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Abstract4

Spatial variation in cellular phenotypes underlies heterogeneity in immune recognition and response to5

therapy in cancer and many other diseases. Spatial transcriptomics (ST) holds the potential to quantify6

such variation, but existing analysis methods address only a small part of the analysis challenge, such7

as spot deconvolution or spatial differential expression. We present BayesTME, an end-to-end Bayesian8

method for analyzing spatial transcriptomics data. BayesTME unifies several previously distinct analysis9

goals under a single, holistic generative model. This unified approach enables BayesTME to (i) be10

entirely reference-free without any need for paired scRNA-seq, (ii) outperform a large suite of methods in11

quantitative benchmarks, and (iii) uncover a new type of ST signal: spatial differential expression within12

individual cell types. To achieve the latter, BayesTME models each phenotype as spatially adaptive13

and discovers statistically significant spatial patterns amongst coordinated subsets of genes within14

phenotypes, which we term spatial transcriptional programs. On human and zebrafish melanoma tissues,15

BayesTME identifies spatial transcriptional programs that capture fundamental biological phenomena like16

bilateral symmetry, differential expression between interior and surface tumor cells, and tumor-associated17

fibroblast and macrophage reprogramming. Our results demonstrate BayesTME’s power in unlocking18

a new level of insight from spatial transcriptomics data and fostering a deeper understanding of the19

spatial architecture of the tumor microenvironment. BayesTME is open source and publicly available20

(https://github.com/tansey-lab/bayestme).21

Main22

The tumor microenvironment (TME) is composed of a heterogeneous mixture of cell phenotypes, subtypes,23

and spatial structures. The composition of the TME impacts disease progression and therapeutic response.24

For instance, the composition of immune cells in the tumor microenvironment is a determinant of response to25

immunotherapy (IO)1. More recent work suggests that it is not cellular composition but rather the spatial26

organization of the microenvironment that determines IO response2,3,4,5. Spatially-unaware approaches, such27

as single-cell RNA and DNA sequencing (scRNA-seq and scDNA-seq), are able to capture the presence and28

abundance of different cell types and phenotypes (hereon referred to as simply types)6, but are unable to29

characterize their spatial organization. Spatial measurements and spatial modeling of the tumor microenvi-30

ronment in situ present an opportunity to fully uncover and understand the role that spatial structure plays31

in determining disease progression and therapeutic response.32
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Spatial transcriptomics (ST) technologies, such as Visium7, HDST8, and Slide-seq9 enable biologists33

to measure spatially-resolved gene expression levels at thousands of spots in an individual tissue. Each34

tissue is divided into a grid or lattice of spots, with each spot in the grid typically 50–100µm wide, typically35

covering 10–60 cells. The tissue is permeabilized to release mRNAs to capturing probes with spot-specific36

barcodes. Bulk RNA-seq is then run on the captured mRNAs tagged with spatial barcodes. The result is a37

high-dimensional, spatially-localized gene expression count vector for each spot, representing an aggregate38

measurement of the gene expression of the cells in the spot.39

Modeling spot-wise aggregate measurements is challenging as it requires disentangling at least four sources40

of spatial variation present in the raw signal. First, technical error, also known as spot bleeding, causes41

mRNAs to bleed to remote spots and contaminates the raw spatial signal. Second, variation in cell counts42

changes the absolute number of unique molecular identifiers (UMIs) per spot. Since UMI counts scale with43

the number of cells in each spot, conventional pre-processing methods like log-normalization break this linear44

relationship. Third, differences in the cell type proportions in each spot conflate signal strength with cell45

type prevalence. This complicates analysis as it necessitates performing a difficult deconvolution of each spot46

into its constituent cell type composition. These three sources of variation obscure the fourth, namely the47

spatial variation in gene expression within each cell type in response to the microenvironment. Teasing out48

these different sources of spatial variation in ST data is necessary to obtain a full understanding of the spatial49

architecture of the tumor microenvironment.50

Several methods have been developed that specialize in a subset of these four sources of spatial variation.51

SpotClean10 corrects spot bleeding by fitting an isotropic Gaussian model to raw UMI counts in order to52

map them back to their most likely original location. Spatial clustering methods11,12,13 fuse spots together53

to effectively capture regions of constant cell type proportion with varying cell counts. Spot deconvolution54

methods14,15,16 separate the aggregate signals into independent component signals with each attributable55

to a different cell type. Spatial differential expression methods17,18 assess the aggregate spot signal to56

detect regions where individual genes or gene sets follow a spatial pattern. While each of these methods has57

moved the field of ST analysis forward, they each have shortcomings such as making incorrect parametric58

assumptions, requiring perfect reference scRNA-seq data, or only capturing aggregate signals rather than59

phenotype-specific ones.60

Notably, existing methods assume cells of a given type have a static distribution of gene expression.61

This assumption is at conflict with the biological knowledge that cells change their behavior in response62

to their local microenvironment under mechanisms including proliferation, invasion, and drug resistance19.63

The microenvironment regulates cell behavior and therefore alters gene expression profiles of specific cell64

phenotypes20. These microenvironmental influences are particularly relevant in disease contexts. As an65

example, the microenvironment affects each phase of cancer progression and invasion-metastasis cascade21.66

Chronic inflammation is able to induce tumor initiation, malignant conversion, and invasion22. Recent67

research also shows cancer cells in the interior of a tumor behave differently than cancer cells at the interface68

with healthy cells23. Existing methods are unable to accurately capture spatial expression variation within69

cell types and thus modeling ST data to understand the spatial structure of transcriptomic diversity in each70

cell type remains an important open problem.71

In this paper, we present BayesTME, a holistic Bayesian approach to end-to-end modeling of ST data72

that goes beyond existing techniques and captures spatial differential expression within cell types. BayesTME73

uses a single generative model to capture the multiscale and multifaceted spatial signals in ST data. At the74

highest level, BayesTME models the global pattern of spatial technical error present in raw ST data. As75

we demonstrate, ST data contain technical error that is anisotropic, with UMIs bleeding toward a specific76

direction in each sample. At the intermediate level, BayesTME places spatial fusion priors between spots,77

adaptively fusing tissue regions together to reveal cellular community structure. This also enables BayesTME78

to pool statistical strength across spots, enabling it to perform spot deconvolution without single-cell RNA-seq79

reference. Graph smoothing priors are simultaneously used to capture the spatial heterogeneity of within-80

phenotype gene expression. These priors enable BayesTME to discover spatial transcriptional programs81

