑝 =14 

.044)	systems,	and	was	marginally	positively	associated	with	within-system	connectivity	in	the	15 

default	mode	(𝛽 =	0.17,	𝑡(77) = 1.83,	𝑝 = .071)	and	somatomotor	systems	(𝛽 =	0.18,	𝑡(77) =16 

1.93,	𝑝 = .057).	None	of	these	associations	survived	correction	for	multiple	comparisons.	In	17 

contrast,	age	was	strongly	associated	with	between-system	connectivity	(Fig.	5b).	Age	was	18 

negatively	associated	with	connectivity	between	the	default	mode	and	ventral	attention	system	19 

(𝛽 =	-0.17,	𝑡(77) = −3.09,	𝑝 = .003,	𝑝678 =	0.04).	Age	was	also	negatively	associated	with	20 

connectivity	between	the	default	mode	and	dorsal	attention	system	(𝛽 =	-0.17,	𝑡(77) = −2.66,	21 

𝑝 = .009,	𝑝678 =	0.09),	but	this	association	was	marginal	after	FDR	correction.	Additionally,	age	22 

was	positively	correlated	with	connectivity	between	the	visual	and	dorsal	attention	systems	(𝛽 =	23 

0.36,	𝑡(77) = 3.64,	𝑝 < .001,	𝑝678 =	0.01).	24 

We	next	examined	age	effects	at	the	parcel	level	to	characterize	regional	specificity.	Parcels	with	25 

the	highest	number	of	positive	edge-level	age	effects	were	observed	in	the	superior	parietal	26 

lobule/intraparietal	sulcus	(2	parcels	with	11	and	9	significant	edges)	and	the	occipital	cortex	(2	27 

parcels	with	10	and	9	significant	edges;	see	Fig.	5d).	Parcels	with	the	highest	number	of	negative	28 
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edge-level	age	effects	occurred	in	medial	prefrontal	cortex	(8	edges)	and	intraparietal	sulcus	(7	1 

edges,	Fig.	5e).	2 

Finally,	we	examined	relationships	between	functional	architecture	and	visuospatial	reasoning.	3 

Controlling	for	age,	reasoning	was	marginally	positively	associated	with	average	within-system	4 

connectivity	(𝛽 =	0.32,	𝐹(1,72) = 2.96,	𝑝 = .090,	𝑝678 =	0.18),	and	marginally	negatively	5 

associated	with	average	between-system	connectivity	(𝛽 =	-1.62,	𝐹(1,72) = 2.96,	𝑝 = .090,	6 

𝑝678 =	0.18).	However,	these	associations	did	not	pass	correction	for	multiple	comparisons,	and	7 

reasoning	was	not	associated	with	other	measures	of	whole-brain	network	architecture	(𝑝-values	8 

>	.05).	At	the	system	level,	we	focused	on	pairs	of	cognitive	systems	that	showed	associations	with	9 

age	in	the	main	analyses,	and	found	that	connectivity	between	the	visual	and	dorsal	attention	10 

systems	was	positively	associated	with	reasoning	ability	(Fig.	5e,	𝛽 =	0.51,	𝑡(72) = 4.00,	𝑝 < .001,	11 

𝑝678 =	0.0008).	We	also	found	that	connectivity	between	the	default	and	dorsal	attention	systems	12 

was	negatively	associated	with	reasoning	ability	(𝛽 =	-0.72,	𝑡(72) = −3.51,	𝑝 = .001,	𝑝678 =	13 

0.0019).	Reasoning	was	not	associated	with	within-system	frontoparietal	connectivity	(𝛽 =	0.17,	14 

𝑡(72) = 1.01,	𝑝 = .318,	𝑝678 =	0.53).	At	the	parcel	level,	connections	with	superior	parietal	cortex	15 

(8	edges)	and	visual	areas	(7	edges)	showed	positive	relationships	with	reasoning	(Fig.	5f).	16 

