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Abstract

Although model organisms have provided insight into the earliest stages of cardiac vascularization,
we know very little about this process in humans. Here we show that spatially micropatterned
human pluripotent stem cells (hPSCs) enable in vitro modeling of this process, corresponding to
the first three weeks of in vivo human development. Using four hPSC fluorescent reporter lines,
we create cardiac vascular organoids (cVOs) by identifying conditions that simultaneously give
rise to spatially organized and branched vascular networks within endocardial, myocardial, and
epicardial cells. Using single-cell transcriptomics, we show that the cellular composition of cVOs
resembles that of'a 6.5 post-conception week (PCW) human heart. We find that NOTCH and BMP
pathways are upregulated in cVOs, and their inhibition disrupts vascularization. Finally, using the
same vascular-inducing factors to create cVOs, we produce hepatic vascular organoids (hVOs).
This suggests there is a conserved developmental program for creating vasculature within different

organ systems.
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Introduction

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs)
and human induced pluripotent stem cells (hiPSCs) can differentiate into any cell type in the body':
2, Through specification of mesoderm and endoderm® %, and then progenitor intermediates™ ®, labs
around the world can routinely differentiate hPSCs into cardiomyocytes (CMs)’, hepatocytes
(HCs)® and individual cardiovascular cell types’, including endothelial cells (ECs)!°, smooth

muscle cells (SMCs)!'!> 12, fibroblast cells (FBs)'?, endocardial cells (ENDOs)', and epicardial

16-18

cells (EPIs)'>. Furthermore, engineered cardiac!®!® and hepatic'” tissues with integrated ECs and

stromal cells have been created through classic tissue engineering techniques while vascular

networks?® 2! have been produced using stereolithography and 3D bioprinting. Moreover, labs

22-29

have used self-organizing techniques to create either cardiac®*?°, hepatic®®, or vascular®!

organoids. The de novo vascularization of kidney*? and brain®} organoids has also been achieved
through in vivo induction. However, the lack of a prospective and directed in vitro strategy to
create de novo vasculature with robust branching and hierarchical organization within organoids

is a major bottleneck in the stem cell field**3¢. Although model organisms have provided insight

37, 38

into the earliest stages of cardiac vascularization’” °°, we know very little about this process in

humans, due to ethical restrictions and the technical difficulty of obtaining embryos at such early
stages of development®®.

5,40, 41

Here we show that clues from developmental biology enable in vitro modeling of the

earliest developmental stages of cardiac vascularization, roughly corresponding to the first three
weeks of in vivo human development (Carnegie Stages 9 and 10)*2. Using the four hPSC
fluorescent reporter systems hESC-RUES-GLR*, hESC-NKX2-5-eGFP®, hESC-TNNT2-GFP*,

22, 45

and hESC-3R (this paper), along with spatially micropatterned hPSCs , we create cardiac
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vascularized organoids (cVOs) in a repeatable and scalable fashion. Importantly, the four hPSC
reporter systems enable temporal identification of germ layer, progenitor, and cardiovascular cell
types in situ without disturbing the architecture or orientation of developing cVOs. Addition of a
combination of growth factors to micropatterned hPSCs simultaneously generates a spatially
organized and branched vascular network within endocardial, myocardial, epicardial, and
progenitor cells, along with numerous extracellular matrix (ECM) proteins.

Using single-cell RNA-sequencing (scRNA-seq), we show that the cellular composition of
cVOs is similar to that of a 6.5 post-conception week (PCW) human heart (Carnegie Stages 19 and
20)*. Furthermore, we use machine learning*’ to characterize differences in CM and EC
formation. We find that NOTCH and BMP pathways are upregulated in cVOs, and inhibition of
these pathways disrupts vascularization. Finally, after the generation of liver-specific progenitor
pools, we produce hepatic vascularized organoids (hVOs) using the same vascular-inducing
factors to create cVOs. This suggests that there is a conserved developmental program for creating
vasculature within different organ systems. In summary, our in vitro model provides a significant

technical advance for addressing questions regarding organ vascularization.

Results

Micropatterning of hPSCs results in spatially organized cardiomyocytes
Geometric micropatterning of human pluripotent stem cells (hPSCs) has been shown by us

and others to enable repeatable and scalable formation of spatially organized germ layers

0. 48 22, 23, 45
b

(endoderm, mesoderm, and ectoderm , primitive streak* *°, cardiomyocytes and
cardiac organoids®*. In each well of a multi-well plate, a single plasma-treated rubber stencil with

a central hole was used to create a 2 mm circular hPSC micropattern for cardiovascular
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differentiation (Fig. 1a). Phase (Fig. 1b and Extended Data Fig. 1a) and confocal fluorescence
imaging (Fig. 1¢) shows hPSC micropatterns were pluripotent throughout a confluent colony.
However, there were areas with incomplete hESC confluence in the 6 mm colonies (Fig. 1¢). For
a sense of scale, a photograph shows 2 mm hPSC micropatterns (blue) in the centers of four wells
of a 48-well dish (Fig. 1d). Using an hESC-TNNT2-GFP fluorescent reporter line**, we show that
6 mm micropatterns could be differentiated into CMs (Fig. le-f) and the progression of this
differentiation could be tracked in situ over days 0-9 (Supplementary Video 1).

To scale up micropattern formation, a single plasma-treated rubber stencil with an array of
2 mm holes was used to create arrayed hPSC micropatterns. For a 6-well dish, up to 77
micropatterns (7 X 7 array + 7 X 2 columns + 7 X 2 rows) could be created per well for a total of
462 micropatterns resulting in 462 GFP" CM colonies (Fig. 1g-h). Thus, spatial micropatterning
of hPSCs produces spatially organized cardiomyocytes in single and arrayed colony formats. We
confirmed that the total fluorescence area of pluripotency markers of our micropatterns was highly
correlated with micropattern number (R? = 0.989) and micropattern theoretical total area (R? =
0.99) (Extended Data Fig. 1b-d). Of note, validation of our total fluorescence area quantification

method was important for our screening experiments described below.

Micropatterning gives rise to organized germ layer and cardiovascular progenitor formation

To vascularize cardiac organoids, we reasoned that we would only need to induce
mesoderm from our hPSC micropatterns to simultaneously produce mesoderm-derived CMs, ECs,
and SMCs as previously described’. However, to vascularize endoderm-derived hepatic organoids,
we would need to simultaneously induce endoderm to produce hepatocytes and mesoderm to

produce ECs and SMCs. With this in mind, we used the hRESC-RUES-GLR (germ layer reporter)
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cell line* to visualize germ layer formation under different CHIR-99021 (CHIR) concentrations
and unpatterned/micropatterned conditions (Fig. 2a-b, and Extended Data Fig. 2a).

While unpatterned RUES-GLR hESCs at day 6 gave rise to disorganized germ layer
formation at different CHIR concentrations, the micropatterned group gave rise to organized germ
layer formation (Fig. 2¢). With 4 uM of CHIR induction, a central BRA" mesodermal area was
surrounded by a SOX17" endodermal ring, and no SOX2 ectodermal expression was detected. In
contrast, SOX2 was expressed in the unpatterned group at all CHIR concentrations and in a
disorganized fashion. Immunostaining of BRA and SOX17 confirmed the reporter expression seen
in the CHIR 4 pM micropattern group (Extended Data Fig. 2b).

Arrays of micropatterned RUES-GLR hESCs differentiated under the same conditions as
single micropatterns also showed centrally located BRA" expression surrounded by maximum
SOX17" expression, which peaked at day 11 for both conditions (Extended Data Fig. 2¢-d). Thus,
single and arrayed micropatterns gave rise to similar BRA and SOX17 temporal and spatial
expression, but different from the unpatterned group.

To visualize the effects of micropatterning on cardiovascular progenitor formation, we
used the hESC-NKX2-5-eGFP cell line® (Fig. 2d). Using our baseline CM differentiation protocol
(see Methods), we showed that single NKX2-5-eGFP micropatterns differentiated over 10 days
gave rise to organized ring formation of NKX2-5-eGFP+ cardiovascular progenitors, leading to
beating cardiomyocytes (Fig. 2e; Supplementary Video 2). At this juncture, using three
fluorescence hPSC reporter lines (hHESC-RUES-GLR, hESC-NKX2-5-eGFP, hESC-TNNT2-GFP
(from the previous section)), we demonstrated that micropatterning gave rise to organized germ
layer, cardiovascular progenitor, and CM formation, thus providing a foundation for screening

conditions leading to cVO formation below.
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Creation of a triple reporter line enables identification of differentiation conditions leading
to ¢VO formation

To facilitate screening differentiation conditions leading to cVO formation, we created a
hESC-triple reporter line (hESCTNNT2-GFP/CDHS-mOrange/TAGLN-CEP) - (hESC-3R) comprising the
TNNT2 (troponin T) promoter-driven GFP to identify CMs, the CDHS5 (VE-Cadherin) promoter-
driven mOrange to identify ECs, and the TAGLN (SM22a) promoter-driven CFP to identify
SMCs (Fig. 3a). Two lentiviral vectors, one for the CDHS5 promoter-driven mOrange and the other
for the TAGLN promoter-driven CFP (Extended Data Fig. 3a-d) were transduced into an hESC-
TNNT2-GFP fluorescent reporter line**. We created two polyclonal and six monoclonal lines and
confirmed pluripotency of the monoclonal lines (Extended Data Fig. 3e-g). Using differentiation
protocols specific for CMs’, ECs*’, and SMCs'! 12, we confirmed the differentiation of the hRESC-
3R line into CMs, ECs, and SMCs (Fig. 3b).