(STPs), coordinated spatial gene expression patterns among groups of genes within a phenotype. Through an82

efficient empirical Bayes inference procedure, BayesTME infers all of the latent variables in the generative83
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Figure 1: The BayesTME computational workflow and outputs. Top: BayesTME first corrects technical
errors (spot bleeding) in the raw ST data by probabilistically mapping reads to their most likely original location
in the tissue. An unbiased spatial cross-validation routine is then run to select the optimal number of distinct cell
phenotypes. The cell phenotype count is then fixed and a reference-free spot deconvolution is run to simultaneously
recover the cell phenotypes and their counts at each spot. Finally, the deconvolution model is augmented with a
spatially-adaptive phenotype model to infer phenotype-specific spatial variations. Bottom: The final output of the
complete BayesTME pipeline is the inferred cell phenotype expression signatures, the top marker genes that maximally
distinguish phenotypes, the posterior distribution over the discrete cell counts of each type in each spot, the segmented
tissue partitioned into cellular communities, and the spatial transcriptional programs discovered for each phenotype.

model with full quantification of uncertainty. Thus, BayesTME provides statistical control of the false84

discovery rate for marker genes, cell counts, expression profiles, and spatial transcriptional programs. Figure 185

provides an overview of the BayesTME computational workflow (top) and outputs (bottom).86

BayesTME outperforms existing methods on benchmarks for bleed correction, cell type identification,87

spot deconvolution, cellular community segmentation, and within-phenotype spatial gene expression. We88

demonstrate that existing methods based on aggregate spatial differentiation are unable to detect within-89

phenotype variation due to spatial variation in cell type proportions. In contrast, BayesTME identifies spatial90

transcriptional programs with high power while maintaining tight control over the false discovery rate on the91

reported spatially-varying genes in each cell type. On real tissues from human melanoma and a zebrafish92

melanoma model, BayesTME identifies spatial programs that capture core biological concepts like bilateral93

symmetry and differential expression between the surface and interior tumor cells. BayesTME is open source1,94

does not require reference scRNA-seq, and all hyperparameters are auto-tuned without the need for any95

manual user input.96

Results97

A holistic generative model for spatial transcriptomics. BayesTME models spatial variation at98

multiple scales in ST data using a single hierarchical probabilistic model. At the top-level, spot bleeding is99

modeled via a semi-parametric spatial contamination function. This bleeding model allows for any arbitrary100

spot bleeding process to be modeled, under the constraint that UMIs are less likely to bleed to spots that101

are farther away. By leveraging the non-tissue regions as negative controls (i.e. spots where the UMI count102

should be zero), BayesTME learns this function and then inverts it to estimate the true UMI counts for each103

in-tissue spot.104

At the spot level, BayesTME models true UMI counts in each spot using a carefully specified negative105

binomial distribution. The spot convolution effects due to cell aggregation in each spot are captured in106

1https://github.com/tansey-lab/bayestme
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the rate parameter. This ensures that a linear increase in the number of a particular cell type yields a107

linear increase in the UMIs from that cell type. The success probability parameter in the negative binomial108

likelihood is used to capture spatial variation within each cell type. These latter spatial parameters allow109

cell types to up- or down-regulate genes in each spot, enabling BayesTME to capture dynamic phenotypic110

behavior at spatially localized regions in the TME. This careful separation enables BayesTME to capture111

within phenotype spatial variation of gene expression, a more nuanced signal than currently recoverable by112

existing methods. Further, the uncertainty quantification provided by posterior inference enables BayesTME113

to detect significantly varying genes in each cell type with control of the false discovery rate.114

Hierarchical priors in BayesTME encode heavy-tailed Bayesian variants24,25 of the graph-fused group115

lasso prior26 and the graph trend filtering prior27. The fused lasso prior enforces that the prior probability116

distribution over cell types follows a piecewise constant spatial function, encoding the biological knowledge117

that groups of cell phenotypes form spatially contiguous communities. The graph trend filtering prior allows118

gene expression to vary within cell types, encoding the biological knowledge that cells execute gene sets in a co-119

ordinated fashion, known as transcriptional programs. Spatial transcriptional programs extend this concept by120

identifying and quantifying the activation level of different programs in space. Identification of the BayesTME121

parameter values is achieved through a novel empirical Bayes inference algorithm that enables Bayesian122

quantification of uncertainty over each parameter of interest in the decontaminated data. See the Methods123

for the detailed hierarchical specification of the generative model and for details on parameter estimation.124

BayesTME accurately corrects previously-unreported directional spot bleeding in ST data.125

Plots of raw UMI counts in real ST data (Figure 2a-c) show the UMI signal bleeds to background spots with126

a gradient of intensity. These plots also suggest, unlike the Gaussian assumption in previous preprocessing127

methods10, or the uniform background noise model in other models16, bleeding error varies in magnitude in128

different directions. Such phenomena may be the result of cell-free DNA from dead cells, mRNA binding129

capacity limitation of spatial barcodes, or technical artifacts of tissue permeabilization.130

BayesTME corrects bleeding while preserving the true signal. To do this, BayesTME learns a semi-131

parametric anisotropic bleeding model to correct directional ST bleed and map UMIs to their most likely132

origin in the tissue. The BayesTME correction only assumes that UMI bleeding decays monotonically as a133

function of distance. Non-tissue regions are leveraged by BayesTME as a form of negative control, enabling the134

method to identify the underlying spatial error function from the data via a maximum likelihood estimation135

procedure.136

To evaluate the performance of the BayesTME bleed correction, we constructed synthetic datasets simu-137

lating three different bleeding mechanisms: Gaussian, heavy-tailed multivariate-t, and realistic (anisotropic)138

direction-biased bleeding (Figure 2e-g). The last simulation was constructed to resemble real ST data, with139

bias towards a specific corner of the slide. We compared BayesTME with SpotClean10 (Figure 2d), an140

existing ST error correction technique that assumes Gaussian technical error. While both methods perform141

comparably in Gaussian (µMSE,SpotClean = 1170.08, µMSE,BayesTME = 1263.66, p-value = 0.06 ) and142

multivariate-t (µMSE,SpotClean = 1210.06, µMSE,BayesTME = 1305.31, p-value = 0.69 ) bleeding scenarios,143

