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Abstract: Artificial intelligence (AI) programs that train on a
large amount of data require powerful compute infrastructure.
Jupyterlab notebook provides an excellent framework for de-
veloping AI programs but it needs to be hosted on a powerful
infrastructure to enable AI programs to train on large data. An
open-source, docker-based, and GPU-enabled jupyterlab note-
book infrastructure has been developed that runs on the public
compute infrastructure of Galaxy Europe for rapid prototyping
and developing end-to-end AI projects. Using such a notebook,
long-running AI model training programs can be executed re-
motely. Trained models, represented in a standard open neural
network exchange (ONNX) format, and other resulting datasets
are created in Galaxy. Other features include GPU support
for faster training, git integration for version control, the op-
tion of creating and executing pipelines of notebooks, and the
availability of multiple dashboards for monitoring compute re-
sources. These features make the jupyterlab notebook highly
suitable for creating and managing AI projects. A recent sci-
entific publication that predicts infected regions of COVID-19
CT scan images is reproduced using multiple features of this
notebook. In addition, colabfold, a faster implementation of al-
phafold2, can also be accessed in this notebook to predict the
3D structure of protein sequences. Jupyterlab notebook is ac-
cessible in two ways - first as an interactive Galaxy tool and
second by running the underlying docker container. In both
ways, long-running training can be executed on Galaxy’s com-
pute infrastructure. The scripts to create the docker container
are available under MIT license at https://github.com/
anuprulez/ml-jupyter-notebook.
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Supplementary Note 1: Findings

A. Background. Bioinformatics comprises many sub-fields
such as single-cell, medical imaging, sequencing, proteomics
and many more that produce a huge amount of biological
data in myriad formats. For example, the single-cell field
creates gene expression patterns for each cell that are rep-
resented as matrices of real numbers. The medical imaging
field generates images of cells and tissues, radiography im-

ages such as chest x-rays and computerized tomography (CT)
scans. Next-Generation sequencing generates deoxyribonu-
cleic acid (DNA) sequences that are stored as fasta (1) files.
Artificial intelligence (AI) approaches such as machine learn-
ing (ML) and deep learning (DL) have been vastly used with
these datasets (2) for predictive tasks such as medical diag-
nosis, imputing missing datasets, augmenting datasets, and
estimating gene expression patterns and many more. To be
able to use ML and DL algorithms on such datasets, a ro-
bust and efficient compute infrastructure is needed that can
serve multiple purposes. They include pre-processing raw
datasets to transform them into suitable formats that are un-
derstood by ML and DL algorithms, creating and execut-
ing complex architectures of ML and DL algorithms on pre-
processed datasets and making models and predicted datasets
readily available for further analyses. To facilitate such tasks,
a complete infrastructure is developed that combines jupyter-
lab (3) notebook, augmented with many useful features, run-
ning on public compute resources of Galaxy (4) Europe to
perform end-to-end AI analysis on biological datasets. The
infrastructure consists of three important components. First,
a docker container that encapsulates jupyterlab together with
packages such as git (5), elyra AI (6), tensorflow GPU (7),
CUDA (8) for tensorflow to interact with GPU and many oth-
ers. Second, a Galaxy interactive tool (9, 10) downloads this
docker container to serve jupyterlab online on Galaxy Eu-
rope. Third, the compute infrastructure, consisting of several
CPUs and GPUs, on which the online jupyterlab runs.

B. Jupyterlab. Jupyterlab is a web-based, robust editor used
for varied purposes such as data science, scientific comput-
ing, machine learning and deep learning. It’s a common edi-
tor that supports more than 40 programming languages, some
of the popular ones are python, R, julia and scala. Python
is one of the most popular languages used by researchers
for performing numerous scientific and predictive analyses.
Therefore, it is used as the programming language in Galaxy
jupyterlab interactive tool because many popular packages
such as tensorflow, pytorch (11), scikit-learn (12) for machine
learning and deep learning are readily available as python
packages. Moreover, the extensible architecture of jupyterlab
makes it possible to add many external packages and plugins
such as git, dashboards and many others. Editors such as
jupyterlab, integrated with several useful packages, provide
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a favourable platform for both, rapid prototyping and end-to-
end development and management of AI projects. To harness
the benefits of jupyterlab, it has been used as the editor for an
interactive tool in Galaxy.