Next, we tested the effects of CHIR concentrations (3, 4, and 5 uM) and VEGF addition
(50 ng/mL) on CM and EC co-differentiation over 14 days using the hESC-3R line. hESC-3R
micropatterns treated with CHIR + FGF2 + IWR-1 (Control) differentiated to the most CMs with
a CHIR concentration of 5 uM and a few ECs at all concentrations (Extended Data Fig. 2e) in
the absence of VEGF. On the other hand, hESC-3R micropatterns treated with 5 uM of CHIR and
the addition of 50 ng/mL VEGEF at days 6, 8, 10, and 12 of differentiation gave rise to the most
CMs and ECs (Extended Data Fig. 2f). These initial results were the basis for our additional
screening conditions described below for co-differentiating CMs, ECs, and SMCs to create cVOs.

A schematic shows timeline, stage, cell types, geometry, media, and growth factors for

creating CMs, ECs, SMCs, and cVOs (Fig. 3¢). Our strategy for co-differentiation was initiated
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by first creating a cardiovascular (CV) progenitor pool that would give rise to all three cell types
and then adding additional small molecules and growth factors to facilitate co-differentiation of
CMs, ECs, and SMCs to produce cVOs (Extended Data Fig. 3h). We used previous established
methods for guiding concentrations and timing for low and high production of CMs > - 17, ECs!®
17.51-33 "and SMCs!'!->* (Extended Data Fig. 3i).

A total of thirty-four (34) screening conditions (n = 4-6 per micropatterns per condition,
175 total micropatterns) were tested to create various combinations of CMs, ECs, and SMCs in
cVOs (Supplementary Table 1, Extended Data Fig. 3j). CHIR 4 uM were used in odd numbered
conditions (n = 88 micropatterns) and CHIR 5 uM in even numbered conditions (n = 87
micropatterns) (Extended Data Fig. 3k).

Overall, CHIR 5 pM gave rise to more CMs (p < 0.0001), ECs (p <0.0001), and SMCs (p
< 0.0001) compared to CHIR 4 uM for each condition (Extended Data Fig. 31; Supplementary
Video 3). Condition 32 produced ¢VOs with the most CMs, ECs and SMCs (Fig. 3d-q, and
Extended Data Fig. 3m-o; Supplementary Video 4), which consists of the following small
molecules and growth factors: CHIR, 5 uM (day 0); FGF2, 5 ng/mL (days 0, 7, 9, 11, 13); IWR-
1, 5 uM (day 3); VEGF, 50 ng/mL (days 5, 7,9, 11, 13); SB 10 uM (days 7, 9, 11); ANG2, 50
ng/mL (days 5, 7); ANGI, 50 ng/mL (days 9, 11); PDGF-BB, 10 ng/mL (days 7, 9, 11, 13); and
TGFB1, 2 ng/mL (days 13). Condition 2 (Control) is the baseline CM differentiation condition
with only CHIR, FGF2, and IWR-1 being used.

Time-lapse microscopy showed more CM, EC, and SMC formation in Condition 32
compared to Control (Fig. 3d-e). Time-course CM formation for Control (n = 4) and Condition 32
(n = 6) showed that CMs began to emerge around day 8 for both conditions (Fig. 3f-g) and by day

12, there were statistically higher CMs in Condition 32 (p < 0.0001) (Fig. 3h-i). Time-course EC
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formation showed that ECs were already apparent at day 3 for both conditions and their formation
began to increase around day 5 for Condition 32, a few days before CM formation (Fig. 3j-k); by
day 12, there were statistically higher ECs in Condition 32 (p < 0.0001) (Fig. 31-m). Time-course
SMC formation showed that SMC formation began to increase around day 8 for Condition 32 (Fig.
3n-0) and by day 12, there were statistically higher SMCs in Condition 32 (p < 0.0001) (Fig. 3p-
Q)

As noted above, ECs CMs began to form around day 3 followed by CMs at day 8 in both
conditions; in Condition 32, the rates of EC and SMC formation increased around days 5 and 8,
respectively (Extended Data Fig. 3p). Interestingly, in terms of vascularization factor crosstalk
with ECs and CMs, at day 12, VEGF alone generated the most ECs compared to Control (n =10,
p <0.0001), to FGF2 alone (n = 10, p < 0.0001), and to SB alone (n = 8, p < 0.05), while having
no statistical differences on CM formation (Extended Data Fig. 3q-r). The combination of FGF2,
SB, VEGF, along with the angiopoietins, produced the most ECs in Condition 32. For arrays of
hESC-3R micropatterns, Condition 32 also gave rise to all the three cell types (Extended Data
Fig. 3s).

We also found that the total fluorescence generated by the 34 screening conditions for cVO
formation were well fit by simple machine learning models (general linear), encapsulating CM
(R?>=0.88; Extended Data Fig. 7a) and EC (R?>=0.78; Extended Data Fig. 7b) formation over
time. In summary, creation of the hESC-3R line enabled identification of differentiation conditions

leading to robust cVO formation.
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c¢VOs comprise spatially and temporally self-organized cardiovascular cell types

We extended the differentiation of cVOs from 12 to 16 days (equivalent to ~ 3 weeks of in
vivo human development); these contained CMs, SMCs, and branching ECs arranged in a
concentric fashion (Fig. 4a-b). We confirmed CMs co-expressed Troponin-T (TnT) and TNNT2-
GFP, ECs co-expressed PECAM and CDH5-mOrange, and SMCs co-expressed Calponin and
TAGLN-CFP (Fig. 4c-e). Compared to hESC-3R micropatterns, unpatterned hESC-3R cells
resulted in unorganized and random distribution of CMs and ECs (Extended Data Fig. 4a). cVOs
contained branched ECs intimately surrounding CMs and SMCs and moving in unison together
with each CM contraction (Extended Data Fig. 4b-d; Supplementary Videos 5 and 6).

Arrays of hESC-3R micropatterns also differentiated into ¢VOs and contained CMs,
SMCs, and branched ECs arranged in a concentric fashion (Fig. 4f-g). Individual micropatterns
gave rise to independent patterns of cVOs despite sharing the same media. Additionally, cVOs
formed rings of CMs that beat in unison, both in a rotating and non-rotating fashion
(Supplementary Video 7).

We performed temporal bulk RNA-sequencing (bRNA-seq) on I) single undifferentiated
micropatterned hESC-3R colonies, ii) Controls, and iii) ¢cVOs (n = 3 for all groups). Weighted
gene co-expression network analysis (WGCNA) showed clustering of pluripotency, mesoderm,
CV progenitor, CM, EC, SMC, and vascularization genes over 16 days. Vascularization genes
were highest in cVOs and peaked at day 16 (Fig. 4h). Principal component analysis (PCA) showed
developmental differences between all three groups over 16 days. Divergence between Control
and cVO groups emerged at day 5, when vascular induction began (Extended Data Fig. 4e).

From our bRNA-seq analysis, we compared Control and cVO groups for select gene groups

as follows: CM, EC, SMC, NOTCH-DELTA-JAG groups (Fig. 4i) along with pluripotent,

10
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mesoderm/CV progenitor, FB, and epicardial groups (Extended Data Fig. 4f). CM genes were
higher for Controls compared to cVOs. For EC and NOTCH-DELTA-JAG genes, divergence of
expression between Controls and cVOs began around day 5, when vascular specifying factors were
added to the cultures. SMC and FB genes generally increased for both groups. Interestingly, the
epicardial gene WT1 was higher in cVOs than Controls, while the TOP2A4, UBE2C, and RRM?2
genes decreased, suggesting a decrease in proliferation of epicardial cells in cVOs. As expected,
pluripotent genes decreased, and mesoderm/CV progenitor genes increased in both Controls and
cVOs.

Ingenuity Pathway Analysis (IPA) showed upregulated vascularization functions including
angiogenesis and vasculogenesis (Fig. 4j). Upregulation over time generally began to increase at
day 8, after vascularization factors were added in culture at day 5. IPA of day 16 cVOs vs Controls
showed upregulation of vascularization functions (Fig. 4k).