BayesTME significantly outperformed SpotClean in the realistic bleeding scenario (µMSE,SpotClean = 10437.48,144

µMSE,BayesTME = 3048.92, p-value = 1.87× 10−301).145

We found that cell typing and deconvolution were robust to this spatial error. However, bleed correction146

was critical to preventing genes from falsely registering as spatially varying in real ST data. These results147

suggest that ST experimental workflows should take care to allow ample non-tissue space in each direction of148

the slide. If the tissue section exceeds the fiducial markers substantially in a given direction, the technical149

error function will be statistically unidentifiable. In such cases, it will be impossible to distinguish technical150

error from true spatial variation, potentially leading to false conclusions when assessing spatially-varying151

gene expression within-phenotypes.152

BayesTME outperforms a suite of existing methods for phenotype inference, spot deconvo-153

lution, and tissue segmentation. We benchmarked BayesTME against other methods: BayesSpace11,154

cell2location16, DestVI15, CARD29, RCTD30, STdeconvolve14, stLearn12, and Giotto13 on simulated data155
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Figure 2: BayesTME recovers UMI reads from bleeding contamination and preserves the spatial
pattern of interest. (a-c.) Bleed correction of selected marker genes in (a-b.) two zebrafish melanoma model
samples and (c.) a human dorsolateral prefrontal cortex sample28, with comparison to SpotClean. Bleeding patterns
consistently show directional, anisotropic skew towards one corner. SpotClean UMI corrections are therefore expected
to be biased towards the tissue boundary whereas BayesTME is more diffuse and better recapitulates the true signal.
(d.) BayesTME performs similarly to SpotClean when the bleeding pattern is isotropic and not skewed (e.g. Gaussian
or Student’s t); BayesTME substantially outperforms SpotClean when bleeding skews UMIs toward one direction as
observed in real tissues. (e-g.) Examples of simulated bleeding patterns showing how BayesTME is able to learn and
correct for the direction of the bleeding pattern.
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Figure 3: BayesTME performs outperforms existing methods in semi-synthetic benchmarks. (a.)
BayesTME outperforms the reference-free method STdeconvolve in expression profile inference for each cell type,
measured by the coefficient of determination (r2), for semi-synthetic data with ground truth number of cell types
K∗ = 3, 4, 5, 6, 7, 8 (b.) BayesTME outperforms all other methods when segmenting the tissue into cellular communities,
measured by adjusted Rand index (ARI). (c.) BayesTME outperforms existing methods in robustness benchmarks.
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deconvolution accuracy; x-axis: reference contains a subset (< 0), exact match (= 0), or superset (> 0) of the true
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simultaneously detects the optimal number of cell types from the data and accurately deconvolves the spots.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.08.499377doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.08.499377
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on real single-cell RNA sequencing (scRNA) data. We randomly sampled K∗ cell types from a156

previously-clustered scRNA dataset16; we conducted experiments for K∗ from 3 to 8. For a given K∗, we157

constructed spatial layouts consisting of 25 cellular communities, defined as spatially-contiguous regions158

of homogeneous mixtures of cell types. We randomly generated the total cell number for each spot with159

cellular-community-specific priors. After dividing the total cell number into K∗ cell types, we randomly160

sampled cells from the scRNA data of the selected cell types and mapped them on top of the spot pattern161

from a human melanoma tissue sample31; see the Supplement for details. We compared the performance of162

BayesTME to the above existing methods on selecting the correct number of cell phenotypes, deconvolving163

spots, segmenting tissues into spatial communities, and detecting groups of spatially-varying genes within164

phenotypes. As we demonstrate, BayesTME outperformed existing methods across all benchmark tasks.165

BayesTME accurately identifies the correct number of cell phenotypes and each phenotype166

expression signature. A core modeling task in ST analysis is deconvolution of the spots into their167

constituent cell phenotype proportions. Most existing methods require a scRNA-seq reference for deconvolution168

and cell type mapping. As has been noted16, these methods may be brittle when a cell type is missing169

from the reference. This vulnerability is particularly problematic in cancer where many subclones may170

exist and non-overlapping sets of subclones occur between different tissue samples. BayesTME learns the171

cell phenotypes–both the number of types and their signatures–directly from ST data without the need for172

scRNA-seq. Thus, BayesTME is robust to the natural spatial heterogeneity of phenotypes in cancer and other173

disease tissues. To evaluate the robustness and performance of BayesTME, we compared it to both an existing174

reference-free method and to existing reference-based methods with different degrees of scRNA missingness.175

To focus purely on the deconvolution and reference-free capabilities of BayesTME, our simulations did not176

apply any spot bleeding.177

There are two tunable hyperparameters in BayesTME: K, the number of cell types, and λ, the global178

degree of smoothness. BayesTME uses a spatial cross-validation approach to automatically select both179

variables without the need for user input. The cross-validation procedure creates m non-overlapping folds each180

with κ% of spots held out; we set m = 5 and κ = 5%. For each fold, BayesTME enumerates K = 2, . . . ,Kmax181

and λ = 101, . . . , 106; in all of our experiments we set Kmax = 15. For each (K,λ), we fit BayesTME on the182

in-sample data. Graph smoothing priors enable BayesTME to fill-in missing spots during cross-validation.183

BayesTME uses these imputed posterior estimates to evaluate the likelihood on the held out data. BayesTME184

integrates out λ in order to select K then chooses the λ value closest to the mean held out likelihood for the185

chosen K; see the Methods for details.186

We first evaluated how well the BayesTME recovers the true gene expression profiles of each cell type in187

each of our K∗ (true number of cell types) settings. We compared the BayesTME result to STdeconvolve, a188

reference-free alternative method based on latent Dirichlet allocation32 that provides three different approaches189

to estimating the number of cell types; we picked the closest estimation out of the three candidates that190