Connections	with	the	frontal	pole	(7	edges),	superior	parietal	cortex	(2	parcels	with	7	and	6	17 

edges),	medial	prefrontal	cortex	(6	edges),	and	visual	areas	showed	negative	associations	with	18 

reasoning	(Fig.	5g).	19 
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 1 

Figure	5.	Replication	with	stricter	motion	exclusions.	In	this	pipeline,	we	censored	volumes	with	FD	>	0.25mm	2 
and	excluded	participants	with	average	FD	>	0.5	mm.	a.	Whole-brain	measures	of	functional	network	segregation	3 
(system	segregation,	modularity,	and	the	clustering	coefficient)	are	positively	associated	with	age.	The	participation	4 
coefficient	is	a	measure	of	functional	network	integration	and	is	negatively	associated	with	age.	b.	Age	effects	on	5 
between-system	connectivity.	c.	Number	of	edges	from	each	parcel	showing	a	significant	positive	age	association;	6 
significance	was	defined	as	𝑝$%& < 0.001.	d.	Number	of	edges	from	each	parcel	showing	a	significant	negative	age	7 
association;	significance	was	defined	as	𝑝$%& < 0.001.	e.	System-level	associations	with	reasoning,	controlling	for	age.	8 
Reasoning	is	associated	with	connectivity	between	the	visual	and	dorsal	attention	systems,	and	with	connectivity	9 
between	the	default	mode	and	dorsal	attention	systems.	f.	The	number	of	edges	from	each	parcel	showing	a	10 
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significant	positive	reasoning	association;	significance	was	defined	as	𝑝$%& < 0.001.	g.	The	number	of	edges	from	each	1 
parcel	showing	a	significant	negative	reasoning	association;	significance	was	defined	as	𝑝$%& < 0.001.	2 

Discussion	3 

We	investigated	the	development	of	cortical	functional	network	architecture	during	childhood.	At	4 

the	whole-brain	level,	age	was	positively	associated	with	multiple	measures	of	functional	network	5 

segregation,	consistent	with	prior	work	on	development	later	in	childhood	and	adolescence	(Fair	6 

et	al.,	2009;	Marek	et	al.,	2015;	Lopez	et	al.,	2019).	At	the	system	level,	age	was	associated	with	a	7 

segregation	of	systems	involved	in	attention	from	those	involved	in	abstract,	internally	oriented	8 

cognition,	as	well	as	an	integration	among	attentional	and	perceptual	systems.	At	the	parcel	level,	9 

age	effects	on	functional	connectivity	were	strongest	in	medial	prefrontal	areas	of	the	default	10 

mode	system,	and	in	areas	of	the	visual	system.	Classically,	brain	development	is	thought	to	move	11 

from	back	to	front,	from	sensory	areas	to	association	areas.	Our	results	suggest	another	12 

possibility:	both	ends	of	the	sensory-association	gradient	are	anchored	early,	perhaps	by	the	13 

presence	or	absence	of	sensory	input,	and	then	boundaries	along	the	gradient	are	gradually	14 

solidified.	This	possibility	is	consistent	with	the	very	early	emergence	of	the	default	mode	network	15 

in	utero	and	in	infancy	(Gao	et	al.,	2009;	Thomason	et	al.,	2014;	Gilmore	et	al.,	2018;	Hodel,	2018),	16 

and	with	work	showing	that	medial	prefrontal	cortex,	like	primary	sensory	areas,	is	already	highly	17 

segregated	in	adolescence	(Baum	et	al.,	2020).	These	findings	fill	a	critical	gap	in	our	18 

understanding	of	how	intrinsic	functional	network	remodeling	supports	the	profound	cognitive	19 

development	that	takes	place	during	early	and	middle	childhood.	20 

Age	effects	were	pronounced	in	areas	of	medial	prefrontal	cortex	that	are	activated	by	self-21 

referential	thought	and	social	perception	tasks	in	adults	(de	la	Vega	et	al.,	2016;	Meyer	and	22 