C. Docker container. Docker (13) containers are popular
for shipping packaged software as complete ecosystems en-
abling them to be reproducible in a platform-independent
manner. Software executing inside a docker container is ab-
stracted from the operating system (OS) as most of the re-
quirements necessary for them to run successfully are al-
ready configured inside the container. A container runs as
an isolated environment making the minimum number of in-
teractions to the host OS and thereby, improving the secu-
rity aspects of running software. Docker container is used
in this project to encapsulate jupyterlab along with many
useful packages such as CUDA, tensorflow, ONNX (14),
scikit-learn and many others. Docker container inherits many
packages such as numpy (15), scipy (16) from its base con-
tainer, Jupyter/tensorflow-notebook (17), and augments it
with many other packages suitable for machine learning,
deep learning and visualisation. Docker container is inde-
pendent of Galaxy and can be separately executed for serving
jupyterlab with the same set of packages on a different com-
pute infrastructure or any personal computer (PC) and lap-
top. Moreover, it can easily be extended by installing suitable
packages only by adding their appropriate package names in
its dockerfile (18). The docker container then should be re-
built and uploaded to the docker hub (19). Galaxy interac-
tive tool can automatically download the updated container
from the docker hub and the newly installed packages be-
come available in the jupyterlab notebook.

D. Features. Many features such as easy accessibility, sup-
port of a wide variety of programming languages of jupyter-
lab, and extensibility to install useful plugins make it a de-
sirable editor for researchers, especially for creating proto-
types rapidly. In this project, many such features have been
integrated into a jupyterlab notebook which is served online
on Galaxy Europe with large compute resources to enable
researchers to create prototypes and end-to-end AI projects
(Figure 1). Some of the important features of jupyterlab
hosted on Galaxy Europe are GPU support for faster execu-
tion of deep learning programs. Tensorflow-GPU interacts
with GPU using CUDA when the backend compute resource
has GPU(s), otherwise, the program in a jupyterlab notebook
runs on CPUs. Other useful packages include ONNX for
transforming trained tensorflow and scikit-learn models to
ONNX models, open-CV (20) and scikit-image (21) for pro-
cessing images, nibabel (22) for reading image files stored
as “.nii”, bioblend (23) for connecting to Galaxy to access
its datasets, histories and workflows in a jupyterlab notebook
and visualisation package such as bqplot (24) for plotting in-
teractive charts, voila (25) for displaying output cells of a
jupyterlab notebook, dashboard such as nvdashboard (26) for
monitoring GPU performance. Support for the file extension
such as H5 (27), efficient for storing matrices, enables ma-
chine learning researchers to save model weights and input

datasets for an AI algorithm. Other packages such as colab-
fold (28) together with JAX (29) are used for predicting 3D
structures of proteins which are discussed in detail in a later
section. In addition, it is possible to create a long-running
training job that runs on a remote compute infrastructure and
the trained models and output datasets get stored permanently
in Galaxy history. The trained model is saved as an ONNX
file and tabular datasets in H5 file.