STdeconvolve provided. Reference-based methods assume access to ground truth cell type information from191

scRNA annotation, making them unavailable for comparison. In each simulation, BayesTME achieved a192

higher correlation with the true gene expression levels as measured by r2 (Figure 3a). Further, STdeconvolve193

over- or underestimated the true number of cell types whereas BayesTME selected the correct number of cell194

types in each setting (Figure 3c, left).195

We next evaluated the robustness of reference-based methods DestVI, CARD, cell2location, and RCTD to196

reference mismatch. We found that while all methods performed well when the reference was perfectly matched,197

reference mismatch was problematic for all four reference-based methods (Figure 3c, right). Specifically,198

DestVI and RCTD were sensitive to the reference being a superset of the true number of cell types (x-axis199

values 1 and 2) and all four were sensitive to missing cell types (x-axis values -1 and -2). By not relying on200

any reference scRNA-seq, BayesTME retained high accuracy across all simulations (Figure 3c, left).201

Finally, we evaluated the ability of different methods to segment the tissue into spatial regions representing202

cellular communities. In community detection benchmarks, BayesTME (adjusted Rand index33, ARI = 0.99)203

surpassed all other currently available alternatives (Figure 3 b), including both spatial clustering (BayesSpace,204

STLearn, Giotto) and spot deconvolution (cell2location, DestVI, STdeconvolve) methods. For cell2location205
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(ARI = 0.31) we used its built-in Leiden clustering; when inserting the BayesTME spatial clustering,206

cell2location improved to ARI = 0.93, suggesting the BayesTME clustering provides an independent benefit207

even for accurate deconvolution methods.208

BayesTME identifies within-phenotype spatial transcriptional programs with tight control of209

the false discovery rate. In addition to bleed correction, deconvolution, and cell typing, BayesTME210

detects gene expression levels of each phenotype that vary in space. To do this, the generative model for211

BayesTME uses a negative binomial likelihood where spatially-invariant expression levels parameterize the rate212

and spatially-dependent expression levels parameterize the success rate. Hierarchical spatial shrinkage and213

clustering priors on the success rate parameters enable BayesTME to discover genes within each phenotype214

that spatially vary in coordination with other genes. We call these gene sets and spatial patterns spatial215

transcriptional programs (STPs). The STP construction in BayesTME is flexible: it allows for genes to be216

negatively spatially correlated within the same program, makes no assumption on the shape or pattern of217

spatial variation, and adaptively discovers how many genes are in each program. After inference, we use the218

posterior uncertainty to select STPs with control of the Bayesian false discovery rate (see Methods); we set219

the FDR target to 5% by default.220

To benchmark BayesTME, we constructed a simulation dataset with spatial transcriptional programs by221

randomly sampling cells from the scRNA data following the same fashion as in the previous experiments.222

We used the spatial layout from a zebrafish melanoma sample as it is a large tissue containing more than223

2000 spots, enabling a rich set of spatial patterns to be imprinted. We chose K∗ = 3 cell types and designed224

2 spatial programs for each cell type, where 10 genes were randomly sampled and assigned to each of the225

STPs (Figure 4c). After selecting these 60 spatial genes, we reordered their sampled reads by the spot226

intensity of their respective spatial programs to simulate the spatial differentiation while preserving the mean227

expression. Thus, while the gene expression patterns are spatially informative in these simulations, clustering228

by scRNA-seq analysis would remain unchanged.229

We benchmarked BayesTME against spatial differential expression methods18,17 that enable control of230

the false discovery rate. BayesTME identified all 6 spatial transcriptional programs with on average 0.88231

Pearson’s r correlation to the ground truth (Figure 4a,c). In contrast, we found SpatialDE and Spark could232

only detect phenotype proportion patterns instead of meaningful within-phenotype variation in spatial gene233

expression (Figure 4d-e). We also evaluated the DestVI spatial expression detection mechanism and found234

the results to be uncorrelated with the ground truth (see Supplement for details). Quantitatively, BayesTME235

achieved an average false discovery proportion of 14% where the 95% confidence interval covers the 5% target236

FDR, and TPR of 94% for selecting spatially varying genes (Figure 4b).237

BayesTME discovers novel spatial programs of immune infiltration and response in human238

melanoma. We applied BayesTME to a published human melanoma dataset31 generated using first239

generation ST technology, with a spot diameter of 100 µm and center-to-center distance between spots of240

200 µm34. The selected sample contained visible tumor, stromal, and lymphoid tissues as annotated by a241

pathologist based on H&E staining (Figure 5a). Despite the relatively low resolution of the data, the cell242

types identified by BayesTME successfully recapitulated the histology of the tissue (Figure 5b).243

Five spatial transcriptional programs were identified by BayesTME (Figure 5c). Two programs were244

tumor-specific, and displayed somewhat distinct expression patterns, suggesting a spatially-segregated pattern245

of tumor heterogeneity (Figure 5c). As expected, melanoma marker genes such as PMEL and SOX10 were246

highly upregulated within the tumor programs (Figure 5d). Similar to the pathologist annotations, the247

model also detected spatial programs corresponding to stromal (fibroblast) and lymphoid tissues (Figure 5c),248

which marker genes including COL1A1 (fibroblast-specific, Figure 5c-d) and CXCL13 (lymphoid-specific,249

Figure 5d). Notably, MYL9 was one of the most highly expressed genes within the fibroblast expression250

signature (Figure 5d), which is a marker of tumor-associated myofibroblasts35, indicating that the fibroblast251

program identified by BayesTME represents a subpopulation of fibroblasts reprogrammed by their proximity252

to the tumor. In the fibroblast-related spatial program, immune-related hub genes like IGLL5 and IGJ253

displayed an enrichment at the tumor boundary (Figure 5c). The model also identified a macrophage-related254
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spatial program (Figure 5c), which had not been detected by the pathologist. One of the top macrophage255

marker genes, CXCL9 (Figure 5c-d) is a marker of tumor-associated macrophages36, which have an important256

role in anti-tumor immunity37. Taken together, our results show that BayesTME can successfully not only257

recapitulate, but also improve the detection of novel tumor and tumor-associated cell types that are difficult258

to identify purely by histology.259

BayesTME discovers spatial programs capturing muscular bilateral symmetry and tumor-260

immune interaction in a zebrafish melanoma model. We expanded upon our human melanoma261

results by applying BayesTME to our recently published dataset of zebrafish BRAFV 600E-driven melanoma23,262

generated using the 10X Genomics Visium technology with approximate spot resolution of 55 µm. Both263

samples contained tumor and TME tissues (muscle, skin) (Figure 6, Figure 7).264

Within Sample A, BayesTME identified cell types corresponding to tumor, skin, and muscle (Figure 6b-c).265