Lieberman,	2018;	Parelman	et	al.,	2021).	This	result	is	consistent	with	evidence	for	major	changes	23 

in	social	cognition	between	the	ages	of	3	and	10	years,	supported	by	changes	in	the	structure	and	24 

function	of	the	medial	prefrontal	cortex,	the	precuneus,	and	the	temporoparietal	junction	(Weimer	25 

et	al.,	2021).	Though	we	did	not	collect	a	behavioral	or	imaging	measure	of	social	cognition	in	this	26 

sample,	we	speculate	that	the	medial	prefrontal	regions	that	show	age	effects	may	support	27 

improvements	in	social	cognition	in	this	age	range.	In	this	context,	it	is	notable	that	medial	28 

prefrontal	cortex	continues	developing	after	10	years	of	age,	and	shows	a	protracted	course	of	29 
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age-associated	change	through	adolescence	and	into	adulthood	(Baum	et	al.,	2020).	The	age-1 

associated	remodeling	we	observe	in	medial	prefrontal	cortex	may	be	simply	an	early	2 

manifestation	of	the	ongoing	anchoring	of	the	far	end	of	the	sensorimotor-association	gradient	3 

that	continues	into	adulthood.	It	is	also	possible	that	changes	in	medial	prefrontal	connectivity	4 

more	broadly	support	self-regulation	processes	that	are	required	for	efficiently	completing	most	5 

types	of	tasks	(Akshoomoff	et	al.,	2014;	de	la	Vega	et	al.,	2016;	Meyer	and	Lieberman,	2018).	6 

Age	effects	were	also	pronounced	in	the	visual	system.	The	visual	network	showed	increased	7 

integration	with	the	dorsal	attention	network,	particularly	along	the	dorsal	stream.	The	majority	8 

of	inputs	into	primary	visual	cortex	come	from	higher-order	visual	areas	and	attention	areas	9 

(Muckli	and	Petro,	2013),	so	it	is	possible	that	inputs	from	attention	systems	are	reflected	in	the	10 

structure	and	function	of	perceptual	areas.	Indeed,	attention	improves	substantially	in	early	11 

childhood	(Amso	and	Scerif,	2015).	Further,	connectivity	within	regions	of	the	dorsal	attention	12 

and	visual	systems	is	positively	associated	with	attention	skills	in	4-7-year-old	children	(Rohr	et	13 

al.,	2017,	2018),	suggesting	that	the	age	effects	we	observe	in	regions	of	the	visual	system	may	14 

also	support	developing	attention	skills.	15 

Better	reasoning	abilities	were	associated	with	more	mature	patterns	of	brain	network	16 

architecture,	after	controlling	for	age.	At	the	parcel	level,	reasoning	was	associated	with	the	17 

connectivity	of	medial	prefrontal	and	visual	areas,	as	well	as	the	intraparietal	sulcus	and	the	18 

frontal	pole.	At	the	systems	level,	reasoning	was	associated	with	integration	between	the	visual	19 

and	dorsal	attention	systems,	and	with	segregation	between	the	default	mode	and	dorsal	attention	20 

systems.	Prior	work	in	older	children	and	adults	has	linked	structure	and	function	of	the	21 

frontoparietal	system	to	reasoning	skills,	with	a	specific	focus	on	rostral	lateral	prefrontal	cortex	22 

and	parietal	areas	(Prado	et	al.,	2011;	Vendetti	and	Bunge,	2014;	Wertheim	and	Ragni,	2018).	23 

Interestingly,	one	study	found	that	neural	correlates	of	reasoning	depended	on	age:	after	age	8	24 

years,	stronger	reasoning	skills	were	associated	with	stronger	functional	connectivity	between	25 

rostral	lateral	prefrontal	cortices	and	the	inferior	parietal	lobe,	whereas	before	age	8	years,	there	26 

were	no	such	associations	(Wendelken	et	al.,	2016).	Similarly,	we	found	no	association	between	27 

frontoparietal	system	connectivity	and	reasoning	ability	in	our	age	range.	By	taking	a	whole	brain	28 

approach	rather	than	focusing	on	the	frontoparietal	network,	we	found	that	visuospatial	29 

reasoning	is	associated	with	integration	between	perceptual	and	attentional	systems	in	children.	30 
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We	also	found	that	reasoning	was	associated	with	segregation	between	task-positive	and	task-1 

negative	systems,	consistent	with	other	work	across	multiple	age	ranges	and	cognitive	domains	2 

