Abstract
Despite being the widely-used gold standard for linking common genetic variations to phenotypes and disease, genome-wide association studies (GWAS) suffer major limitations, partially attributable to the reliance on simple, typically linear, models of genetic effects. More elaborate methods, such as epistasis-aware models, typically struggle with the scale of GWAS data. In this paper, we build on recent advances in neural networks employing Transformer-based architectures to enable such models at a large scale. As a first step towards replacing linear GWAS with a more expressive approximation, we demonstrate prediction of gout, a painful form of inflammatory arthritis arising when monosodium urate crystals form in the joints under high serum urate conditions, from Single Nucleotide Variants (SNVs) using a scalable (long input) variant of the Transformer architecture. Furthermore, we show that sparse SNVs can be efficiently used by these Transformer-based networks without expanding them to a full genome. By appropriately encoding SNVs, we are able to achieve competitive initial performance, with an AUROC of 83% when classifying a balanced test set using genotype and demographic information. Moreover, the confidence with which the network makes its prediction is a good indication of the prediction accuracy. Our results indicate a number of opportunities for extension, enabling full genome-scale data analysis using more complex and accurate genotype-phenotype association models.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
The author list was incorrectly imported from the .pdf in the previous version. Two missing authors have been added now.