Each cell type upregulated expected marker genes, such as myosins and parvalbumins in muscle (myhc4, myl10,266

pvalb1, pvalb2, pvalb3, pvalb4 ), BRAFV 600E in tumor, and keratins in skin (krt5, krt91, krt15 ) (Figure 6c).267

Two celltypes (“Tumor” and “Interface”) were detected within the tumor, both expressing BRAFV 600E
268

(Figure 6a-c). Although the tumor region of Sample A bordered adjacent muscle with little mixing of the269

two tissue types visible on the H&E-stained section , the interface cell type appeared to infiltrate into the270

neighboring TME, reminiscent of the interface cell we identified in our recent work23 (Figure 6a). Many271

of the interface marker genes were the same as interface marker genes we previously identified, including272

stmn1a, tubb2b, and hmga1a 23 (Figure 6c). Both spatial programs corresponding to the interface type273

were enriched at the tumor boundary (Figure 6d). In addition to the interface marker genes we previously274

identified, BayesTME uncovered a number of genes related to remodeling of the extracellular matrix (ECM)275

that displayed a spatial enrichment at the tumor boundary, including several collagen-related genes (col1a1a,276

col1a2, col1a1b; Figure 6d), consistent with a role for the interface cell state in melanoma invasion. Immune277

genes were also enriched at the tumor-muscle interface, including ilf2 and grn1 (Figure 6c-d).278

Sample B contains a wider variety of tissue types including heart, brain, gills, tumor, and muscle (Figure 7a-279

c). Mixing of tumor and muscle tissues at the tumor boundary was visible by histology (Figure 7a). Notably,280

BayesTME again uncovered an “interface” cell state specifically enriched at the tumor boundary (Figure 7a-b).281

Similar to Sample A, a number of immune-related genes were spatially patterned and/or enriched in the282

interface region, including lygl1, grn1, cd74a/b, and b2m (Figure 7c-d). Melanoma is a highly immunogenic283

cancer whose interaction with immune cells in the TME significantly influences tumor progression38. Whether284

the enrichment of immune genes at the tumor-TME interface represents pro-inflammatory tumor cells at the285

tumor boundary, or a type of novel tumor-associated immune cell type will be an exciting topic of future286

investigation.287

In both samples, we uncovered a significant degree of spatially-patterned tumor heterogeneity. BayesTME288

identified spatial programs characterized by up-regulation of classical melanoma markers such as pmela and289

tyrp1b (Sample A “Tumor”, Figure 6d) and BRAFV 600E and sox10 (Sample B “Tumor 3”, Figure 7d). Other290

spatial programs identified in the tumor likely represent other facets of tumor biology. Hypoxia-related291

genes (hif1an, egln3 ; Figure 6d) were spatially enriched within the tumor region of Sample A, which may292

indicate hypoxic regions of the tumor due to lack of oxygen supply. Hypoxia has been linked to melanoma293

progression39. We also identified spatially-patterned signatures of metabolism, which could represent different294

metabolic pathways active within the tumor. One of the spatial programs identified within the tumor region295

of Sample B up-regulated several genes corresponding to ATP synthase subunits (atp5a1, atp5e, atp5b)296

and other metabolic genes (gpia, tpi1b) (Figure 7d). Determining how different metabolic pathways are297

spatially-organized and regulated within the tumor will be an interesting area of further study. Taken together,298

our results indicate that BayesTME identifies complex spatial patterns of transcriptional heterogeneity within299

melanoma and the melanoma microenvironment, and uncovers a potentially novel pro-inflammatory cell state300

present at the tumor boundary.301
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Figure 7: BayesTME reveals gradual tumor invasion and confirms interface programs in a second
zebrafish melanoma model (a.) Histology of the zebrafish B sample; cutout: tumor interface with gradual invasion
of tumor cells into the muscle region. (b.) BayesTME cell types recovered; cutout: corresponding tumor-muscle
interface with tumor/non-tumor proportions capturing the gradient of tumor invasion present in histology. (c.) Marker
genes for the discovered 10 cell types. (d.) 16 spatial transcriptional programs discovered at a 5% FDR.
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Discussion302

This paper has presented BayesTME, a reference-free Bayesian method for end-to-end analysis of spatial303

transcriptomics data. Compared with existing scRNA-seq referenced methods, BayesTME applies to a wider304

variety of tissues for which scRNA-seq may not be tractable due to economic, technical, or biological limitations.305

Even when references are available, highly heterogeneous and diseased tissues may contain different subsets of306

cell types between consecutive samples. However, BayesTME is adaptable to scRNA-seq reference if a reliable307

one is available. With reference data, one can obtain the empirical estimation of the expression signature ϕ,308

which is invariant to sequencing depth batch effects. Computationally, access to pre-clustered scRNA-seq309

significantly accelerates the inference by removing the need to perform cross-validation to select the cell310

phenotypes. On the other hand, unlike most reference-free methods, BayesTME does not rely on dimension311

reduction like PCA. This advantage enables BayesTME to draw individual gene-level inferences including312

expression signatures, phenotype markers, and spatial transcriptional programs which current methods miss.313

Our comparison to 11 other ST data analysis methods highlighted BayesTME’s advance in bleed correction,314

spot deconvolution, tissue segmentation, and within-cell-type spatial spatial variation in gene expression.315