In terms of cVO CM function, Fluo-4 calcium labeling of iPSC-derived Control and cVO
groups revealed that calcium transient rates of Controls were higher than ¢VOs (Fig. 4l;
Supplementary Video 7). Additionally, the beating rate of Controls (n = 15) and ¢cVOs (n = 16)
significantly increased with isoproterenol (0, 1, and 10 uM) treatment (p < 0.05 and p <0.01 at 10
uM for Controls and cVOs, respectively) (Fig. 4m). Based on analysis of contraction-relaxation
cycles of Controls and cVOs (Extended Data Fig. 4g), the beating rate, contraction velocity,
relaxation velocity, and contraction-relaxation peak interval did not statistically differ (p = 0.65,
0.06, 0.10, and 0.52, respectively) between Controls (n = 4) and cVOs (n = 4) (Extended Data
Fig. 4h-k). In contrast, EC nitric oxide (NO) secretion was significantly higher in cVO ECs
compared to Controls (p < 0.05) (Fig. 4n). To create 3D ¢cVOs we made micropatterns on a “soft”

hydrogel substrate with a 16 kPa stiffness (compared to “hard” tissue culture plastic in the GPa

11
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range), which resulted in a network of ECs surrounding CMs and promoted spherical 3D formation
(Fig. 40). Additionally, we identified vascular branching and lumen within ¢VOs (Fig. 4p).

To demonstrate increased throughput and eliminate using stencils, we used the same
differentiation protocol for 2D ¢VOs to create 3D cVOs over 14 days, using a range of CHIR at
higher concentrations (6.0-8.5 pM) on a single hESC-3R colony formed in each well of a 96-well
plate. CHIR 7.0 uM gave the most CMs and ECs, with CM and EC formation inversely related
across all concentrations (Extended Data Fig. 41). The higher CHIR needed in this format was
not unexpected as we have previously needed to adjust CHIR concentrations depending on cell
lines and multi-well plate formats. Finally, we validated our vascularization protocol with an
hiPSC line (SCVI 113, Stanford CVI Biobank) and confirmed the presence of CMs, ECs and
SMCs within hiPSC-derived cVOs (Extended Data Fig. 4m-n).

For cVOs, we also found a multitude of upregulated genes from our bRNA-seq analysis
related to vascularization in EC, arterial, venous, endocardial, TGF3 pathway, VEGF pathway,
PDGF pathway, gap junction, and paracrine gene groups (Extended Data Fig. 5a-m). Notably,
we found that several members of the angiopoietin family ANGPT2, ANGPTLI, ANGPTLA4,
ANGPTLG6, and TIE] were all upregulated in cVOs, consistent with their established role in
vascularization?: 3> 3,

IPA showed upregulated Canonical Pathways also known to be important in cardiovascular
development, including epithelial to mesenchymal transition (EMT), HIFla signaling, and
HOTAIR signaling (Extended Data Fig. 6a). IPA comparing Controls to cVOs from days 2-16
also showed upregulated Upstream Regulators known to be important in cardiovascular

development, including PDGFBB, TGFBI, CD36, BMP4, VEGFA, FGF2, and HIF 14 (Extended

Data Fig. 6b). Furthermore, IPA showed that the NOTCH pathway was upregulated in cVOs

12


https://doi.org/10.1101/2022.07.08.499233

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499233; this version posted July 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

compared to Controls (Extended Data Fig. 6¢), while the BMP pathway was upregulated in both
groups (Extended Data Fig. 6d). [PA of the WGCNA Dark Grey module within the
“Cardiomyocyte/Endothelial/Smooth Muscle/Fibroblast Genes” cluster in Fig. 4h confirmed a
Cardiogenesis Regulator Effect Network with upstream regulators including BMP, TGF/, and
WNTI1 activating downstream genes including MEF2C, NKX2-5, TBX5, MYH6, and NPPA,
leading to cardiogenesis (Extended Data Fig. 6e). IPA of the WGCNA Pale Turquoise module
within the “Vascularization Genes” cluster in Fig. 4h confirmed a Vascularization Regulator
Effect Network with upstream regulators including VEGF, CD36, JAG2, and JUNB activating
genes including PDGFB, FLTI, MMP9, TGFp1, HIF1A, FNI1, and DLL4, leading to downstream
Vascularization Functions (Extended Data Fig. 6f). IPA of day 16 cVOs vs Controls showed
upregulated Vascularization Functions (Extended Data Fig. 6g) and a VEGF Regulator Effect
network on ITGAl, MMPY9, CDHS5, F3, NOTCH4, CD34, and DLL4, leading to downstream

development of vasculature (Extended Data Fig. 6h).

Single-cell RNA-sequencing reveals multiple vascular, endocardial, myocardial, and
epicardial cell types in cVOs

To obtain higher cellular resolution within Control and ¢cVO groups, we next performed
single-cell RNA-sequencing (scRNA-seq) and then primary downstream analysis with Seurat®’.
Non-linear dimensional reduction using UMAP of the cVO groups showed 9 clusters containing
CMs, ECs, SMCs, FB, EPI, precursor cells (PRE), hepatic cells (HC), neural cells (NC),
proliferating cells (PROLIF), and epithelial cells (EPT) (Fig. Sa), as also identified in UMAP
feature plots (Extended Data Fig. 8a). Comparison with the cellular composition of a 6.5 post-

conception week (PCW) (~45 days) human heart (Carnegie Stages 19 and 20) from a recent study*®
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revealed that cVOs shared 9 of 14 cell types (Fig. 5b). This is the earliest in vivo scRNA-seq
dataset to date but is still ~3.5 weeks older than our cVOs and thus we expected our cVOs would
not have all the cell types found in the 6.5 PCW heart. Further analysis revealed composition and
lineage relationships of cellular subtypes of the 9 clusters (Fig. S¢). Notably, cVOs had 9% ECs,
although based on our imaging data, we believe this is an underestimate and that a portion of ECs
may have been lost during the dissociation process.

We identified cell types in ¢cVO UMAP clusters according to scaled, log-normalized
differentially expressed genes (Fig. Sd). Violin plots of cVOs showed expression of CMs, ECs,
SMCs, and NOTCH pathway genes (Fig. Se-h) along with FBs, EPIs, HCs, PROLIFs, ECM, and
VEGF pathway genes in corresponding UMAP clusters (Extended Data Fig. 8b-g). Violin plots
also showed gene expression of cardiovascular progenitors (CV PROG), ECs,
WNT/BMP/PDGF/TGFp pathways, gap junctions (GJ) and ECMs (Extended Data Fig. 8h).

Subcluster analysis of CM cluster 3 revealed atrial (MYH6*, MYL7") and ventricular
(MYH7*, MYL2") subtypes (Fig. 5i). Similarly, EC cluster 5 revealed arterial (EFNB2", SOX17*,
DLL4*, UNC5B*, CXCR4") and venous (NRP2*, TEK*, APLNR", DAB2", EPHB4") subtypes. Of
note, the arterial subtype expressed a subset of venous genes and vice-versa (Fig. 5j). In addition,
the EC cluster 5 revealed an endocardial (CDHS5", UBE2C*, CDKI*, TOP2A", RRM?2",
KIAA010I") subtype (Fig. 5k). Finally, cluster 2 revealed SMC (TAGLN', ACTA2"), FB (TCF21
"), and EPI (TOP24*, RRM2*, CDKI1*, UBE2C", BIRCS5", KIAA0101") subtypes (Fig. 51). In
summary, scRNA-seq revealed multiple vascular, endocardial, myocardial, and epicardial cell
types in c¢VOs, further improving the cellular subtype resolution identified by fluorescence

imaging and bRNA-seq.
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Inhibition of NOTCH and BMP pathways disrupts vascularization within cVOs

The NOTCH pathway is vitally important for cardiovascular development, disease, and
regeneration®, Based on our bRNA-seq and scRNA-seq data, members of the NOTCH pathway,
including JAG1, JAG2, DLL4, NOTCHI, NOTCH2, NOTCH3, and NOTCH4, were upregulated
in our cVOs (Fig. 4i, Extended Data Fig. 6c, Fig. Sh, and Extended Data Fig. 8a). Using our
scRNA-seq data, we examined NOTCH-DLL-JAG receptor-ligand pairs between CMs, ECs, and
SMCs to compare their putative cell-cell interactions in cVO and 6.5 PCW human heart groups
(Fig. 6a). The number of receptors and ligands along with cell-cell interactions increased from
cVOs to 6.5 PCW hearts, suggesting that increased NOTCH pathway activity is associated with
increased vascularization and maturation.

To ascertain the effects of interfering with the NOTCH pathway on vascular and cardiac
development, we next exposed cVOs to DAPT, a known NOTCH pathway antagonist. From days
2 to 16, DAPT decreased EC formation in a dose-independent manner (1 uM, n =6, p <0.005 and
10 uM, n = 6, p < 0.005) compared to (Control) (n = 12) (Fig. 6b-d). DAPT also significantly
decreased CM formation at both 1 pM (n =6, p < 0.005) and 10 uM (n = 6, p <0.001) compared
to 0 uM (Control) (n = 12) (Fig. 6e-g). In addition, we fit a simple machine learning model
(multiple linear regression) to the changes in EC and CM formation caused by DAPT (Fig. 6h-i).
Based on the temporal graphs (Fig. 6 ¢, f, h, I), the negative effect of DAPT on ECs was less than
that on CMs.