E. Related infrastructure. There are a few infrastructures
available, free and commercial, that offer jupyterlab or simi-
lar environments for developing data science and AI projects.
A few popular ones are google colab (30), kaggle kernels
(31) and amazon’s sagemaker (32). Google colab is par-
tially free and offers an online editor similar to a jupyterlab
notebook. The free version of colab offers dynamic com-
pute resources. The disk space is around 70 gigabytes (GB)
and memory (RAM) is around 12 GB. These resources are
scarce for projects that deal with high-dimensional biologi-
cal data (33, 34). These resources are also variable and de-
pend on past usage. More compute resources are assigned to
those users that have used less in the past for a more equi-
table sharing of resources. Moreover, there is a limit of the
running time of only 12 hours which is also insufficient and
not ideal for long-running model learning training on large
datasets. However, colab pro and pro+ offer better compute
resources but they come at a price - EUR 9.25 and EUR 42.25
per month, respectively. In contrast, kaggle kernels are free
of charge but similar to colab, their computing resources are
scarce. The total disk space is approximately 73 GB and
RAM is 16 GB for a CPU-based kernel. For the GPU-based
kernel, the disk space is of the same size as that of the CPU-
based kernel but the RAM of the CPU decreases to 13 GB
and an additional RAM of 15 GB is added through GPU and
computation time is limited to 30 hours a week. It also sup-
ports TPUs but the computation time is even more limited to
only 20 hours a week. Amazon’s sagemaker is also a com-
mercial software for developing AI algorithms that is free of
charge but only for 2 months. Overall, these notebook infras-
tructures do not offer unrestricted compute resources free of
charge. To address the drawbacks of these notebook servers
and provide researchers and users large compute resources
more reliably, Galaxy jupyterlab offers 1 terabyte (TB) of
disk space and unlimited computation time on 1 GPU and
7 CPUs per session. RAM for GPU is around 15 GB and
for CPUs is 20 GB (Table 1). The offered resources in the
jupyterlab notebook running in Galaxy stay constant and are
independent of past usage. To more it more useful, jupyter-
lab opens a tab for each notebook that allows researchers to
develop and execute all notebooks inside the same session of
the allotted computational resource rather than forcing them
to connect to a different session as in google’s colab and kag-
gle kernels.

Supplementary Note 2: Implementation
Jupyterlab infrastructure has been developed in two stages.
First, a docker container is created containing all the neces-
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A COVID-19 CT scan image segmentation

sary packages such as jupyterlab itself, CUDA for interaction
with GPU, tensorflow, scikit-learn, ONNX and so on. The
docker container is inherited from a base container that is
suited for serving entire jupyterlab environments. In addition
to software packages such as numpy, scipy, and tensorflow
that are already wrapped around the base container, many
packages are added with their compatible versions. Com-
patible packages for CUDA, CUDA DNN and tensorflow are
necessary so that they together interact with the GPU on the
host machine for accelerating deep learning programs. Other
significant packages, integrated into the docker container,
are ONNX, scikit-learn, elyra AI, bioblend, nibabel, scikit-
image, open-CV, bqplot and voila. The integrated docker
container contains all the necessary packages for developing
data science, machine learning and deep learning projects.
Second, the container can be downloaded to any powerful
compute infrastructure and jupyterlab can be served in a
browser via the URL it creates. In addition, to run this con-
tainer in Galaxy, an interactive tool is created that downloads
this container on a remote compute infrastructure and gener-
ates a URL that is used to run jupyterlab in a browser. The
architecture of jupyterlab infrastructure in Galaxy is shown
in Figure 1.
The running instance of Jupyterlab in Galaxy contains a
home page, a jupyterlab notebook, that summarises several
of its features. Further, there are other notebooks available,
each describing a feature of the jupyterlab with code exam-
ples such as how to create ONNX models for scikit-learn
and tensorflow classifiers, how to connect to Galaxy using
bioblend, how to create interactive plots using bqplots and
how to create a pipeline of notebooks using elyra AI. To
access the jupyterlab notebook in Galaxy Europe, a ready-
to-use hands-on GTN (35) tutorial (36) has been developed
that shows steps such as opening the notebook, using git to
clone codebase from github, and sending long-running train-
ing jobs to a remote Galaxy cluster. The two use-cases, ex-
plained in previous sections, are also covered in the tutorial
along with their respective code scripts as separate jupyterlab
notebooks.