Advances in ST technology promise to soon enhance the resolution to near-single cell levels, dramatically316

increasing the number of spots. We have carefully designed the computational inference routines in BayesTME317

to meet this challenge. BayesTME scales sub-linearly with the number of spots, with a 100x increase in the318

number of spots leading to only a 10x increase in computational runtime (Supplementary Fig. 9). To further319

speed up inference, one can place an informative prior on the cell count in a given spot using the H&E slide320

as reference; simulation experiments show that with a handful of noisy cell count annotations, the cell count321

accuracy also improves to nearly perfect (see the Supplement for details).322

Understanding how cells alter their expression levels as a function of their spatial location in a tissue323

is necessary for a complete characterization of the cellular architecture of the tissue microenvironment.324

BayesTME captures these expression level changes in the form of spatial transcriptional programs. Our325

results showed BayesTME is able to capture biologically meaningful spatial programs which hint at cell-cell326

interaction in tumor microenvironments. To further facilitate our understanding of cell-cell interaction327

mechanisms, future versions of BayesTME will introduce an additional cell-type interaction term in the328

success rate formulation in our negative binomial model. This interaction term will model the total influence329

cell type k in spot i as the sum of the interactions between cell type k and all possible cell types k′. We also330

plan to explore extending this formulation to all spots within a reasonable neighboring of spot i for global331

interactions triggered by paracrine, synaptic, or endocrine signaling. This process is computationally expensive332

under the current ST technology. However, with single-cell resolution, such inference becomes tractable as we333

only need to look at the individual cells of different cell types within the reasonable neighborhood of cell334

i. Increased ST resolution will significantly drop the computation cost by a factor of K, which can also be335

vectorized to further speed up this process. Thus, BayesTME is well-positioned to make future computational336

advances in ST modeling, in step with the coming technological advances in ST methods.337
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Methods338

Notation and setup339

We assume we are given an N ×G matrix R where Rig is the UMI counts for gene g at spot i. The spot i340

is associated with some known location l(i) ∈ R2 on the tissue. These locations define a graph G = (V, E)341

where each vertex is a spot. There is an edge between two vertices if they are within some ϵ distance. We set342

ϵ =
√
2 such that each non-boundary spot has 4 neighbors for lattice layouts (e.g., Slide-seq) and 6 neighbors343

for hexagonal layouts (e.g., Visium). We assume that there are K cell phenotypes (hereon simply called cell344

types) in the sample, each with their own expression profile. We do not assume that K is known nor do we345

assume that there is side information about different cell types and their expression profiles (i.e., we do not346

assume access to paired single-cell RNA). We refer to UMI counts and read counts interchangeably, where347

read counts are understood to mean UMI-filtered reads and not raw, possibly-duplicated reads.348

Generative model349

BayesTME models several sources of spatial variation in ST data using a single hierarchical probabilistic350

model,351

(Raw, corrupted reads in spot i for gene g) R̃g ∼ ξ(Rg)

(Reads in spot i for gene g) Rig =
∑K

k=1Rigk

(Reads specific to cell type k) Rigk ∼ NegBinom(βkdikϕkg, σ(w
(hkg)
ki vkg + ckg))

(Expression signature for cell type k) ϕϕϕk ∼ Dir(ααα)
(mRNA content for cell type k) βk ∼ Gamma(a, b)
(Total # cells in spot i out of nmax possible) Di ∼ Binom(nmax, 1− σ(ψi0))
(# cells of type k in spot i) dik ∼ Binom(nk−1, σ(ψik)), ∀1 < k < K
(Diff in cell type dist between neighbors) (∆Ψ)j ∼ GroupHorseshoe(λ)
(Spatial transcriptional program membership) hkg ∼ Cat(θk)
(STP membership prior odds for cell type k) θk ∼ Dir(10, 1, 1, . . . , 1)
(Spatially-invariant dispersion factor) ckg ∼ N (0, 1)
(STP loading for gene g in cell type k) vkg ∼ Horseshoe+

(Null STP program) w
(0)
k = 0

(Spatial pattern of STP h for cell type k) (∆(1)w
(h>0)
k )j ∼ Horseshoe+ ,

(1)
where σ is the logistic function, Di is the total number of cells in spot i, and λ is the hyperparameter that352

controls the degree of spatial smoothing. The function ξ(·) is a nonparametric function defining the spot353

bleeding process that probabilistically maps from the true read counts Rg for each gene g to the observed354

counts R̃g. We specify no functional form for this function and only constrain it to be decreasing in the355

distance from the true to observed spot location. The matrix ∆ is the edge-oriented adjacency matrix356

encoding the spot graph G, also equivalent to the root of the graph Laplacian; ∆(1) = ∆T∆ is the first-order357

graph trend filtering matrix40,41, equivalent to the graph Laplacian.358

Since full Bayesian inference in the above model is computationally intractable, we develop an efficient359

empirical Bayes approach that splits posterior inference into stages. This piecewise approach to fitting is360

distinguished from the ad hoc pipeline approach of existing workflows in that a single, coherent generative361

model is driving the estimation. The empirical Bayes approach merely plugs in point estimates for nuisance362

parameters while providing full Bayesian inference with uncertainty quantification for the latent variables of363

interest.364

Gene selection365

BayesTME scales linearly with the size of the gene library. To keep posterior inference computationally366

tractable, we select the top G = 2000 genes ordered by spatial variation in log space. Specifically, we transform367
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the reads as log(1+R) and rank each column by the variance, keeping the top 2000. The logarithmic transform368

separates spatial variation from natural variation that arises due to simply having a higher overall expression369

rate. We then drop all ribosomal genes (i.e., those matching an ‘rp’ regular expression). After selecting and370

filtering the top genes, we work directly with the UMI read counts.371

Anisotropic bleed correction372

Technical error causes UMIs to bleed out from barcoded spots. BayesTME models this bleed as a combination373

of unknown global and local effects. Global effects form a baseline bleed count for any spot, corresponding to374

a homogeneous diffusion process. Local effects imply that the UMI count at a given spot is a function of how375

far it is from the original location of each of the UMIs. BayesTME employs a semi-parametric, anisotropic376

model for global and local effects,377

R̃g ∼Mult

(∑
i

R̃ig,ρg/
∑
i

ρig

)
ρig = ρ0g +

∑
i′

wii′µi′g

wii′ =
B∑

b=1

sb(i,i
′)∑

j=0

log(1 + eζbj ) ,

(2)

where R̃g are the raw, observed counts and ρ0g are the global effects. The local effects in Equation (2)378

are modeled using a set of B monotone nonparametric basis functions ζ that decay as a function of the379

basis-specific pseudo-distance sb.2 BayesTME uses the four cardinal directions (North, South, East, and380