Based on our bRNA-seq and scRNA-seq data, the BMP pathway was upregulated in cVOs.
To ascertain the effects of interfering with the BMP pathway on vascular and cardiac development,
we exposed cVOs to Dorsomorphin, a known BMP pathway antagonist. From days 2 to 16,

Dorsomorphin decreased EC formation at 0.1 uM (n = 6, p < 0.0001) and 1.0 upM (n = 6, p <
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0.0001) compared to 0 uM (Control) (n = 12). Similar to DAPT, a dose-dependent inhibitory effect
of Dorsomorphin on EC formation was observed (Extended Data Fig. 9a-c). Dorsomorphin
significantly decreased CM formation only at 1 uM (n =6, p <0.005) compared to 0 uM (Control)
(n = 12), but 0.1 uM Dorsomorphin showed no significant inhibitory effects on CM formation
(Extended Data Fig. 9d-f). In parallel, we also fit a multiple linear regression model to the
changes in EC and CM formation caused by Dorsomorphin (Extended Data Fig. 9g-h). Based on
the temporal graphs (Extended Data Fig. 9b, e, g, h), the negative effect of Dorsomorphin on ECs
was more significant than that on CMs; this was the opposite for DAPT. The co-differentiation
ECs and CMs in cVOs enabled this finding.

Fentanyl, a potent opioid agonist, has contributed to the opioid epidemic in the US in recent
years®® and has the potential to be misused during pregnancy, possibly leading to congenital
malformations as a teratogen. Since fentanyl has been shown to activate multiple pro-angiogenic
signaling pathways®, we sought to observe any similar effects on ¢VO vascularization.
Interestingly, at day 16, fentanyl significantly increased EC formation at 10 nM (n= 18, p <0.001)
compared to 0 nM (Control) (n = 18) (Extended Data Fig.9i-j), an opposite finding to DAPT and

Dorsomorphin above.

Vascularization factors used for creating cVOs enable creation of hVOs

We next asked if our vascularization strategy for cVOs could be applied to the hepatic
system. Based on our results from hESC-RUES-GLR micropatterning, bRNA-seq, and scRNA-
seq, we knew that we could produce mesoderm and endoderm, which we reasoned would be
necessary for vascular and hepatic co-differentiation. Thus, our strategy for co-differentiation of

ECs, SMCs, and HCs to create hVOs consisted of inducing mesendoderm and then co-
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differentiating a vascular progenitor pool and hepatoblast pool that would give rise to all the three
cell types (Extended Data Fig. 10a). A schematic shows our timeline, stages, cell types, geometry,
media, and growth factors for creating hVOs (Extended Data Fig. 10b). We used previous
established methods to guide mesendoderm, foregut progenitors, hepatoblasts, and hepatocytes®
(Extended Data Fig. 10c). We tested 3 differentiation conditions as follows: 1) Control (day 20
baseline hepatic differentiation, with no vascularization factors added); ii)) hVO-D3 (day 20 hVOs
created by adding vascularization factors at day 3 of differentiation); and iii) hVO-D6 (day 20
hVOs created by adding vascularization factors at day 6 of differentiation) (Supplementary Table
2). We used the hESC-3R line to temporally observe vascular formation and then performed end-
point immunostaining for hepatic markers; when applying our hepatic differentiation conditions,
we did not observe any GFP fluorescence, thus indicating that we were not creating any
“contaminating” CMs.

PCA of temporal bRNA-seq showed developmental differences between hESC-3R (day 0
undifferentiated micropatterns), Control, hVO-D3, and hVO-D6 groups (n = 3 for each group). A
divergence between “Vascularization Factors” (D3 and D6 groups) versus “No Vascularization
Factors” (Control group) was notable (Extended Data Fig. 10d). WGCNA showed clustering of
pluripotency, structural, miscellaneous hepatic genes, hepatic and smooth muscle cell genes, and
vascularization genes. Vascularization genes were most upregulated in the hVO-D3 group
(Extended Data Fig. 10e).

From our bRNA-seq analysis, we compared the three groups for select gene groups as
follows: pluripotent, HC, EC, SMC, FB, ECM, and NOTCH-DELTA-JAG (Extended Data Fig.
10f-m). Overall, pluripotency genes were upregulated for the hESC-3R group and downregulated

for the Control, hVO-D3, and hVO-D6 groups. Hepatic genes were upregulated for all
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differentiation groups. Notably, all EC, SMC, ECM, and NOTCH-DELTA-JAG genes (except
DLL3 and JAG1) were most upregulated for the hVO-D3 group.

From days 3 to 19, time-lapse fluorescence microscopy showed EC formation for all three
groups (n = 10, 12, 10, respectively). Adding vascular factors at day 3 (hVO-D3 group) to the
baseline hepatic differentiation protocol gave the most EC formation at day 19 (p < 0.0001)
(Extended Data Fig. 10n-p). Additionally, and importantly, confocal fluorescence imaging
demonstrated the co-differentiation of HCs and ECs at day 19 of differentiation (Extended Data
Fig. 10q). Thus, taken together, adding vascular factors at day 3 to developing hepatocytes resulted

in the highest vascularization of hepatic organoids.

Discussion

Using clues from developmental biology, we are able to create spatially self-organized 2D
and 3D c¢VOs from hPSC micropatterns by identifying a combination of growth factors that
simultaneously give rise to a spatially organized and branched vascular network within
endocardial, myocardial, epicardial, and progenitor cells, along with numerous ECM proteins.
Using scRNA-seq, we show similar cellular composition of cVOs to a 6.5 PCW human heart.
Furthermore, we use machine learning to characterize key signals that affect CM and EC formation
efficiency. We find that NOTCH and BMP pathways are upregulated in cVOs, and inhibition of
these pathways disrupts vascularization. Finally, using the same vascular-inducing factors to create
cVOs, we produce hVOs.

Spatial micropatterning of hPSCs has been shown by us and others to enable repeatable

40, 48

and scalable formation of spatially organized germ layers , primitive streak*: 4,

22,23

cardiomyocytes*® 23, and cardiac organoids®*. In our study here, we combined micropatterning
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with four fluorescent reporter cell lines to systematically phenotype conditions leading to
simultaneous co-differentiation of self-organized CMs, ECs, and SMCs. Importantly, these
reporter lines enabled temporal identification of germ layer, progenitor, and cardiovascular cell
types in situ without disturbing the architecture of developing cVOs.

Recently, several impressive studies have shown the creation of 3D cardiac organoids®-*
with ECs and ENDOs lining central chambers. However, these vascular cell types were mostly
found incidentally through transcriptomics and immunostaining; efforts to increase their numbers
have been mostly with the addition of VEGF!’. In our screening conditions, we added FGF2, SB,
ANGI1, ANG2, PDGF-BB, and TGF1 to systematically promote vasculogenesis, followed by
angiogenesis, vessel branching, and lumen formation. Furthermore, our hESC-3R line enabled
temporal recording of this developmental process, while micropatterning enabled spatial
relationships to be identified. FGF26!, combined with VEGF and SB has recently been shown to
produce vascular organoids®! 2. VEGF promotes vasculogenesis, while the addition of FGF2 with
VEGF promotes angiogenesis®?, and the addition of SB to these two factors increases hPSC-EC
differentiation by up to 36-fold!’. Additionally, ANG2 also promotes angiogenesis, while
subsequent addition of ANGI has been shown to promote vessel maturation!- 3% 5, Highlighting
the contribution of the angiopoietins to cVO vascularization, we found that ANGPT2, ANGPTLI,
ANGPTL4, ANGPTL6, and TIE were all upregulated in cVOs. Finally, the addition of PDGF-BB
has been shown to recruit perivascular cells (both pericytes and SMCs) to wrap around angiogenic
sprouts, and addition of TGFB1 has been shown to lead to vessel maturation by inhibiting EC
proliferation, stimulating SMC differentiation, and promoting ECM deposition®" 32, In support of

this, we found that several members of the PDGF and TGFf pathways were upregulated in our

c¢VOs and correlated with increased vascularization.
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Our temporal bulk and endpoint single-cell transcriptomics revealed several cell types and
pathways known to be important for cardiogenesis and vasculogenesis®, including the NOTCH,
and BMP pathways. Our interference with relatively non-specific inhibitors of these pathways
(DAPT, Dorsomorphin) all revealed their general disruptive effects on vascularization; the next
step is to use more specific methods such as single-cell ATAC-seq, CRISPR activation/inhibition,
CRISPR-mediated gene knockouts, and RNA-interference to dissect these pathways and cellular
crosstalk even further to understand the etiology of congenital heart disease. For example, our
system, with both cardiac and vascular cell types, could be used to further dissect the role of
NOTCHI in hypoplastic left heart syndrome (HLHS)%, the role of the TGFB pathway in left
ventricular non-compaction (LVNC)%, and the role of the PDGF pathway in lamin A/C (LMNA)
cardiomyopathy®. All these pathways were upregulated in our cVOs, indicating their important
role in cardiogenesis and vascularization.

