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Figure 4: Latent representations of an exemplary data set for varying sample sizes. Using the ten-
dimensional latent representation from scVI and subsequently applying UMAP for a two-dimensional
representation, we can visually inspect the ability to disentangle jackstraw samples (blue) from original
samples (orange). Due to the jackstraw permutation applied to the data, the UMAP representations
should position jackstraw samples in a distinct location compared to non-permuted samples. The data
shown comes from the PBMC3k data set [29].

separation between jackstraw and original samples. However, some of the original cells (orange) still

seem to intermingle with the jackstraw samples even for the larger sample size (Figure 4).

Additionally, we find that including too many genes might impair the quality of latent representations

for two reasons (Figure 5). First, the cell-to-gene ratio should not be too small, as this can lead to

underfitting, resulting in a high bias and unstable training [2]. Underfitting can therefore be particularly

problematic when generating synthetic data for larger experiments. Secondly, adding more genes

from the list of the most highly variable genes simultaneously adds genes with a lower signal-to-

noise ratio. This potentially leads to a noisy latent representation, which is reflected in a decrease in

statistical power with an increasing number of genes. Since sample size planning is often based on

small pilot data sets and the performance of scVI also decreases as the cell-to-gene ratio decreases

[2], we observe considerable losses in statistical power at 800 genes. Consequently, when planning

future studies, researchers should limit themselves to genes that are relevant for their experiments to

avoid unnecessarily reducing the statistical power of the latent representation. However, planning with

correspondingly high sample size is inevitable if one is interested in genes with a low signal-to-noise

ratio.

scVIDE can be used to determine power for sub-cluster analyses

In addition to the typical considerations of experimental design, power calculations are also highly

relevant in other scenarios. A frequently recurring issue in large cell atlas projects, such as the Human

Cell Atlas [34], or the mouse brain atlas [35], is sub-clustering. In such atlas projects, cells are

systematically assigned to specific cell types or cell states. The large data sets offer a high degree of

resolution, i.e., larger cell clusters are split into smaller groups by sub-clustering to investigate them

more closely. Using scVIDE, we can determine the possible degree of sub-clustering by estimating

statistical power for models trained only on the smaller sub-clusters. By doing this, we can define limits

for sub-clustering beyond which researchers lose too much statistical power to examine the individual

clusters more in-depth.

To mimic a sub-clustering situation, we randomly draw N = (1000, 2500, 5000, 10000) cells from

the full KPMP data, which included 5526 highly variable genes after pre-processing. We assume that
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Figure 5: Statistical power of latent representations for varying numbers of genes. We can use
scVIDE to examine statistical power for latent representations with different numbers of genes. Using
the Wu data set, we quantify the effect of gene numbers for varying sample sizes where we investigate
200 (blue), 500 (orange), and 800 (red) most highly variable genes. The lines indicate the median
statistical power over 10 replicates with different subsamples.

these sampled data sets represent our entire cell population. Next, we extract only the cells that have

been labeled as epithelial cells in [32] from each of the sampled data sets. The resulting epithelial cell

clusters contain n = (738, 1885, 3768, 7540) cells, which we will use to estimate the statistical power for

sub-clustering. In [32], the authors show that the epithelial cells can be divided into Proximal Tubule

Cells (PT), Podocytes (POD) and 8 other distinct celltypes.

Applying scVIDE to the epithelial cell clusters while varying the size of the data set shows that a

larger number of cells still leads to improved latent representations and thus to higher statistical power.

However, the statistical power remains comparatively low even with 7540 cells. We observe that with

7540 cells, statistical power is large enough to separate POD cells but not sufficiently large to form an

easily distinguishable cluster of PT cells. However, the separation of the PT cells becomes clearer as the

number of cells increases (Figure 6). This is to be expected since cells within a cluster, in this case, the

epithelial cells, are by definition more homogeneous. We could interpret the homogeneity as a small

effect size similar to classical sample size calculations. Consequently, scientists generally need more

cells for sub-clustering than would be the case for rather heterogeneous cell groups. We have observed

a similar effect for immune cells (Figure 3).

Discussion

We have presented an algorithm (scVIDE) to determine the necessary number of cells for detecting

potentially complex patterns in scRNA-seq datasets using deep generative models. More specifically,

we adapted the existing variational autoencoder framework scVI [2], so that it allows us to estimate

statistical power for pattern detection while accounting for technical factors such as batch effects. We

do so by using a permutation based approach that determines each cell’s contribution to the training of
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Figure 6: Latent representations of sub-clustering epithelial cells with varying samples sizes.
Using samples of size N = (1000, 2500, 5000, 10000, 50000) from the KPMP data set [32], we extract
epithelial cells and apply scVIDE to each of the resulting immune cell clusters to examine statistical
power for sub-clustering. We show t-SNE representations of the lower-dimensional latent space of
scVIDE and give the corresponding power estimates for each sample size n = (738, 1885, 3768, 7540,
37546) of the epithelial cells. The cell type labels are Podocytes (POD) and Proximal Tubule Cells (PT).

scVI. Additionally, we have shown how synthetic data generated from scVI can be used to simulate and

plan large-scale experiments that exceed the size of the pilot data. We also demonstrated how scVIDE

can be used to determine statistical power for sub-clustering, as is often done in cell atlas projects.