West) for the basis functions. This choice is based on the observation that UMIs tend to bleed toward one381

corner. We also observed that bleeding appears to be less extreme in tissue regions than non-tissue regions.382

Thus, BayesTME distinguishes between in- and out-of-tissue distance by learning four separate basis functions383

for each region. The distance from an original spot i′ to its observed spot i is then a summation of the in-384

and out-of-tissue components of a straight line between the two spots.385

The bleeding model is fit by alternating minimization. At each iteration, BayesTME alternates between386

estimating the basis functions ζ̂ and global rates ρ̂0g, and estimating the latent true UMI rates µ̂ig. After the387

model is fit, BayesTME replaces the raw reads with the approximate maximum likelihood estimate of read388

counts,389

Rg = argmaxMult

(
Rg;

∑
i

R̃ig, ρ̂g/
∑
i

ρ̂ig

)
≈ round

(
R̃ig × ρ̂g/

∑
i

ρ̂ig

)
. (3)

The cleaned reads R are then treated as correct in subsequent inference steps. This can be seen as an390

empirical Bayes approach, where the model in Equation (2) is optimized and uncertainty over R is replaced391

with a point estimate that maximizes the marginal likelihood of possible true read configurations.392

Discrete deconvolution model393

The spot-wise gene counts Rig can be decomposed into the sum of cell type-specific gene reads in any given394

spot, i.e. Rig =
∑K

k=1Rigk. BayesTME models the cell type-specific reads with a Poisson distribution395

controlled by three parameters βk, dik and ϕkg. Specifically, βk denotes the expected total UMI count of396

individual cells of type k; dik denotes the number of cells of type k located in spot i; and ϕϕϕk = (ϕk1, . . . , ϕkG)397

denotes the gene expression profile of cell type k, where each element ϕkg is the normalized expression of398

gene g in cell type k; equivalently, ϕkg is the proportion of UMIs that cell type k allocates to gene g. The399

2Technically these basis functions are pseudo-distances as they do not satisfy symmetry and thus are not metric functions.
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generative model for BayesTME follows,400

Rig =
K∑

k=1

Rigk

Rigk ∼ Pois(βkdikϕkg)

ϕϕϕk ∼ Dir(ααα)

βk ∼ Gamma(a, b)

Di ∼ Binom(nmax, 1− σ(ψi0))

dik ∼ Binom(nk−1, σ(ψik)), ∀1 < k < K

(∆Ψ)j ∼ GroupHorseshoe(λ)

(4)

where Di is the total number of cells in spot i, and λ is the hyperparameter that controls the degree of401

spatial smoothing. The matrix ∆ is the edge-oriented adjacency matrix encoding the spot graph G, also402

equivalent to the square root of the graph Laplacian. The hierarchical prior encoded by the last three lines403

of Equation (4) is a heavy-tailed Bayesian variant of the graph-fused group lasso prior27,26 that uses the404

Horseshoe+ distribution25. This prior encourages the probability distribution over cell type proportions to405

follow a piecewise constant spatial function, encoding the prior belief that cells form spatially contiguous406

communities. The model is data-adaptive, however, and able to handle deviations from this prior where407

warranted in the data; see for example, the smooth gradient of cell type proportions recovered in Figure 7.408

Posterior inference409

Posterior inference in BayesTME is performed through Gibbs sampling. The full derivations for all complete410

conditionals and update steps are available in the supplementary material. The key computational innovations411

in BayesTME come in the form of a fast approach to update dik, the number of cells of type k in spot i. As we412

show in the supplement, block joint sampling over all di and Di can be done via an efficient forward-backward413

algorithm. This algorithm effectively converts the cell count prior to a hidden Markov model prior. The414

Poisson likelihood in Equation (4) acts as the emissions step and the emission log-likelihood can be collapsed415

into a series of fast updates. This inference step enables us to sample over the entire combinatorial space of416

possible cell counts in O(ND2
maxK

2) time for N spots, K cell types, and 0 ≤ Di ≤ Dmax possible total cells417

in each spot. BayesTME performs Gibbs sampling using these fast updates with a burn-in and Markov chain418

thinning; we use 2000 burn-in steps, 5 thinning steps between each sample, and gather a total of T = 100419

post-burn-in posterior samples.420

Selecting the number of cell types and smoothness hyperparameters421

BayesTME automatically chooses the number of cell types K via M -fold cross-validation. For each fold, a422

random non-overlapping subset of the spots are held out; we use M = 5 folds with 5% of spots held out423

in each fold. The spatial priors in BayesTME enable imputation of the cell type probabilities at each held424

out spot in the training data. For each fold, we fit over a discrete grid of λ smoothness values; we use425

λ = (100, 101, . . . , 106). For a given fold m, cell type count K, and smoothness level λ, we calculate the426

approximate marginal log-likelihood of the held out spots using T posterior samples,427

Ltest =
∑

i∈foldm

T∑
t=1

logMult

(
Ri;

∑
g

Rig,

∑
k β

(t)
k θ

(t)
ik ϕ

(t)
k∑

g

∑
k β

(t)
k θ

(t)
ik ϕ

(t)
kg

)
. (5)

Results are averaged over all λ values for each fold and then averaged across each fold. The λ averaging is428

an empirical Bayes estimate with a discrete prior on λ integrated out; the cross-validation averaging is an429

unbiased approach to selecting K. After selecting K, we refit BayesTME on the entire data using the chosen430

K and the λ with average cross-validation log-likelihood closest to the overall average.431
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Selecting marker genes432

We define a gene as a marker of a particular cell type if its expression in that cell type is significantly higher433

than in any other cell type. BayesTME uses posterior uncertainty to select statistically significant marker434

genes with control of the Bayesian false discovery rate (FDR)42. To calculate the local FDR we use the T435

posterior samples,436

ωkg = 1/T
T∑

t=1

∏
k′ ̸=k

1

[
ϕ
(t)
kg > ϕ

(t)
k′g

]
, (6)

yielding the posterior probability that gene g is a marker for cell type k. We sort the ω values in descending437

order and solve a step-down optimization problem,438

maximize
q

q

subject to
∑q

i=1(1− ω(i))

q
≤ α .