Finally, using the same combination of vascular-inducing factors to create cVOs and hVOs
implies a conserved developmental program for creating vasculature in different organ systems.
With the RUES-GLR germ layer reporter line, various progenitor reporter lines, and parenchymal
cell-specific reporter lines, we believe our vascularization method will serve as a starting point
that can be added to established cell-specific differentiation protocols to achieve vascularization
in other organ systems. Organoid vascularization will be necessary to i) avoid necrosis in the center
of organoids where oxygen tension is low in vitro and in vivo®, ii) achieve larger organoid growth
in vitro for improved systems for disease modeling, drug toxicity testing, and drug discovery>*,
and iii) increase the viability of implanted organoids for regenerative medicine applications in
vivo®S. See the Extended Discussion (Supplementary Information) for our suggested strategies for

achieving improved vascularized organoid models moving forward.
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Figure Legends

Fig. 1. Micropatterning of hPSCs results in spatially organized cardiomyocytes. a, A single
circular 2 mm hPSC micropattern in each well of a multi-well plate is created from a silicone
stencil. Differentiation begins when hPSC micropatterns are 100 % confluent, typically 2-3 days
post seeding. b, Phase imaging showing 2, 4, and 6 mm undifferentiated hPSC micropatterns.
Scale bars, 2, 4, 6 mm, respectively. ¢, Confocal imaging showing 2, 4, and 6 mm hPSC
micropatterns are pluripotent by immunostaining for OCT4 (green), SOX2 (red), and nuclear
staining with DAPI (blue). White arrows show areas of incomplete hPSC confluence in 6 mm
micropatterns. Scale bar, 1 mm. d, Photograph showing 2 mm hPSC micropatterns (blue) in the
centers of four wells of a 48-well dish. Scale bar, 9 mm. e, Phase imaging showing cardiomyocyte
(CM) differentiation of a 6 mm hESC-TNNT2-GFP micropattern from Day 0-9 (D0-9). Scale bar,
6 mm. f, Fluorescence imaging of (E) showing GFP+ CMs (green). Scale bar, 6 mm. g, An array
of circular 2 mm hPSC micropatterns in each well of a multi-well plate is created from a silicone
stencil. For a 6-well dish, up to 77 hPSC micropatterns can be created per well for a total of 462
micropatterns. h, (left) Photograph showing an array of 77 hPSC micropatterns in 1 well of a 6-
well dish; (middle) phase imaging showing undifferentiated hPSC micropatterns; (right)
fluorescence imaging showing organized and arrayed GFP+ CMs. Scale bars, 10, 4, 4 mm,

respectively. See also Supplementary Video 1.

Fig. 2. Micropatterning gives rise to organized germ layer and cardiovascular progenitor
formation. a, The hESC-RUES-GLR (germ layer reporter) cell line #* expresses SOX2, BRA, and
SOX17 to identify undifferentiated cells and, upon differentiation, ectoderm, mesoderm, and

endoderm arranged in stereotypical concentric rings as shown. The hESC-NKX2-5-eGFP cell line
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¢ identifies cardiovascular progenitors in the middle ring arising from mesoderm. The hESC-3R
cell line (this paper) identifies SMCs, CMs, and ECs arising from cardiovascular progenitors. b,
Confocal imaging at day 0 showing SOX2 expression throughout a single undifferentiated
micropattern. Scale bar, 1 mm. ¢, Confocal imaging showing unpatterned (left) and micropatterned
(right) RUES-GLR hESCs at day 6 with CHIR 4, 6, and 8 uM added at day 0. Unpatterned hESCs
give rise to disorganized germ layers (BRA", SOX17", SOX2* expression) and SOX2 is expressed
at all CHIR concentrations. In contrast, micropatterned hESCs give rise to organized germ layers
with minimal SOX2 expression. For CHIR 4 puM, micropatterned hESCs give rise to a BRA"
mesodermal central area surrounded by a SOX17+ endodermal ring, with no SOX2 ectodermal
expression. Scale bar, 1 mm. j, The hESC-NKX2-5-eGFP cell line expresses eGFP under the
cardiovascular progenitor transcription factor NKX2-5 as previously described 6. k, A single
NKX2-5-eGFP micropattern at day O (left) differentiated over 10 days showing organized ring
formation of eGFP+ cardiovascular progenitors leading to beating cardiomyocytes (right). Scale

bar, 2 mm. See also Supplementary Video 2.

Fig. 3. Creation of a triple-reporter line enables screening differentiation conditions leading
to cVO formation. a, The hESC-3R line comprises the TNNT2 (Troponin-T) promoter driving
GFP to identify CMs, the CDH5 (VE-Cadherin) promoter driving mOrange to identify ECs, and
the TAGLN (SM22a) promoter driving CFP to identify SMCs. b, Schematic showing timeline,
stage, cell types, geometry, media, and growth factors for co-differentiating CMs, ECs, SMCs,
leading to formation of cVOs. ¢, Confocal fluorescence imaging and immunostaining confirms the
differentiation of hRESC-3R into CMs (co-expression of Troponin-T with TNNT2-GFP) (top row),

ECs (co-expression of VE-Cadherin with CDHS5-mOrange) (middle row), and SMCs (expression
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of TAGLN-CFP) (bottom row). Nuclei are stained with DAPI. Scale bar, 50 um. d-e,
Representative time-lapse imaging shows CM, EC, and SMC formation over 12 days for Control
(Condition 2) and ¢VO (Condition 32). In the ¢VO sample, note ring formation of CMs, with
outward radiation of ECs, and central SMCs. f, j, n, A total of thirty-four (34) differentiation
conditions (n = 175 total micropatterns, n = 4-6 per condition) were screened for those giving the
highest simultaneous co-differentiation of CMs, ECs, and SMCs. Half of the conditions used CHIR
4 uM (n = 88) and half used 5 uM (n = 87). Overall, 5 uM gave the most CMs, ECs, and SMCs.
Student’s t-test, ***p < 0.0001. f-i, CM formation is highest in Condition 32 over time and begins
around day 8. At day 12 CM formation is significantly higher for Condition 32 (n = 6) compared
to Control™ (n = 4). Student’s t-test, ***p < 0.0001. Error bars and shaded bands + 1 SD. j-m, EC
formation is highest in Condition 32 over time and is already apparent at day 3 and begins to
increase around day 5. At day 12 EC formation is significantly higher for Condition 32 (n = 6)
compared to Control™ (n = 4). Student’s t-test, ***p < 0.0001. Error bars and shaded bands + 1
SD. n-q, SMC formation is highest in Condition 32 over time and begins to increase around day
8. At day 12 SMC formation is significantly higher for Condition 32 (n = 6) compared to Control™*
(n = 4). Student’s t-test, ***p < 0.0001. Error bars and shaded bands = 1 SD. “Condition 32 (cVO)
consists of the following small molecules and growth factors: CHIR, 5 uM (day 0); FGF2, 5 ng/mL
(days 0, 7, 9, 11, 13); IWR-1, 5 uM (day 3); VEGF, 50 ng/mL (days 5, 7, 9, 11, 13); SB 10 uM
(days 7,9, 11); ANG2, 50 ng/mL (days 5, 7); ANG1, 50 ng/mL (days 9, 11); PDGF-BB, 10 ng/mL
(days 7, 9, 11, 13); and TGFBI1, 2 ng/mL (days 13). **Condition 2 (Control) is the standard
cardiomyocyte differentiation with only the factors CHIR, FGF2, and IWR. Error bars + 1 SD. See

also Supplementary Videos 3 and 4.
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Fig. 4. ¢VOs comprise spatially and temporally self-organized cardiovascular cell types. a,
Confocal phase (left) and fluorescence (middle) imaging shows the differentiation of a single
hESC-3R micropattern over 16 days (~ 3 weeks of in vivo human development) into a cVO
containing CMs (green), ECs (orange), and SMCs (blue). Nuclei are labeled with DRAQS nuclear
stain (red). Note concentric organization of cell types and EC branching. This plane corresponds
to section A’-A’, near the well bottom (right). Scale bar, 2 mm. b, Individual confocal channels
showing CMs (green) (left), ECs (orange) (middle), and SMCs (blue) (right). Scale bar, 2 mm. c,
Confocal fluorescence images showing hESC-3R CMs co-express Troponin-T (red) with TNNT2-
GFP (green). Nuclei are labeled with DAPI (blue). Scale bar, 50 um. d, Confocal fluorescence
images showing hESC-3R ECs co-express PECAM (red) with CDH5-mOr (orange). Nuclei are
labeled with DAPI (blue). Scale bar, 50 um. e, Confocal fluorescence images showing hESC-3R
SMCs co-express calponin (purple) with TAGLN-CFP (cyan). Nuclei are labeled with DAPI
(blue). Scale bar, 50 um. f, Phase (far left) and fluorescence imaging shows an array of hRESC-3R
micropatterns differentiated over 16 days into cVOs containing concentrically self-organized CMs
(green), ECs (orange), and SMCs (blue). Note individual micropatterns give rise to an array of
independently-formed cVOs despite sharing the same media. Scale bar, 2 mm. g, Enlarged area
from red box in (f) showing concentric organization of CMs, ECs, and SMCs, with EC branching.
This focal plane corresponds to section B’-B’ in (a). Scale bar, 2 mm. h, Temporal bulk RNA-
sequencing (bRNA-seq) was performed for undifferentiated hESC-3R micropatterns (blue, n = 3),
Control differentiation (black, n = 3), and cVO differentiation (red, n = 3). Weighted gene co-
expression network analysis (WGCNA) heat map shows clusters of Pluripotency, Mesoderm, CV
progenitor, Cardiomyocyte, Endothelial, Smooth Muscle, Fibroblast, and Vascularization Genes