.1. Remote model training. For large datasets, model train-
ing may need several hours or even days. In such cases, it
would be non-ideal to keep the jupyterlab notebook open in
a browser’s tab till the training finishes. Therefore, another
Galaxy tool (37) is developed to enable researchers to send
long-running training jobs to a remote Galaxy cluster. The
tool can be executed from a jupyterlab notebook using a cus-
tom python function (38) that takes input datasets and train-
ing script as input parameters. The input datasets to be used
for training, testing and validation must be provide in H5 for-
mat. This is done to standardise input data format for AI
models that train on matrices as input data can be in multi-
ple formats such as images, genomic sequences, gene expres-
sion patterns. H5 files can be created using any of these data
formats and fed to the AI model. The long-running train-
ing happens in a remote cluster in Galaxy as a regular job.
Upon completion of the job, the resulting datasets and the
trained model become available in a newly created Galaxy

history. This feature of outsourcing deep learning’s long-
running training to a remote cluster decouples it from the
jupyterlab notebook. The trained model and other datasets
can be downloaded from the Galaxy history for further anal-
ysis.

ONNXTensorflowJupyterlab CUDA ...

Docker containerBase
container

Extensible on other
compute

infrastructure

Galaxy interactive tool
Galaxy

compute
resources

Remote training(a)

(b)

(c)

(d)

Fig. 1. Architecture of Galaxy’s jupyterlab. Part (a) shows packages and features
wrapped inside a docker container. Part (b) shows a base docker container (17)
from which the customized container (19) is derived. In part (c) Galaxy’s interac-
tive tool downloads the customized container. The customized docker container
can also be hosted on a different compute infrastructure. Part (d) shows Galaxy’s
jupyterlab.

Supplementary Note 3: Results
Jupyterlab infrastructure in Galaxy is used to reproduce two
scientific publications that demonstrate its power to develop
deep learning models using COVID CT scan images (39) and
predict the 3D structure of proteins using colabfold, a faster
implementation of alphafold2 (40).

A. COVID-19 CT scan image segmentation. In (39),
COVID-19 CT scan images have been used to develop
and train a deep learning model architecture that predicts
COVID-19 infected regions in CT scan images with high
accuracy. An open-source implementation of the work is
available that trains a unet deep learning architecture that
distinguishes between normal and infected regions in CT
scans. The code of this implementation is adapted and ex-
ecuted on our jupyterlab notebook infrastructure. The CT
scan images used in the original work (39) are transformed
into an H5 file so that they can directly be used as an in-
put to the unet architecture defined in the jupyterlab note-
book (41). A composite H5 file (42) is created using script
(43) that contains multiple datasets inside and each dataset
is a matrix corresponding to the matrices training, test and
validation as used in the original work. The entire analy-
sis of the original work can be reproduced using multiple
notebooks in (41) by achieving similar values of precision
and recall (approximately 0.98) as mentioned in the origi-
nal work. In (41), the first notebook (1_fetch_datasets.ipynb)
downloads input dataset as an H5 file. Additionally, it also
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Table 1. Comparison with other notebook infrastructures

Indicators/Infrastructures Google Colab Kaggle Kernel Galaxy Jupyterlab
Memory/Disk space (GB) 12/70 16/73 20/1000

GPU/TPU Yes/Yes Yes/Yes Yes/No

Max usage time (Hours) 12 12, 30 hrs of GPU/week, 20 hrs of TPU/week No time restriction on GPU usage, notebook sessions and job execution

Dynamic compute resources Yes Yes Fixed and guaranteed

Remote model training No No Yes

downloads the trained ONNX model. The second notebook
(2_create_model_and_train.ipynb) creates and trains a unet
model on the training dataset extracted from the H5 file.
Training, accelerated by GPU, for 10 iterations over the entire
training dataset finishes quickly. The third notebook (3_pre-
dict_masks.ipynb) extracts the test dataset and predicts in-
fected regions of the CT scans in the test dataset using the
trained model created by the second notebook. Figure 2
shows the comparison of ground truth infected regions (sec-
ond column) and the predicted infected regions in the third
and fourth columns. Original CT scans from the test dataset
are shown in the first column of Figure 2.
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Fig. 2. Figures shows original CT scans in column (a), corresponding ground-truth
masks of original CT scans in column (b) and the predicted masks in column (c).
Masks are COVID-19 infected regions in the corresponding CT scans. The ground-
truth and predicted masks show high similarity.