Our permutation framework comes with the advantage of being applicable to any model that provides

an estimate of the likelihood for each cell. Hence, extending scVIDE to deep Boltzmann machines

(DBMs), which have been adapted to scRNA-seq data [36], could be useful because it was previously

shown that DBMs could learn from smaller data sets compared to other deep generative models [37].

Additionally, DBMs provide exact estimates of the log-likelihood, whereas VAEs only provide a lower

bound, which could result in more precise statistical power estimates.

In addition to scRNA-seq experiments, scientists are now increasingly using methods that can

measure multiple modalities, such as gene transcription and chromatin accessibility, in single cells.

Many of the DGMs used to learn joint representations of such data are based on VAEs in which the

ELBOs of the independently learned lower-dimensional latent representations of the different modalities

are linked together by various mathematical operations [38]. Since this leads to a joint ELBO, as

implemented in scMM [39] or Cobolt [40], scVIDE could potentially be extended to the analysis of

multi-omics data sets. This is particularly interesting since joint profiling protocols currently have
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comparatively low throughput and, therefore, often have to cope with a smaller number of cells.

Intriguingly, we find that using a pilot data set as small as 64 cells seems sufficient for generating

a reasonable null distribution that we can then use to evaluate statistical power for potentially larger

data sets. An additional advantage of using real data as a starting point is that we do not assume any

prior knowledge, for example, about the number of potential cell types. This allows for more generally

planning experiments that aim at investigating the a priori unknown cell type composition of samples.

The overall aim of many sequencing experiments is to develop targeted treatments that are not only

customized to individual patients but also to specific cell states or subsets of potentially pathological

cells. These are typically detected and identified by learning lower-dimensional latent representations.

We therefore expect that appropriate methods like scVIDE which can be used to design scRNA-seq

studies with the necessary number of cells will be highly relevant in the future.
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Supplementary Material

PBMC3k Tasic Nestorowa Wu KPMP
Learningrate 0.0001 0.00001 0.0001 0.0001 0.0001
Hidden layers 3 2 2 1 1

Epochs 500 200 500 1000 100
Latent dimensions 10 2 10 5 6

Supplementary Table 1: Hyperparameters

PBMC3k Tasic Nestorowa
Assumed number of cell types 15 10 9

Minimum fraction (of rarest cell type) 0.0066 0.0042 0.012
Minimum desired cells per type 10 11 20

Supplementary Table 2: Satija lab - "How many cells?" input parameters

——————————————————————————-
scVIDE runtime analysis

——————————————————————————-
Number of cells time %tot
——————————————————– ——– ———
64 → 1536 → 3072 → 4608 → 6144 → 7680 2826s 41.9%
64 → 1152 → 2304 → 3456 → 4608 → 5760 1061s 15.7%
64 → 768 → 1536 → 2304 → 3072 → 3840 780s 11.6%
64 → 384 → 768 → 1152 → 1536 → 1920 477s 7.1%
64 → 320 → 640 → 960 → 1280 → 1600 406s 6.0%
64 → 256 → 512 → 768 → 1024 → 1280 392s 5.8%
64 → 192 → 384 → 576 → 768 → 960 327s 4.8%
64 → 128 → 256 → 384 → 512 → 640 270s 4.0%
64 → 128 → 192 → 256 → 320 209s 3.1%
——————————————————– ——- ———

Supplementary Table 3: Runtime analysis for an examplary run of scVIDE with sample sizes aug-
mented by synthetically generated data using the Wu data set [31] with epochs = 200, genes = 500, and
B = 50. Times are indicated in seconds and relate to an 2,3 GHz 8-Core Intel Core i9 with 32 GB 2667
MHz DDR4.
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Supplementary Figure 1: Comparing eCDFs of the null distribution with a varying number of
synthetic cells. The shift in δ

(i)
original values for a small pilot data set of 192 cells compared to the null

distribution of δ(j)jackstraw values (top). Furthermore, we show the eCDF of δ(i)original values for a pilot

data set size of 1525 cells and the corresponding null distribution of δ(j)jackstraw values based on 64 cells
(bottom). Cell numbers larger than the pilot data indicate synthetically augmented data sets.
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Supplementary Figure 2: Sensitivity analysis of hyperparameter s. Power for varying proportions
of permuted cells (s) and different numbers of cells for the Wu data set with 200 genes.
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Supplementary Figure 3: Latent representations of sub-clustering immune cells with varying
samples sizes. Using samples of size N = (1000, 2500, 5000, 10000) from the KPMP data set [32],
we extract immune cells and apply scVIDE to each of the resulting immune cell clusters to examine
statistical power for sub-clustering. We show t-SNE representations of the lower-dimensional latent
space of scVIDE and give the corresponding power estimates for each sample size n = (144, 367,
732, 1435) of the immune cells. Plasma (PL) cells are highlighted in blue and Monocytes (MON) are
highlighted in orange.
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