over 16 days (D0-16) for hESC-3R (blue, n = 3), Control (black, n = 3), and cVO (red, n = 3)
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groups. Note upregulated vascularization genes in D16 c¢cVOs (black dashed rectangle). I,
Comparison of CM, EC, SMC, and Notch-Delta-Jag gene groups from bulk RNA-seq most notably
show that EC and Notch-Delta-Jag gene expression (dashed rectangles) is higher for cVOs and
diverges from Controls around day 5 (dashed arrows), when vascular-inducing factors are added
to the cultures. j, Ingenuity Pathway Analysis (IPA) of Days 2 to 16 cVOs compared to Controls
showing a heat map of upregulated (red), equally regulated (gray), and downregulated (blue)
vascularization functions. Note upregulation occurs between Days 5 and 8, when vascular-
inducing factors were added. k, IPA of Day 16 cVOs compared to Controls showing significantly
activated vascularization functions (-log (p-value) > 1.3). 1, Fluo-4 calcium CM labeling of a
Control (top) and cVO (bottom). Calcium transient rates of Controls are higher than cVOs (right).
Note samples were differentiated from hiPSCs to avoid spectral overlap of Fluo-4 with GFP from
the hESC-3R line. Scale bar, 2 mm. m, Beat rate of Controls (n = 15) and cVOs (n = 16) increases
with isoproterenol (0, 1, and 10 uM) treatment, with Control rates consistently higher than ¢cVO
rates at each concentration. Two-way ANOVA with Tukey’s test for multiple comparisons, *p <
0.05 and *p < 0.01. n, hESC-3R EC nitric oxide (NO) secretion is higher in cVO ECs compared
to Controls. Student’s t-test, *p < 0.05. 0, 3D cVO differentiated over 16 days on a micropatterned
substrate with a stiffness of 16 kPa showing CMs (green) surrounded by a branching network of
ECs (orange). SMCs were not imaged. Scale bar, 1 mm. p, Microsphere (white) identification of
vascular lumen (white vascular branches marked by red arrows) formed by ECs (orange). Note
abundance of microspheres outside the cVO but only within vascular lumen inside the cVO. The
red dashed line demarcates the outer cVO boundary, with CMs (green) shown inside the cVO. See

also Supplementary Videos 5, 6, and 7.
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Fig. 5. Single-cell RNA-sequencing reveals multiple vascular, endocardial, myocardial, and
epicardial cell types in cVOs. a, cVO UMAP showing 8 clusters containing cardiomyocytes
(CM), endothelial cells (EC), smooth muscle cells (SMC1, SMC2, SMC3), fibroblasts (FB1, FB2,
FB3), epicardial cells (EPI1, EPI2, EPI3), precursor cells (PRE), proliferating cells (PROLIF),
hepatic cells (HC), and epithelial cells (EPT). b, 6.5 PCW human heart t-SNE showing 14 cell
types. cVOs share 9 of 14 cell types (dashed rectangles). PCW, post-conception week. ¢, cVO
composition and lineage relationships of cellular subtypes from (a). d, cVO heatmap showing cell
types in UMAP clusters in (a) according to scaled, log-normalized differentially expressed genes.
e-h, cVO violin plots showing expression of CMs, ECs, SMCs, and NOTCH pathway genes in
corresponding UMAP clusters in (a). i, cVO UMAP showing CM atrial (MYH6", MYL7") and
ventricular (MYH7", MYL2") subtypes. j, cVO UMAP showing EC arterial (EFNB2*, UNC5B",
SOX17*, CXCR4", DLL4") and venous (NRP2*, APLNR", TEK*, DAB2", EPHB4") subtypes. Note,
the arterial subtype expresses a subset of venous genes and vice-versa. k, cVO UMAP showing
EC (CDH5") and endocardial (TOP2A*, UBE2C*, RRM2", CDKI*, KIAA0101") subtypes. 1, cVO
UMAP showing SMC (TAGLN', ACTA2"), FB (TCF21"), and EPI (TOP2A4*, UBE2C", RRM?2*,

BIRCS5*, CDKI1*, KIAA0101") subtypes.

Fig. 6. Inhibition of NOTCH pathway disrupts vasculature within ¢VOs. a, NOTCH-DLL-
JAG receptor-ligand pair interactions between CMs, ECs, and SMCs are shown for cVO and an in
vivo 6.5 PCW human heart*. ¢cVO shows less receptors, ligands, and interactions than an in vivo
6.5 PCW heart. Bolded genes show differences between the cVO and heart groups, with the heart
expressing more Notch receptors. PCW, post-conception week. b-d, DAPT, a NOTCH pathway

antagonist, significantly decreased cVO EC formation over 16 days at 1 uM (n = 6, **p < 0.005)
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and 10 uM (n = 6, **p < 0.005) compared to 0 uM (Control) (n = 12). There was no significant
(ns) difference between 1 and 10 uM. One-way ANOVA with Tukey’s test for multiple
comparisons. Shaded bands and error bars = 1 SD. Scale bar, 2 mm. e-g, DAPT significantly
decreased cVO CM formation over 16 days at 1 uM (n = 6, **p < 0.005) and 10 uM (n = 6, ***p
< 0.001) compared to O uM (Control) (n = 12). There was no significant (ns) difference between
1 and 10 uM. One-way ANOVA with Tukey’s test for multiple comparisons. Shaded bands and
error bars = 1 SD. Scale bar, 2 mm. h-i, Multiple linear regression model effects of DAPT on cVO
EC and CM formation over 16 days (left) with linear regression coefficients (middle), and R?
(right). Based on the temporal graphs (¢, f, h, i), the negative effect of DAPT on ECs was less than

that on CMs.
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Extended Data Figure Legends

Extended Data Fig. 1. Micropatterning of hPSCs results in spatially organized
cardiomyocytes, related to Fig. 1. a, Phase images showing reproducible 2 mm (left), 4 mm
(middle), and 6 mm (right) undifferentiated hPSC micropatterns in 16 wells of a 48-well plate.
Representative micropatterns are outlined by white dashed circles. Scale bar, 10 mm. b,
Fluorescence imaging showing an array of four 2 mm hPSC micropatterns are pluripotent by
immunostaining for OCT4 (green), SOX2 (red), and nuclear staining with DAPI (blue). The total
fluorescence area of DAPI of each micropattern is shown in yellow. Scale bar, 2 mm. ¢, The actual
total fluorescence area of the micropatterns correlates with micropattern count (R? = 0.989) (n =4
per micropattern count). Error bars & SD. d, The actual total fluorescence area of the micropatterns
correlates with the theoretical total micropattern area (multiples of pi*r?, where r is the radius of

each micropattern) (R? = 0.99) (n = 4 per micropattern count). Error bars + SD.

Extended Data Fig. 2. Micropatterning gives rise to organized germ layer formation, related
to Figs. 2 and 3. a, The hRESC-RUES-GLR (germ layer reporter) cell line 4 used to visualize germ
layer formation comprises BRA driving mCerulean expression to visualize mesoderm formation,
SOX17 driving tdTomato expression to visualize early endoderm formation (and late arterial
formation), and SOX2 driving mCitrine to visualize ectoderm formation and pluripotency. b,
Fluorescence images showing mesendoderm differentiation of a 2 mm hPSC micropattern at day
3 with circular distribution (white circular dashes) of BRA* (mesoderm, red) and SOX17*
(endoderm, green). Scale bar 2 mm. ¢, Phase and fluorescence images showing temporal
expression from days O to day 11 (DO-11) of the mesodermal marker BRA and the

endodermal/arterial marker SOX17 of micropatterned arrays of RUES-GLR hESCs. Scale bar, 2
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mm. d, Enlarged view of dashed square in (¢). Note BRA™ central distributed expression relative
to outer SOX17* expression. Scale bar, 2 mm. e,  Fluorescence images showing that hESC-3R
(described in Fig. 2 and Extended Data Fig. 3) micropatterns treated with CHIR + FGF2 + IWR1
(Control) differentiated to the most CMs (green) at day 14 with a CHIR concentration of 5 uM.
ECs (orange) are present at all concentrations but are punctate, with minimal branching. f,
Fluorescence images showing that hESC-3R micropatterns treated with CHIR + FGF2 + IWR1 +
VEGF (+VEGF atdays 5, 7, 9, and 11) co-differentiated to the most CMs (green) and ECs (orange)

at day 14 with a CHIR concentration of 5 pM and VEGF concentration of 50 ng/mL.