(Chan	et	al.,	2014;	Keller	et	al.,	2015;	Marek	et	al.,	2019;	Bruchhage	et	al.,	2020).	The	involvement	3 

of	perceptual	systems	such	as	the	visual	and	dorsal	attention	systems	in	reasoning	may	not	be	as	4 

surprising	as	it	initially	seems:	in	children	and	adults,	reasoning	tasks	engage	visual	areas	more	5 

than	non-reasoning	control	tasks	(Souli‘eres	et	al.,	2009;	Mackey	et	al.,	2015;	Whitaker	et	al.,	6 

2018).	There	is	also	evidence	that	reasoning	performance	relies	more	on	lower-level	skills	like	7 

processing	speed	and	visuospatial	attention	than	on	higher-level	skills	like	working	memory	and	8 

relational	integration	early	in	childhood	(Fry	and	Hale,	1996;	Kail	and	Hulme,	2016).	Broadly,	our	9 

results	suggest	that	maturation	of	brain	network	architecture,	in	particular	in	areas	at	two	ends	of	10 

the	sensory-association	gradient,	supports	the	development	of	reasoning	abilities.	11 

Making	decisions	about	motion	criteria	is	difficult	because	of	tradeoffs	between	data	quality	and	12 

generalizability,	as	motion	is	often	highly	correlated	with	other	sample	characteristics	of	interest	13 

(Hodgson	et	al.,	2017;	Leonard	et	al.,	2017;	Bolton	et	al.,	2019).	Our	approach	here	was	to	analyze	14 

the	data	at	two	motion	thresholds,	a	more	lenient	threshold	that	included	more	children	and	more	15 

data,	and	a	more	conservative	threshold	that	minimized	motion	concerns.	At	both	thresholds,	the	16 

general	pattern	of	findings	was	the	same.	At	the	whole-brain	level,	age	was	positively	associated	17 

with	measures	of	segregation.	At	the	system	level,	age	was	positively	associated	with	segregation	18 

between	external	and	internal	attention	systems,	and	integration	between	attentional	and	19 

perceptual	systems.	Although	the	specific	parcel-level	results	were	not	identical,	the	broad	pattern	20 

of	results	is	similar,	with	age	effects	on	functional	connectivity	strongest	in	medial	prefrontal	21 

cortex,	superior	parietal	cortex,	and	visual	areas.	Better	reasoning	abilities	were	associated	with	22 

more	mature	patterns	of	brain	network	architecture.	This	suggests	that	our	findings	are	robust	23 

and	are	not	driven	by	motion.	24 

Several	potential	limitations	should	be	noted.	First,	our	dataset	is	cross-sectional	and	of	a	25 

relatively	small	sample	size.	Future	work	with	longitudinal	data	will	be	necessary	to	establish	the	26 

temporal	sequence	of	the	relationships	we	report,	as	well	as	to	better	evaluate	nonlinearities	and	27 

ideally,	developmental	trajectories	in	children	younger	than	age	4	years.	Longitudinal	data	would	28 

also	make	it	possible	to	test	whether	changes	in	network	structure	mediate	age-related	29 

improvements	in	reasoning.	Fortunately,	such	a	study	—	the	HEALthy	Brain	and	Cognitive	30 
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Development	Study	(Volkow	et	al.,	2020)	—	is	about	to	begin.	Second,	by	carefully	excluding	data	1 

with	motion	artifacts,	we	may	have	limited	the	generalizability	of	our	findings.	Most	young	2 

children	move	in	the	scanner,	so	it	is	essential	to	develop	more	motion-resilient	sequences	to	3 

allow	investigators	to	acquire	data	in	a	more	representative	sample	of	young	kids.	Third,	our	4 

cognitive	measures	were	limited.	Future	work	is	necessary	to	link	changes	in	functional	5 

organization	to	changes	across	a	broader	set	of	cognitive	and	social	skills,	including	abilities	that	6 

might	diminish	with	age,	such	as	creativity	and	imagination	(Thompson-Schill	et	al.,	2009;	Gopnik,	7 