In (41), the notebook "4_cre-
ate_model_and_train_remote.ipynb" defines the entire
script for developing and training the unet architecture.
"5_run_remote_training.ipynb" notebook executes the
previous notebook on a cluster remotely after creating a
Galaxy history and then uploading the script extracted from
"4_create_model_and_train_remote.ipynb" notebook and
datasets. The custom python function (run_script_job)
creates a Galaxy history using bioblend and then uploads the
datasets to the same history. After the upload is finished,
the python script from the specified notebook is executed

dynamically. It trains a deep learning model on the uploaded
datasets to create a model which is saved as an ONNX
model in Galaxy history. Using the notebook "6_pre-
dict_masks_remote_model.ipynb" from (41), the trained
model can be downloaded from the Galaxy history and used
for predicting infected regions of the CT scans of the test
dataset. A significant advantage of training deep learning
models remotely is that researchers don’t have to keep the
jupyterlab notebook session running as long as the model
is being trained. It provides a convenient way for training
models, especially those that take several hours or even days
to finish.

A.1. Predict 3D structure of proteins using ColabFold. Al-
phafold2 has made a breakthrough in predicting the 3D struc-
ture of proteins with outstanding accuracy. However, due to
their large database size (a few TB), it is not easily accessible
to researchers. Therefore, a few approaches have been de-
veloped that replace the time-consuming steps of alphafold2
with slightly different steps but predict the 3D structure of
proteins with similar accuracy while consuming less mem-
ory and time. One such approach is colabfold which replaces
a large database search in alphafold2 for finding homolo-
gous sequences by a significantly (40-60 times) faster MM-
seqs2 API (44) call to generate input features based on the
query protein sequence. Colabfold’s prediction of 3D struc-
tures in batches is approximately 90 times faster. Colabfold
is integrated into the docker container (19) by adding two
packages - colabfold and GPU-enabled JAX which is a just-
in-time compiler for making mathematical transformations.
"7_ColabFold_MMseq2.ipynb" notebook in (41) makes the
prediction of 3D structure using colabfold by making use of
the alphafold2 pre-trained weights. Figure 3 shows the 3D
structure of 4Oxalocrotonate_Tautomerase (45), a protein se-
quence of length 62, along with its side chains. This 3D
structure is extremely similar to the structure predicted by
the jupyter notebook (46) from colabfold in (28).

Supplementary Note 4: Summary

Jupyterlab notebook is integrated as an interactive tool in
Galaxy Europe running on a powerful compute infrastruc-
ture comprising CPUs and GPUs. Jupyterlab is configured in
a docker container along with many different packages such
as CUDA, tensorflow, scikit-learn, and elyra AI to provide a
robust architecture for the development and management of
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A List of abbreviations

Fig. 3. Figures shows a 3D structure of 4 Oxalocrotonate_Tautomerase enzyme
(protein) predicted by ColabFold

projects from data science, machine learning and deep learn-
ing. Remote training makes it convenient to run multiple
analyses in parallel as different Galaxy jobs by executing the
same Galaxy tool and results become available in different
Galaxy histories. Features such as git integration are use-
ful for managing entire code repositories on github and elyra
AI for creating pipelines of notebooks to be executed as one
unit of software. All notebooks run on the same session of
the jupyterlab. The entire infrastructure of jupyterlab is read-
ily accessible through Galaxy Europe. In contrast to com-
mercial infrastructures that host editors similar to Jupyterlab
and offer powerful and reliable compute only through paid
subscriptions, this infrastructure provides large compute re-
sources invariant to usage and has unlimited usage time while
ensuring the same set compute resources for multiple usages.

Supplementary Note 5: Availability of sup-
porting source code and requirements
Project name: GPU-enabled docker container with Jupyter-
lab for artificial intelligence
Project home page: https://github.com/
anuprulez/ml-jupyter-notebook
Galaxy interactive tool: https://github.com/
usegalaxy-eu/galaxy/blob/release_
22.01_europe/tools/interactive/
interactivetool_ml_jupyter_notebook.xml
Operating system: Linux
Programming languages: Python, XML, Docker, Bash
Other requirements:
License: MIT License

Biotools ID: gpu-enabled_docker_container_with_jupyterlab_for_ai
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telligence
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