Extended Data Fig. 3. Creation of a triple-reporter line enables screening of differentiation
conditions leading to cVO formation, related Fig. 3. a, Strategy for creating the lentivector
pLV-CDHS5Pr-mOrange-SVPr-Zeo used to create the hESC-3R line. The CDHS (VE-Cadherin)
promoter drives mOrange to identify ECs. b, Plasmid map of pLV-CDHS5Pr-mOrange-SVPr-Zeo.
¢, Strategy for creating the lentivector pLV-TAGLNPr-CFP-SVPr-Bsd used to create the hESC-
3R line. The TAGLN (SM22a) promoter drives CFP to identify SMCs. d, Plasmid map of pLV-
TAGLNPr-CFP-SVPr-Bsd. e, Gel showing genomic PCR products of two polyclones of the hRESC-
3R line (hESCTNNT2-GFP/CDHS-mOrange/TAGLN-CFP _1 and -2). A (DNA) Ladder, GAPDH (housekeeping
gene), CFP, Blasticidin, mOrange, CDHS5, Zeocinl, Zeocin2, and GFP are shown. f, Gel showing
genomic PCR products of six monoclones (C1-C6) of the hESC-3R line. C3 and C5 (red
rectangles) show the highest signals for all products. A (DNA) Ladder, GAPDH (housekeeping
gene), CFP, Blasticidin, mOrange, CDHS5, Zeocinl, Zeocin2, and GFP are shown. g, Gel showing
genomic PCR products of a monoclonal hESC-3R line. A (DNA) Ladder, non-template (NT)

control, GAPDH (housekeeping gene), POUSF1, CFP, Blasticidin, mOrange, and Zeocinl are
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shown. h, Strategy for co-differentiating CMs, ECs, and SMCs to create cVOs. A key step is
creating a cardiovascular (CV) progenitor pool that gives rise to all three cell types. i, Growth
factor and small molecule characteristics for differentiation into CMs, ECs, and SMC. Select
references are listed that were used as guidelines for concentrations and timing used in thirty-four
(34) screening conditions. The detailed screening conditions are listed in Supplementary Table
1. j, The thirty-four (34) screening conditions (n = 175 total micropatterns) showing total
fluorescence area for CMs (GFP), ECs (mOr), and SMCs (CFP) from days 0-12 for each condition.
Odd numbered conditions (1-33) used CHIR 4 uM and even numbered conditions (2-34) used 5
uM. Overall, Condition 32 (black solid arrows) gave rise to the most CMs, ECs, and SMCs.
Condition 2 (black dashed arrows) is the standard Control CM differentiation with only the small
molecules CHIR, FGF2, and IWRI. Error bars + 1 SD. See also Supplementary Videos 3 and 4.
k, Conditions using CHIR 4 (grey, n = 88 micropatterns) or 5 uM (purple, n = 87 micropatterns)
showing largest CM, EC, and SMC formation (GFP, mOr, CFP total fluorescence area). 1, Overall,
5 uM gave rise to the most CMs, ECs, and SMCs compared to 4 uM. Error bars = 1 SD. m, Even
conditions (2-34) using 5 uM (green) (n = 4-6 per condition) showing largest CM formation (GFP
total fluorescence area) at day 12 for Condition 32 (dashed line). Error bars = 1 SD. n, Even
conditions (2-34) using 5 uM (orange) (n = 4-6 per condition) showing largest EC formation (mOr
total fluorescence area) at day 12 for Condition 32 (dashed line). Error bars £ 1 SD. o, Even
conditions (2-34) using 5 uM (blue) (n = 4-6 per condition) showing largest SMC formation (CFP
total fluorescence area) at day 12 for Condition 32 (dashed line). Error bars £+ 1 SD. p, Time-course
CM formation (GFP total fluorescence area) and EC formation (mOr total fluorescence area) for
Conditions 32 (n = 6). The rate of CM formation (dashed green line) increases around day 8 while

the rate of EC formation (dashed orange line) increases around day 5. Note EC formation is already
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apparent at day 3. Shaded bands + 1 SD. See also Supplementary Videos 3 and 4. q, At day 12,
VEGF alone gave the most ECs compared to Control (n =10, ***p < 0.0001), to FGF2 alone (n =
10, ***p <0.0001), and to SB alone (n = 8, *p < 0.05). r, FGF2, SB, and VEGF had no statistical
(ns) effect on CM formation. The combination of FGF2, SB, VEGF, along with the angiopoietins,
gave the most ECs in Condition 32 (see n). One-way ANOVA with Tukey’s test for multiple
comparisons for GFP and mOrange channels separately. s, Fluorescence images showing ¢cVO
array formation at day 10 comprising CMs (green), ECs (orange), and SMCs (blue). Scale bar, 2

mm.

Extended Data Fig. 4. cVOs comprise spatially and temporally self-organized cardiovascular
cell types, related to Fig. 4. a, Phase and fluorescence images showing the differentiation of
unpatterned (top row) and micropatterned (bottom row) hESC-3R cells over 16 days containing
CMs (TNNT2-GFP, green) and ECs (CDH5-mOr, orange). Note the unorganized distribution of
CMs and ECs in the unpatterned group. Scale bar, 2 mm. b, An enlarged inset from the black
rectangle in (a) showing CMs, ECs, and SMCs. White arrowheads show ECs surrounding a group
of CMs. Scale bar, 500 um. ¢, Maximum intensity image of ECs in (b) shows branching. Scale
bar, 500 pm. d, Confocal fluorescence images showing hESC-3R SMCs co-express smooth
muscle actin (SMA) (purple) with TAGLN-CFP (cyan). Nuclei are labeled with DAPI (blue).
Scale bar, 50 um. e, Principal component analysis (PCA) shows differences in differentiation
trajectories between undifferentiated hESC-3R micropatterns (blue, n = 3), Control differentiation
(black, n = 3), and cVO differentiation (red, n = 3) over 16 days (DO0-16). Note trajectory
divergence begins at day 5, when vascular induction begins. f, Comparison of Pluripotent,

Mesoderm/CV Progenitor, Fibroblast, and Epicardial gene groups from bulk RNA-seq trend as

38


https://doi.org/10.1101/2022.07.08.499233

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499233; this version posted July 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

expected. g, Representative contraction-relaxation cycle of a single ¢cVO (shown in the three
images above each phase, with maximum contraction and maximum relaxation shown in red). h,
Beating rate of Controls (n = 4) was higher than cVOs (n = 4), but not statistically significant (p =
0.65). Student’s t-test, p < 0.05 considered significant. i, Contraction velocity of Controls (n = 4)
was higher than cVOs (n = 4), but not statistically significant (p = 0.06). Student’s t-test, p < 0.05
considered significant. j, Relaxation velocity of Controls (n = 4) was higher than cVOs (n = 4),
but not statistically significant (p = 0.10). Student’s t-test, p < 0.05 considered significant. K,
Contraction-relaxation peak interval of Controls (n = 4) was lower than ¢cVOs (n = 4), but not
statistically significant (p = 0.52). Student’s t-test, p < 0.05 considered significant. I, 3D cVOs,
day 14 created with varying amounts of CHIR (6.0-8.5 uM) with 7.0 uM giving the most CMs
(green) and ECs (orange). n = 15-16 per group. m, A micropatterned hiPSC-derived ¢cVO (Day
16) immunostained and confocal imaged for the CM marker Troponin-T (TnT), the EC marker
VE-Cadherin (VECad), and the SMC marker smooth muscle 22a (SM22a). Nuclei are labeled
with DAPI (blue). Scale bar, 1 mm. n, Confocal fluorescence images showing hiPSC-SMCs co-
express SM22a (red), SMA (green), and vinculin (purple). Nuclei are labeled with DAPI (blue).

Scale bar, 50 pm.

Extended Data Fig. 5. Temporal bulk RNA-seq expression for various cVO genes, related to
Fig. 4. a, Mesoderm-precursor genes. b, Atrial genes. ¢, Ventricular genes. d, Adrenergic genes.
e, Endothelial/arterial/venous/endocardial genes. f, BMP pathway genes. g, TGF[3 pathway genes.
h, VEGF pathway genes. i, WNT pathway genes. j, PDGF pathway genes. k, Angiopoietin

pathway genes. 1, Gap junction genes. m, Paracrine signaling genes.
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Extended Data Fig. 6. Ingenuity Pathway Analysis (IPA) of temporal bulk RNA-seq reveals
c¢VO pathways, regulators, networks, and functions, related to Fig. 4. a, Days 2 to 16 cVO vs
Control TPA showing a heat map of upregulated (red) and downregulated (blue) canonical
pathways. b, Days 2 to 16 cVO vs Control IPA showing a heat map of upregulated (red) and
downregulated (blue) upstream regulators (including PDGFBB, TGFBI, CD36, BMP4, VEGFA,
FGF2, and HIF1A4). ¢, IPA shows genes of the NOTCH pathway for the Control group at day 16
of differentiation (compared to day 0) are downregulated (red). In contrast, most genes of the
NOTCH pathway for the cVO group at day 16 of differentiation (compared to day 0) are
upregulated (green). d, IPA shows most genes are upregulated (green) in the BMP pathway for
both the Control and cVO groups at day 16 of differentiation (compared to day 0). BMP-2 is more
upregulated in cVOs vs Controls. e, IPA of the WGCNA Dark Grey module within the
“Cardiomyocyte/Endothelial/Smooth Muscle/Fibroblast Genes” cluster in Fig. 4h confirming a
“Cardiogenesis Regulator Effect Network™ with upstream regulators including BMP, TGFf, and
WNTI1 activating genes including MEF2C, NKX2-5, TBX5, MYH6, and NPPA leading to
downstream cardiogenesis. Green indicates measured upregulated genes (|log2FC| > 2)). f, IPA of
the WGCNA Pale Turquoise module within the “Vascularization Genes” cluster in Fig. 4h
confirming a “Vascularization Regulator Effect Network™ with upstream regulators including
VEGF, CD36, JAG2, and JUNB activating genes including PDGFB, FLTI, MMP9, TGFpI,
HIFIA, FNI, and DLL4, leading to downstream vascularization functions. Green indicates
measured upregulated genes (|log2FC| > 2). g, Day 16 cVO vs Control IPA showing a heat map of
“Vascularization Functions”. Functions > Z-score of 2 are shaded red. Size of rectangles are

proportional to -log (p-value). h, Day 16 ¢VO vs Control IPA showing “VEGF Regulator Effect
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Network” on ITGAl, MMP9, CDHS5, F3, NOTCH4, CD34, and DLL4 leading to downstream

development of vasculature. Green indicates measured upregulated genes (|log2FC| > 2).