2020).	Fourth,	major	cognitive	and	social	changes	during	middle	childhood	(called	the	“age	of	8 

reason”	by	anthropologists	Sameroff	and	Haith	(1996))	have	been	observed	across	many	cultures	9 

all	over	the	world,	but	our	sample	only	captures	development	in	our	specific	geographic	and	10 

cultural	context.	Finally,	we	could	not	determine	the	causes	of	the	developmental	patterns	we	11 

uncovered.	More	work	is	needed	to	understand	whether	these	patterns	were	associated	with	12 

specific	experiences,	for	example	formal	schooling	(Brod	et	al.,	2017;	Nolden	et	al.,	2021),	or	13 

simply	reflect	biological	experience-independent	maturation.	14 

In	sum,	age	effects	on	functional	cortical	architecture	during	childhood	parallel	long-known	age	15 

effects	on	behavior.	As	children	learn	to	resist	the	lure	of	perceptual	information,	and	begin	to	16 

reason	abstractly,	cortical	systems	for	perception	and	abstraction	separate,	while	connections	that	17 

facilitate	attention	tend	to	strengthen.	As	children’s	concept	of	self	matures,	the	connectivity	of	the	18 

medial	prefrontal	cortex	changes.	Our	results	provide	new	insights	into	how	changes	in	cortical	19 

organization	give	rise	to	changes	in	the	mind	as	children	reach	the	age	of	reason.	20 

Citation	diversity	statement	21 

Recent	work	in	several	fields	of	science—including	neuroscience,	where	our	work	here	is	22 

situated—has	identified	a	bias	in	citation	practices	such	that	papers	from	women	and	other	23 

marginalized	scholars	are	under-cited	relative	to	the	number	of	such	papers	in	the	field	(Maliniak	24 

et	al.,	2013;	Mitchell	et	al.,	2013;	Caplar	et	al.,	2017;	Dion	et	al.,	2018;	Dworkin	et	al.,	2020;	25 

Chatterjee	and	Werner,	2021;	Teich	et	al.,	2021;	Wang	et	al.,	2021).	Here	we	sought	to	proactively	26 

consider	choosing	references	that	reflect	the	diversity	of	the	field	in	thought,	form	of	contribution,	27 

gender,	race,	ethnicity,	and	other	factors.	First,	we	obtained	the	predicted	gender	of	the	first	and	28 

last	author	of	each	reference	by	using	databases	that	store	the	probability	of	a	first	name	being	29 
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carried	by	a	woman	(Dworkin	et	al.,	2020;	Zhou	et	al.,	2020).	By	this	measure	(and	excluding	self-1 

citations	to	the	first	and	last	authors	of	our	current	paper),	our	references	contain	26%	2 

woman(first)/woman(last),	16%	man/woman,	20%	woman/man,	and	38%	man/man	3 

categorization.	This	method	is	limited	in	that	a)	names,	pronouns,	and	social	media	profiles	used	4 

to	construct	the	databases	may	not,	in	every	case,	be	indicative	of	gender	identity	and	b)	it	cannot	5 

account	for	intersex,	non-binary,	or	transgender	people.	Second,	we	obtained	the	predicted	6 

racial/ethnic	category	of	the	first	and	last	author	of	each	reference	by	databases	that	store	the	7 

probability	of	a	first	and	last	name	being	carried	by	an	author	of	color	(Ambekar	et	al.,	2009;	Sood	8 

and	Laohaprapanon,	2018).	By	this	measure	(and	excluding	self-citations),	our	references	contain	9 

9.83%	author	of	color	(first)/author	of	color(last),	16.45%	white	author/author	of	color,	18.51%	10 

author	of	color/white	author,	and	55.21%	white	author/white	author.	This	method	is	limited	in	11 

that	a)	names	and	Florida	Voter	Data	to	make	the	predictions	may	not	be	indicative	of	12 

racial/ethnic	identity,	and	b)	it	cannot	account	for	Indigenous	and	mixed-race	authors,	or	those	13 

who	may	face	differential	biases	due	to	the	ambiguous	racialization	or	ethnicization	of	their	14 

names.	We	look	forward	to	future	work	that	could	help	us	to	better	understand	how	to	support	15 

equitable	practices	in	science.	16 
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