(7)

The set of ω values selected controls the Bayesian FDR at the α level. BayesTME can alternatively control439

the Bayesian Type I error rate at the α level by only selecting marker genes satisfying ωkg ≥ 1− α. We then440

rank the selected marker gene candidates by ω and ξ jointly, where441

ξkg =
ϕ̄kg −max{ϕ̄k′g}k′ ̸=k

max{ϕ̄k′g}Kk′=1

, (8)

is the normalized expression score in [−1, 1] measuring the expression level of gene g in cell type k compared442

with all the other cell types, and ϕ̄kg is the posterior mean of T posterior samples. By default, we set the443

FDR threshold to 5%; our results report an interpretable subset of the top 20 genes for each inferred cell type.444

Community detection445

To segment the tissue into cellular communities, BayesTME clusters the fused spatial probabilities Ψ. First,446

the neighbor graph is augmented with the nearest 10 neighbors to adjust for spatially-disconnected spots447

due to tissue tears in sectioning. The posterior samples are flattened into a single vector for each spot.448

Spots are then clustered using agglomerative clustering with Ward linkage, as implemented in scikit-learn.449

The number of clusters q is chosen over a grid of q ∈ (1, . . . , 50) to minimize the sum of the AIC43 and450

BIC44 scores. Community distributions are calculated as the average of all posterior probabilities of all451

spots assigned to the community. When comparing community segmentation in benchmarks, we applied452

BayesTME’s clustering algorithm on DestVI and stDeconvolve, as they do not provide segmentation routines.453

Spatial transcriptional program model454

The deconvolution model in Equation (4) assumes gene expression is stationary within a given cell type.455

However, we expect that variation in a small number of important genes should be spatially dependent.456

BayesTME captures this spatial variation by replacing the Poisson likelihood in Equation (4) with a more457

complex negative binomial one,458

Rigk ∼ NegBinom(βkdikϕkg, σ(w
(hkg)
ki vkg + ckg))

hkg ∼ Cat(θk)

θk ∼ Dirichlet(10, 1, 1, . . . , 1)

ckg ∼ N (0, 1)

vkg ∼ Horseshoe+

w
(0)
k = 0

(∆(1)w
(h>0)
k )j ∼ Horseshoe+ ,

(9)
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where σ is the logistic function and ∆(1) = ∆T∆ is the first-order graph trend filtering matrix, equivalent to459

the graph Laplacian. The rate in Equation (9) is equivalent to that in the simpler model in Equation (4). In460

both cases, the expected read count scales additively with the number of cells, a crucial property that reflects461

the intuition that a spot with twice as many cells should yield twice as many reads.462

Gene expression within a cell type varies spatially through the success probability (the second term) in the463

negative binomial likelihood. The offset term ckg corresponds to the spatially-invariant expression term that464

controls the dispersion rate in the counts. Each gene g in each cell type k belongs to one of H clusters. Each465

cluster defines a different spatial pattern w
(h)
k , which we refer to as spatial transcriptional programs. The first466

program w
(0)
k is the null program corresponding to spatially-invariant expression. All subsequent programs467

are latent and inferred through posterior inference. BayesTME places a heavy prior on genes coming from468

the null, such that it takes substantial evidence to conclude that a gene is spatially varying within a cell469

type; this prior is necessary as otherwise the model is only weakly identifiable. Genes that participate in470

the non-null spatial programs do so by placing a weight vkg on the spatial pattern. This weight shrinks,471

magnifies, or can even invert the pattern, allowing for clustering of negatively correlated genes into the same472

spatial transcriptional program. BayesTME places a sparsity-inducing prior on vkg in order to encourage473

only strongly-participating genes to be assigned to non-null programs.474

Spatial transcriptional program inference475

Posterior inference via Gibbs sampling is possible with the STP BayesTME model. However, the fast HMM476

updates for the cell counts are no longer available, making the inference algorithm substantially slower.477

For computational efficiency, we instead take a two-stage approach. First, we fit the deconvolution model478

in Equation (4), collecting T posterior samples of each latent variable. Then we fix (β,d,Φ)(t) for each479

sample t = 1, . . . , T . For each fixed sample, we run a new Gibbs sampler for the non-fixed variables in480

Equation (9); we use 99 burn-in iterations and take the 100th iteration as the sample for the tth iteration of481

the full model parameters. We motivate this approach mathematically by the identity that if Y ∼ Pois(r)482

and X ∼ NegBinom(r, p) then E[Y ] = E[X | p = 0.5]. Since we put sparsity priors on vkg and a standard483

normal prior on ckg, all of our priors are peaked at p = 0.5. Thus, a priori, we expect the posterior mean484

under the full joint inference model to be nearly the same as the two-stage model; in practice, we find the485

two approaches produce similar results.486

Selecting significant spatial transcriptional programs487

Spatial transcription programs in BayesTME correspond to spatial patterns in w(h)
k in cell type k and the488

members of a spatial program are the genes g for which hkg is significantly non-null. Spatial programs are489

only considered active in spots i where dik > 0 with high probability. Specifically, for a given α significance490

level, we select spots and genes for spatial program s in cell type k as follows,491

Sgenes
sk (α) =

{
vkg :

(
1/T

T∑
t=1

1[h
(t)
kg = s]

)
≥ 1− α

}

Sspots
sk (α) =

{
w

(s)
ki :

(
1/T

T∑
t=1

1[d
(t)
ik > 0]

)
≥ 1− α

}
.

(10)

If either Sgenes
sk (α) or Sspots

sk (α) is empty, we filter out the entire program. We also filter any programs where492

the Pearson correlation between w
(h)
k and dk is more than 0.5 and Moran’s I spatial autocorrelation less493

than 0.9; these programs capture technical noise and overdispersion rather than meaningful spatial signal. In494

practice, we find H = 10 to be a sufficient number of potential spatial programs per cell type. BayesTME495

sets the spatial transciptional program significant threshold to α = 0.95.496
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