Extended Data Fig. 7. A machine learning multiple linear regression model created from
screening conditions for cVO formation, related to Fig. 3. a, Multiple linear regression model
created from 34 screening conditions (C1-C34) for cVO formation showing TNNT2-GFP total
fluorescence area from days 2 to 16, indicating CM formation over time. Grey lines indicate 5-6
estimates from the original data, green lines indicate the mean of the estimates, and black lines
indicate the fit of the model. The solid green square identifies C2 as the Control condition, and the
dashed green square identifies C32 as the condition resulting in CMs within ¢VOs. b, Multiple
linear regression model created from 34 screening conditions (C1-C34) for ¢cVO formation
showing CDH5-mOrange total fluorescence area from days 2 to 16, indicating EC formation over
time. Grey lines indicate 5-6 estimates from the original data, green lines indicate the mean of the
estimates, and black lines indicate the fit of the model. The solid orange square identifies C2 as
the Control condition, and the dashed orange square identifies C32 as the condition resulting in

ECs within ¢VOs.

Extended Data Fig. 8. Single-cell RNA-seq reveals multiple vascular, endocardial,
myocardial, and epicardial cell types in cVOs, related to Fig. 5. a, cVO violin plots showing
FB (DDR2, TCF21, POSTN, S10044, THYI). b, EP1 (TOP2A, UBE2C, RRM2, BIRCS5, CDKI,
KIAA0101). ¢, HC (AFP, ALB, SERPINAI, TTR, TF, APOC3). d, PROLIFS (MYC, MKI67,
AURKB, ANLN, CDK1, ODC1).e,ECM (COL1A1, COL3A1, COL4A4l, FNI, VCL, VIM). f, VEGF

Pathway (VEGFA, VEGFB, FLTI1, KDR, FLT4, HIF14). g,cVO UMAP feature plots showing CM
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(TNNT2, TNNI3, MYH6, MYH7), EC (CDHS5, FLT1, PECAM1, ESAM), SMCs (TAGLN, ACTA2,
CNNI1, MYHI1), FB (DDR2, TCF21, POSTN, S10044), EP1 (TOP24, UBE2C, RRM2, BIRCY),
HC (4FP, ALB, SERPINAI, TTR), PROLIF (MYC, MKI67, AURKB, ANLN), ECM (COLI1A1,
COL3A41, COL4A1, FNI), and NOTCH-DELTA-JAG pathway (NOTCHI, NOTCH2, NOTCH3,
NOTCH4, JAGI1, JAG2, DLL3, DLL4) gene expression. h, cVO violin plots showing CV PROG,
EC, WNT pathway, BMP pathway, PDGF pathway, TGFf pathway gap, junction (GJ), and ECM

gene expression.

Extended Data Fig. 9. Inhibition of BMP pathway disrupts vasculature within cVOs, related
to Fig. 6. a-c¢, Dorsomorphin, a BMP pathway antagonist, significantly decreased cVO EC
formation over 16 days at 0.1 pM (n = 6, ***p < 0.0001) and 1.0 uM (n = 6, ***p < 0.0001)
compared to 0 uM (Control) (n = 12). There was no significant (ns) difference between 0.1 and
1.0 uM. One-way ANOVA with Tukey’s test for multiple comparisons. Shaded bands and error
bars + 1 SD. Scale bar, 2 mm. Note, Dorsomorphin and DAPT (Fig. 6) were tested together and
share the same Control. d, Multiple linear regression model effects of Dorsomorphin (between 0
and 1 uM) on cVO EC formation over 16 days (left) with linear regression coefficients (middle),
and R? (right). e-g, Dorsomorphin significantly decreased cVO CM formation over 16 days only
at 1 uM (n = 6, **p < 0.005) compared to 0 uM (Control) (n = 12). There was no significant (ns)
difference between the other two comparisons. One-way ANOVA with Tukey’s test for multiple
comparisons. Shaded bands and error bars + 1 SD. Scale bar, 2 mm. h, Multiple linear regression
model effects of Dorsomorphin on cVO CM formation over 16 days (left) with linear regression
coefficients (middle), and R? (right). Based on the temporal graphs (b, e, g, h), the negative effect

of Dorsomorphin on ECs was more than that on CMs; this was the opposite for DAPT. i-j,

42


https://doi.org/10.1101/2022.07.08.499233

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499233; this version posted July 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fentanyl, a potent opioid agonist, significantly increased cVO EC formation over 16 days at 10
nM (n = 18, **p < 0.001) compared to 0 nM (Control) (n = 18). Student’s t-test. Error bars + 1

SD. Scale bar, 2 mm.

Extended Data Fig. 10. Vascularization factors used for creating cVOs enable creation of
hVOs. a, Strategy for co-differentiating HCs, ECs, and SMCs to create hVOs. Key steps are
inducing mesendoderm and then co-differentiating a vascular (CV) progenitor pool and
hepatoblast pool that give rise to all three cell types. HC, hepatic cells. b, Schematic showing
timeline, stage, cell types, geometry, media, and growth factors for creating HCs, ECs, SMCs, and
resulting hVOs. ¢, Growth factor and small molecule characteristics for differentiation into HCs,
ECs, and SMCs. Select references used as guidelines for concentrations and timing used in
differentiation conditions are listed. Detailed conditions are listed in Supplementary Table 2. d,
PCA of temporal bulk RNA-seq shows developmental differences of hESC-3R (day 0
undifferentiated hESC-3R micropatterns) (green, n = 3), Control (day 20 baseline hepatic
differentiation, with no vascularization factors added) (red, n = 3), hVO-D3 (day 20 hVOs created
by adding vascularization factors at day 3 of differentiation) (cyan, n = 3), compared to hVO-D6
(day 20 hVOs created by adding vascularization factors at day 6 of differentiation) (purple, n = 3).
Note divergence between “Vascularization Factors” (D3 and D6) and ‘“No Vascularization
Factors” (Control) groups. e, bulk RNA-seq WGCNA heat map showing clusters of Pluripotency,
Structural, Miscellaneous Hepatic, Hepatic/Precursor, Hepatic and Smooth Muscle Cell, and
Vascularization Genes over twenty days (D0-20) for hRESC-3R (blue, n = 3), Control (black, n =
3), hVO-D3 (orange, D3), and hVO-D6 (red, n = 3) groups. Black dashed rectangle shows

vascularization genes are most upregulated in the hVO-D3 group. f-m, Comparison between
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hESC-3R, Control, hVO-D3, and hVO-D6 for select gene groups: Pluripotent, Hepatic,
Endothelial, Smooth Muscle Cell, Fibroblast, Extracellular Matrix, and Notch-Delta-Jag. Overall,
pluripotent genes are upregulated for hESC-3R and downregulated for Control, hVO-D3, and
hVO-D6 groups. Several hepatic genes are upregulated for Control, hVO-D3, and hVO-D6 groups.
Notably, all EC, SMC, ECM, and Notch-Delta-Jag (except DLL3 and JAGI) genes are most
upregulated for the hVO-D3 group. One-way ANOV A with Tukey’s test for multiple comparisons,
*p <0.05, **p <0.01, ***p < 0.001, ****p <(0.0001, ns, not significant. n-p, Over 19 days, ECs
increase most for the hVO-D3 group (n = 12) (dashed orange square in (N)) compared to the hVO-
D6 (n = 10) and Control (n = 10) groups, indicating that the most ECs form when vascularization
factors are added at day 3 to the baseline hepatic differentiation protocol. One-way ANOVA with
Tukey’s test for multiple comparisons, **p < 0.001, ***p < 0.0001. Shaded bands and error bars
+/- 1 SD. Scale bar, 2 mm. q, Individual confocal fluorescence images showing HCs (AFP, white)
(left), ECs (CDH5-mOrange, orange) (middle), and merge (right). Note the endoderm-derived HC
ring concentrically surrounding the mesoderm-derived EC ring. Nuclei are labeled with DAPI

(blue). Scale bar, 2 mm.
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